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ABSTRACT 

 
Texture classification is a classical yet still active topic 

in computer vision and pattern recognition. Recently, 
several new texture classification approaches by modeling 
texture images as distributions over a set of textons have 
been proposed. These textons are learned as the cluster 
centers in the image patch feature space using the K-means 
clustering algorithm. However, the Euclidian distance based 
the K-means clustering process may not be able to well 
characterize the intrinsic feature space of texture textons, 
which if often embedded into a low dimensional manifold. 
Inspired by the great success of l1-norm minimization based 
sparse representation (SR), in this paper we propose a novel 
texture classification method via patch-based sparse texton 
learning. Specifically, the dictionary of textons is learned by 
applying SR to image patches in the training dataset. The 
SR coefficients of the test images over the dictionary are 
used to construct the histograms for texture classification. 
Experimental results on benchmark database validate the 
effectiveness of the proposed method. 
 

Index Terms— Texture classification, texton, sparse 
representation, K-means 
 

1. INTRODUCTION 
 

Texture classification is an important research topic in 
computer vision and pattern recognition applications, such 
as image understanding and object recognition, and texture 
classification has been receiving considerable attention over 
the past decades. The co-occurrence matrix [1], which 
exploits the non-parametric statistics at the pixel level, is 
still a popular texture classification approach. The polar 
coordinate system has been used for rotation invariant 
texture classification [2]. The Local Binary Pattern (LBP) 
proposed by Ojala et al. [3] has become a benchmark 
method in rotation invariant texture classification. 

However, the above traditional methods are sensitive to 
changes in viewpoint. Some recent approaches have been 
proposed to solve this problem. Lazebnik et al. [4] used 
invariant descriptors defined on affine invariant regions to 
describe texture features. Xu et al. [5] proposed the multi-
fractal spectrum vectors to describe textures while achieving 
global invariance. Leung and Malik [6] proposed to classify 

texture images by using three dimensional (3D) textons, 
which are cluster centers of filter responses over a stack of 
images with representative viewpoints and illuminations. 
Varma and Zisserman [7, 8] modeled texture images as 
distributions over a set of textons, which are learned from 
the responses of MR8 filter banks [7]. Furthermore, in [9, 
10], better performance was obtained by using textons 
learned from patches in the original image instead of MR8 
filter responses. 

In these texton based methods, the textons are usually 
learned by the K-means clustering algorithm. However, the 
K-means clustering algorithm is based on the l2-norm 
Euclidean distance so that the elements of a cluster will have 
a ball-like distribution. The learned K ball-like clusters, 
nonetheless, may not be able to characterize reasonably well 
the intrinsic feature space of the texture images, which is 
often embedded into a lower dimensional manifold. 

Recently, the theory and algorithms of sparse coding or 
sparse representation (SR) [11, 12] have been successfully 
used in image processing and pattern recognition [13, 14]. 
The principle of SR reveals that a given natural signal can 
be often sparsely represented as the linear combination of an 
over-complete dictionary via l1-norm minimization [12, 15]. 
Inspired by the great success of SR and patch based texton 
learning [9, 10], in this paper we propose a patch based 
sparse texton learning method for texture classification. The 
idea of learning a dictionary of atoms from the training 
samples under the SR framework, and then use the learned 
dictionary to represent the testing samples has been recently 
successfully used in face recognition [18, 19]. A texton 
training dataset is first constructed by extracting patches in 
the training images, and then an over-complete dictionary of 
patch textons is learned from it under the SR framework. By 
sparsely representing the texture image over the learned 
texton dictionary, a histogram of SR coefficients can be 
computed and used as features for texture classification. It 
will be seen that the proposed method can achieve better 
texture classification performance than state-of-the-art 
texton based texture classification method using textons 
learned by K-means clustering. 

The rest of the paper is organized as follows. Section 2 
briefly reviews the concepts of SR. Section 3 describes in 
detail the proposed patch-based texton learning and texture 
classification scheme. Section 4 presents experimental 
results and Section 5 concludes the paper. 



2. SPARSE REPRESENTATION OF SIGNALS 
 

In recent years there has been a growing interest in the 
study of SR of signals. The success of SR largely owes to 
the fact that natural signals are intrinsically sparse in some 
domain. Therefore, if the dictionary that is used to define the 
sparse domain can be well trained, a good analysis of the 
input signal can be expected by representing over the 
dictionary.  

For a given signal x ∈ Rm, we say that x has a sparse 
approximation over a dictionary D=[d1,d2,…,dl] ∈ Rm×l, if 
we can find a linear combination of only “a few” atoms 
from D that is “close” to the signal x. Under this 
assumption, the sparsest representation of x over D is the 
solution of  
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p

α is a sparsity-inducing regularization term.      

In some applications, the dictionary D is unknown and 
we need to learn it from a training dataset X=[x1,x2,…,xn]∈ 
Rm×n. It is expected that each training sample (i.e. each 
column of X) can be sparsely represented over the dictionary 
D, i.e. xi=Dαi and only a few elements in αi are significant. 
The dictionary D, as well as the SR coefficient vectors αi, 
can be solved by optimizing the following objective 
function  
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where Λ=[α1, α2,…, αn] and ||●||F is the Frobenius matrix  
norm. 

