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Abstract

Sweat pores have been recently employed for auto-
mated fingerprint recognition, in which the pores are
usually extracted by using a computationally expensive
skeletonization method or a unitary scale isotropic pore
model. In this paper, however, we show that real pores
are not always isotropic. To accurately and robustly
extract pores, we propose an adaptive anisotropic pore
model, whose parameters are adjusted adaptively ac-
cording to the fingerprint ridge direction and period.
The fingerprint image is partitioned into blocks and a
local pore model is determined for each block. With the
local pore model, a matched filter is used to extract the
pores within each block. Experiments on a high reso-
lution (1200dpi) fingerprint dataset are performed and
the results demonstrate that the proposed pore model
and pore extraction method can locate pores more ac-
curately and robustly in comparison with other state-of-
the-art pore extractors.

1. Introduction

Most existing automated fingerprint recognition sys-
tems (AFRS) utilize only level one and level two fin-
gerprint features (e.g. orientation field and minutiae)
for personal identification [5][6]. Level-three finger-
print features like pores, though seldom used by ex-
isting AFRS, are also very distinctive [8]. Thanks to
the advancement of imaging techniques, more and more
researchers [9][8][4][2][3] are now exploring how to
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Figure 1. Partial fingerprints of two differ-
ent fingers. (a) A closed pore and (b) two
open pores are marked.

extract and use level-three features in AFRS. In [9],
Stosz and Alyea presented, for the first time, an AFRS
which uses both minutiae and pores to identify persons.
Roddy and Stosz [8] statistically analyzed the individ-
uality of pores on fingerprints and proved the power of
pores in personal identification. Kryszczuk et al. [4]
investigated the benefit of including pores in fragmen-
tary fingerprint recognition and concluded that this ben-
efit increases when the fragmentary fingerprint size de-
creases. Most recently, Jain et al. [2][3] proposed a high
resolution AFRS using features from level 1 to level 3
(i.e. orientation fields, minutiae, pores and ridge con-
tours).

A common challenge to the pore-based fingerprint
recognition systems is how to accurately and robustly
extract pores from fingerprint images. In this paper, we
present an adaptive pore model based on our investi-
gation in real pore profiles. The model can adjust its
parameters adaptively according to the local ridge di-
rection and period. A novel pore extraction method is
then proposed based on this model.
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Figure 2. (a) Ray’s and (b) Jain’s pore
models.

2. Previous Work on Pore Extraction

Sweat pores reside on finger ridges, being either
open or closed. An open pore is perspiring and appears
on fingerprint images as a bright blob connected with
the bright valley, whereas a closed pore appears as an
isolated bright blob on the dark ridge (refer to Fig. 1).
To the best of the authors’ knowledge, the first pore ex-
traction method, proposed by Stosz and Alyea [9], bina-
rizes and skeletonizes the fingerprint image. A pore is
detected once some criteria are met while tracking the
skeleton. This skeletonization-based method was later
used in [8][4]. As pointed out in [7][3], however, skele-
tonization is computationally expensive and very sensi-
tive to noise. It can work well only on very high resolu-
tion fingerprint images, e.g. the fingerprint images used
in [9][8][4] were at least 2000dpi.

Recently, Ray et al. [7] proposed an approach to ex-
tracting pores from 500 dpi fingerprint images using a
pore model (refer to Fig. 2a), which is a slightly modi-
fied 2-dimensional Gaussian function:

M(i, j) = 1− e−
√

i2+j2
(1)

Pores are found by locating local areas that can match
to the pore model with minimum squared errors. This
method uses a filter of universal scale to detect pores.
However, it is hard, even impossible, to find a universal
scale suitable to all pores. Moreover, the pore model (1)
is isotropic. This is not true for open pores, as we will
show later.

Very recently, Jain et al. [2][3] proposed to use
the following Mexican hat wavelet transform to extract
pores based on their observation that pore regions typi-
cally have high negative frequency response as intensity
values change abruptly from bright to dark at the pores:

w(s, a, b) =
1√
s

∫ ∫
R2f(x, y)φ(

x− a

s
,
y − b

s
)dxdy

(2)
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Figure 3. (a)-(c) are three representative
types of pore appearance, and (d) shows
an example zero-degree adaptive pore
model.

The scale s in this pore model is experimentally set with
a specific dataset. Fig. 2b shows the shape of the Mex-
ican hat wavelet. Obviously, it is isotropic. This pore
model is also limited by that the pore extractor cannot
adapt itself to different fingerprints or different regions
on a fingerprint.

In practical fingerprint recognition systems, either
fingerprints of different fingers or fingerprints of the
same finger could have ridges/valleys and pores of very
different widths and sizes. Such problems become even
worse when using high resolution fingerprint scanners.
From the example fingerprint images shown in Fig. 1,
one can easily see the variations in ridge/valley widths
and pore sizes over different fingerprint images as well
as across the same fingerprint. This motivates us to pro-
pose an adaptive pore model and the associated pore
extraction method.

3. Adaptive Pore Modeling and Extraction

3.1. The Adaptive Pore Model

We manually marked and cropped hundreds of pores
in several fingerprint images, including both open and
closed pores. Based on the appearance of these real
pores, we summarized three types of representative pore
structures as shown in Fig. 3. Among them, the last
two types correspond to open pores and they are not
isotropic. With more observation of the pore appear-
ance, we found that along the ridge direction, all the
three types of pores appear with nearly Gaussian profile.
Based on this, we propose the following pore model,
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which is more accurate than previously presented ones
[2][3][7],

APM0(i, j) = e−
j2

2σ2 · cos(
π

3σ
i) (3)

APMθ(i, j) = Rot(APM0, θ) (4)

where Rot(M, θ) means rotating M by θ degrees. The
size of the pore model is set to 6σ + 1, where σ is
used to control the pore scale and it is determined by
the local ridge period. θ is used to control the direction
of the pore model and it can be estimated by the lo-
cal ridge orientation. Since both the two parameters are
adaptively determined based on local fingerprint ridge
period and orientation, we call this model the adaptive
pore model (APM). Fig. 3d shows an example APM
with θ = 0.

3.2. The Pore Extraction Method

The proposed APM based pore extraction method in-
cludes three main steps. First, the fingerprint region
is segmented from the fingerprint image (1200dpi) and
the orientation field and ridge period are calculated. In
order to reduce the computational cost and suppress
noise, we down-sample the original fingerprint image
to 600dpi and use the algorithms in [1] to calculate the
ridge orientation and period. The obtained ridge ori-
entation and period are then up-sampled to the original
resolution. In this step, the binary ridge image is also
obtained via thresholding the enhanced fingerprint im-
age with the method in [1].

With the obtained ridge orientation field and period,
we proceed to the pore extraction step. We partition the
fingerprint image into blocks and extract pores block
by block. For each block, we first calculate the ridge
orientation inconsistency (OIC) defined as follows:

OIC(b) = std(cos(2 ·O(b))) (5)

where O(b) is the orientation field in the bth block and
std denotes the standard deviation. If the OIC of a block
is less than a threshold (0.5 in our experiments) or the
block size is very small (20 pixels in width and height),

we stop the partition; otherwise, we further averagely
partition the block into four sub-blocks. We calculate
the mean orientation θ̄ and the median ridge period τ̂ in
the block and then set its local pore model as APMθ̄

with σ = τ̂ /k (k = 12 in our experiments). After ob-
taining the local APM, we take it as a matched filter and
convolve it with the fingerprint image block. A thresh-
old is then used to segment out the initial pores on the
block.

The last step is to remove possible spurious pores.
We apply the following constraints to post-processing
the initial pore extraction results. (I) Pores should re-
side on ridges only. To implement this constraint, we
use the binary ridge image as a mask to filter the ex-
tracted pores. (II) Pores should be within a range of
valid sizes. We measure the size of a pore by counting
the pixels in its region. (III) The mean intensity of a
true pore should be large enough. In our experiments,
we discarded the last 5% pores (i.e. those with lowest
intensity). Finally, we record the extracted pores’ loca-
tions as the coordinates of their mass centers.

4. Experiments and Discussion

Currently there is no public database of high reso-
lution fingerprint images available. Therefore we built
a 1200dpi fingerprint scanner and collected 198 finger-
print images (320×240). These fingerprints were taken
from 33 index fingers, each of which has six samples
taken in two sessions (about 5 days apart).

We manually marked the pores in ten fingerprint
images. Fig. 4 shows a cropped fingerprint image,
on which the pores are manually marked with brighter
dots. The pore extraction results by the proposed APM
based method, Ray’s [7] and Jain’s [2] methods are also
shown in Fig. 4, where the extracted pores are marked
with red circles. From Fig. 4, we can see that when the
ridge widths change much, both Jain’s and Ray’s meth-
ods will miss some pores because they are not adaptive
to the scale and orientation of pores and ridges. Instead,
the proposed APM method can well adapt itself to local
ridge width and orientation and it successfully detects

(a) (b) (c)

Figure 4. Pore extraction results by (a) APM based, (b) Jain’s, and (c) Ray’s methods.
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Table 1. True detection and false detection
rates by the three methods.

APM-based Jain’s Ray’s
RT 82.8% 74.1% 63.4%
RF 13.9% 22.2% 20.4%

Figure 5. The ROC curves by the three
methods.

most of the pores. The true detection rate RT (i.e. the
ratio of the number of detected true pores to the number
of all true pores) and the false detection rate RF (i.e.
the ratio of the number of falsely detected pores to the
number of all detected pores) were calculated on the ten
fingerprint images for all the three methods. The aver-
age rates are listed in Table 1. The results show that the
proposed method can extract pores more accurately and
more robustly.

Furthermore, we assessed the contribution of the
three pore extraction methods to the verification accu-
racy of AFRS. We implemented three simple AFRS.
They use the same minutia extraction and matching
methods, but are coupled with one of the three pore
extraction methods respectively. The Iterative Closest
Point (ICP) algorithm [3] is used to match the pores ly-
ing in the neighborhoods of two matched minutiae with
higher similarity. The distance between two fingerprints
is defined as the summation of three terms: the minu-
tia based dissimilarity between them, the mean distance
between matched pores (normalized to [0, 1]), and the
ratio of the number of unmatched pores to the total num-
ber of pores. Therefore, the differences between the ver-
ification accuracies of the three AFRS depend only on
the pore extractors they use. The ROC curves by the
three AFRS on our collected fingerprint image database
are plotted in Fig. 5. These curves demonstrate again
that the APM based method over-performs the other two

methods in contribution to verification accuracy. The
EER of the APM based method is 4.04% whereas Jain’s
method 6.03% and Ray’s method 5.05%.

5. Conclusions

This paper proposed an adaptive pore model (APM)
based on the observation on real pore appearances.
Different from existing pore models, the APM is
anisotropic and it is adaptive to local fingerprint ridge
direction and period. With the APM, a novel pore ex-
traction method was then developed. A fingerprint im-
age is partitioned into many blocks and pores are ex-
tracted block by block using locally defined APMs. The
presented pore extraction method has been compared
with some existing schemes by using 1200dpi finger-
print images. The experimental results demonstrate that
the proposed APM and its associated pore extraction
method can detect pores more accurately and robustly,
and can help to improve the verification accuracy of
pore based fingerprint recognition systems.
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