 
3. PATCH-BASED TEXTON LEARNING FOR 

TEXTURE CLASSIFICATION  
 

In this section, we propose to learn the dictionary of 
textons under the SR framework, and then use the SR 
coefficients of a texture image over the learned texton 
dictionary to classify the texture images. In our work, the 
textons are learned from the original image patches. 
Therefore, in the following sub-sections, we briefly describe 
the pre-processing for training dataset construction, and then 
present the details of sparse texton learning and texture 
classification. 

 
3.1. Patch-based texton learning 
 

Before texton learning, all training texture images are 
converted to grey level images and are normalized to have 
zero mean and unit standard deviation. The normalization 
offers certain amount of invariance to the illumination 
changes. A square neighborhood around each pixel in the 
image is cropped and is stretched to a vector. All the patch 
vectors are contrast normalized using Weber’s law. Hence, 
for each class of texture images, we can construct a training 

dataset X=[x1,x2,…,xn], where xi, i=1,2,…, n, is the patch 
vector at a position in a training sample image of this class. 

The dictionary of textons, denoted by D=[d1,d2,…,dl], 
can be learned from the constructed training dataset X, 
where dj, j=1,2,…, l, is one of the l textons. In [9, 10], the 
classical K-means clustering method was employed to 
determine the l textons by solving the following 
optimization problem: 
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Obviously, the K-means clustering will partition the dataset 
X into l groups Ω1,…, Ωj,…,Ωl, and the texton dj is defined 
as the mean vector of the vectors within Ωj. However, as we 
explained in the Introduction, by using K-means clustering, 
the elements belong to the same cluster will distribute 
within a ball because the l2-norm Euclidean distance is used 
in the clustering process. These ball-like clusters should 
cover the whole feature space. Nonetheless, such a dense 
coverage may not be able to effectively characterize the 
intrinsic feature space of texture images, which is often 
embedded into a lower dimensional manifold.  

Let Λ=[α1, α2,…, αn], the SR objective function in Eq. 
(2) is adopted to optimize D and {αi}, and here we re-write 
it as follows by setting p=1:  

         1,
arg min

D Λ
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In practice, it is more convenient to convert Eq. (4) into an 
unconstrained optimization problem by using a form of l1-
penalized least-squares: 
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Eqs. (4) and (5) are equivalent with an appropriate 
parameter λ, which is used to balance the l1-norm and l2-
norm terms in Eq. (5). In this paper, we adopted the recently 
proposed feature-sign search method [16] to solve Eq. (5) 
because this algorithm is more efficient.  

In some sense, the K-means clustering method can be 
viewed as a special case of the SR based clustering in Eq. 
(5). If we let αi has only one non-zero element and let this 
non-zero element be 1, then Eq. (5) will be basically the 
same as Eq. (3). In this case, we use only one texton to 
represent the feature vector xi and assign the label of xi to 
that texton. In contrast, by using SR, xi or any input vector y 
will be coded as a linear combination of more than one 
textons. Therefore, SR can achieve a much lower 
reconstruction error due to the less restrictive constraint. In 
addition, for an input vector y which may lie in the boundary 
of two or more clusters, the K-means clustering will 
randomly assign it to one of the classes. Such a 
representation may not be efficient enough in practice.  By 
using the proposed SR based method, such problem can be 
avoided because the boundary samples will be represented 
by multiple textons. In the experiments in Section 4, we will 
see that by using Eq. (5) to learn the textons and using the 



associated feature description method in Section 3.2, the 
texture classification accuracy can be improved.   

 
3.2. Feature description and texture classification 
 

Denote by Dk the learned texton dictionary for the kth 
texture class, the dictionary for all the c classes of texture 
images can be formed by amalgamating the K dictionaries  

D=[D1, D2,…, Dc]                                (6) 
With this dictionary D, each training texture image can 
generate a model by mapping it to the texton dictionary. In 
Varma and Zisserman’s method [9, 10], for each position of 
a training image, it is labeled with the elements in the texton 
dictionary D that is closest to the image patch vector at this 
position. Therefore, a histogram can be formed by 
normalizing the frequencies of texton labels of this image.  

Different from the method in [9, 10], we can construct a 
histogram of the SR coefficients of a training image as the 
texture model. Denote by xi the image patch vector at 
position i of a training image, we can represent xi over D by 
SR to get the representation coefficient vector. However, 
this can be computationally very expensive because D can 
be very big. Let D=[d1,d2,…,dz], where z is the total number 
of textons learned from the c classes. In practice, we can use 
only a subset of D to represent xi. Specifically, we use the 
closest t textons (t<<z) to xi in D to form the sub-dictionary 
for xi. Denote by 1 ,...,i i

td d  the t closest textons to xi, the sub-
dictionary for xi is then 1[ ,..., ]i i

i tD = d d . The representation 
vector of xi over Di, denote 1[ ,..., ]i i

i t=α α α , can then be 
computed by solving he following l1-norm minimization 
problem: 

2
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                  (7)  

The l1-least square method in [10] can be used to solve Eq. 
(7). 

Since the textons 1 ,...,i i
td d  in Di have a one-to-one 

correspondence to the textons in D, by using αi we can 
easily construct another representation vector hi of xi over D 
such that  

                            i i iD D=α h                                      (8) 
Obviously, most of the entries in hi will be 0, and only the 
entries corresponding to the same textons as those in Di will 
have non-zeros values, and these values are the same as 
those in αi.  

Finally, at each position i of a training texture image, we 
have a representation vector hi. Because the coefficients in 
hi are real numbers instead of integers, we can form a 
fractional histogram, denoted by Hf, for this texture image 
by summing all the vectors of hi:    

                            f iH = ∑ h                                   (9) 
The fractional histogram Hf can serve as the texture model.  

Denote by Hi, i =1,2,…, n, the model histograms in the 
database. Similarly, for an input test image Y, we can 

construct the sparse texton histogram for it, denoted by Hy. 
The similarity between Hi and Hy is computed by: 
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The texture image Y is classified to the corresponding 
texture class by a nearest neighbor classifier. 
 

4. EXPERIMENTAL RESULTS 
In this section, we evaluate the proposed texture 

classification method on the CUReT database [17]. The 
CUReT texture database contains 61 classes, each consisting 
of 205 images. Here we choose 92 images per class for 
which a large region of texture is visible across all textures.  
There are a number of factors that make the CUReT texture 
database challenging. It has both large inter-class confusion 
and intra-class variation. The images of a class are obtained 
under unknown viewpoint and illumination, and some 
different classes look similar in appearance. Figs. 1(a) and 
(b) show two different kinds of textures while the images 
appear similar. 

 

                     
(a) 

                      
(b) 

Figure1: Two different kinds of texture samples with similar 
appearance. 
 

The evaluation methodology on the CUReT database is 
as follows: M images are chosen per class for training and 
the remaining 92-M images per class are used to form the 
test set. In the experiment, 46, 23, 12, and 6 texture images 
per class are chosen as the training set. Table 1 compares the 
performance of our proposed method with the state-of-the-
art patch texton based method proposed by Varma and 
Zisserman [9, 10] (we denote this method as VZ_Patch). For 
the VZ_Patch and the proposed method, a 9 9×  
neighborhood around each pixel was taken and an 81 
dimensional feature vector was formed. 40, 30 and 20 
textons per texture class were learned, which resulted in 
2440, 1830 and 1220 dimensional histograms for texture 
representation respectively. 

When M=46, the proposed method achieves the 
accuracies of  97.98%, 97.84%  and 97.52% using 40, 30 
and 20 textons per class respectively, while the VZ_Patch 
method achieves the accuracies of 97.11%, 97.08% and 
96.61%. With the decrease of number of training samples, 
the proposed method can still achieve better recognition 



accuracy than the VZ_Patch method. Especially, when M=6, 
the improvement of the proposed method over the VZ_Patch 
method is more obvious. Note that in this experiment we did 
not compare our method with another two state-of-the-art 
methods, the Lazebnik’s method [4] and Xu’s method [5]. 
This is because on the CUReT texture database, the affine 
invariant detector cannot produce enough regions for a 
robust statistical characterization of the texture, while 
because of low resolution images in this database, the multi-
fractal spectrum features used in [5] cannot be well 
extracted for classification. 
 
Algorithms                         46 training images per class 
                                   40 textons         30 textons          20 textons    
VZ_Patch                    97.11%              97.08%              96.61% 
proposed              97.98%              97.84%               97.52%      

(a) 
Algorithms                         23 training images per class 
                                   40 textons         30 textons          20 textons    
VZ_Patch                    95.34%              95.06%               94.96%  
proposed              96.05%              95.71%               95.54% 

(b)   
Algorithms                         12 training images per class 
                                   40 textons         30 textons          20 textons    
VZ_Patch                    91.23%               90.88%              90.47% 
proposed              92.08%               91.86%               91.57% 

(c) 
Algorithms                          6 training images per class 
                                   40 textons         30 textons          20 textons    
VZ_Patch                    84.56%              84.06%               83.38% 
proposed              85.76%              85.24%               84.46% 
                                                    (d) 
Table1: Classification accuracies on the CUReT texture database 
using (a) 46; (b) 23; (c) 12 and (d) 6 training samples.  
 

5. CONCLUSIONS 
 

In this paper, we proposed to use the sparse 
representation (SR) technique to learn the texton dictionary 
for texture image representation, and then use the SR 
coefficients of an input image over the learned dictionary 
for feature description. A histogram of the SR coefficients is 
constructed for texture classification. Our experimental 
results on the CUReT texture database validated that the 
proposed method can achieve higher classification accuracy 
than the state-of-the-art texton learning based texture 
classification method. In future work, we will investigate 
how to further improve the classification accuracy and 
reduce the size of texton dictionary. 
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