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Abstract

The similarity or distance measure between Gaussian
mixture models (GMMs) plays a crucial role in content-
based image matching. Though the Earth Mover’s Dis-
tance (EMD) has shown its advantages in matching his-
togram features, its potentials in matching GMMs remain
unclear and are not fully explored. To address this problem,
we propose a novel EMD methodology for GMM matching.
We first present a sparse representation based EMD called
SR-EMD by exploiting the sparse property of the underly-
ing problem. SR-EMD is more efficient and robust than the
conventional EMD. Second, we present two novel ground
distances between component Gaussians based on the in-
formation geometry. The perspective from the Riemannian
geometry distinguishes the proposed ground distances from
the classical entropy- or divergence-based ones. Further-
more, motivated by the success of distance metric learning
of vector data, we make the first attempt to learn the EMD
distance metrics between GMMs by using a simple yet ef-
fective supervised pair-wise based method. It can adapt
the distance metrics between GMMs to specific classifica-
tion tasks. The proposed method is evaluated on both simu-
lated data and benchmark real databases and achieves very
promising performance.

1. Introduction

Image similarity (or distance) measures play a crucial
role in content-based image retrieval, classification, seg-
mentation, and tracking, etc. The histogram has been com-
monly used for image modeling, while the similarity mea-
sures between them have been studied for decades. These
similarity functions mainly include information theoretic-
based ones such as Kullback-Leibler (K-L) or Jesson-
Shannon divergence, statistic-based ones such as χ2-
distance, and �p-norm based ones. The Earth Mover’s Dis-
tance (EMD) [24] can compare cross bins of histograms (or
signatures), which has proven its advantages over the con-

ventional bin-to-bin based measures. Recently, many meth-
ods have been proposed to improve the efficiency and accu-
racy of EMD for histogram matching [16, 25, 22, 21, 30].

An alternative and widely used image modeling method
is the parametric Gaussian Mixture Model (GMM) [29,
7, 11, 3]. The K-L divergence between GMMs is often
adopted for distribution matching. As there is no closed-
form solution, approximating K-L divergence via Monte-
Carlo procedure is a natural choice but this is unfortunately
computationally intensive. In [29], Vasconcelos et al. pre-
sented an approximation method for K-L divergence be-
tween GMMs based on Mahalanobis distance. Goldberger
et al. [7] also focused on the approximation of K-L diver-
gence and studied two strategies, which are based on the
analytical-form solution between component Gaussians and
on unscented transform, respectively. In [11] a variational
approximation based on K-L divergence was presented for
GMM matching. Beecks et al. [3] proposed the Gaussian
Quadratic Form Distance (GQFD) as similarity measure,
which has a closed form for GMMs of diagonal covariance
matrices and is well suited for high-dimensional image de-
scriptors.

Adopting EMD as a similarity measure between GMMs
was first used in [18] for music classification and later in vi-
sion fields of texture classification [32] and visual tracking
[15]. As opposed to the great advances of EMD in com-
paring histograms [16, 25, 22, 21], the potentials of EMD
in measuring similarity between GMMs remain unclear and
appear to be rarely explored. In this paper, we propose a
novel EMD methodology for GMM based image match-
ing. Fig. 1 illustrates this methodology for applications
in image retrieval or classification. Our contributions are
three-fold. (1) By exploiting the sparsity of the underlying
problem, we develop a sparse representation-based EMD,
namely SR-EMD. Compared with the conventional EMD,
SR-EMD is more robust to image noise and is more effi-
cient, particularly when the problem size is large. (2) An
appropriate ground distance plays a fundamental role for
the effectiveness of EMD. From the viewpoint of informa-
tion geometry, by embedding the space of Gaussians into
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Figure 1. Overview of the proposed EMD methodology for image
retrieval or classification. Every image is represented by a GMM,
and image matching is accomplished by comparing GMMs of the
corresponding images via sparse representation-based EMD (SR-
EMD). Two novel ground distances are presented based on theory
of information geometry to boost the effectiveness of EMD. We
also made the first attempt to learn the distance metrics between
GMMs, aiming to adapt the metrics to specific vision tasks. Please
refer to Section 2 for details.

a Lie group or regarding it as the product of Lie groups,
we present two novel ground distances between component
Gaussians. Unlike the traditional ones, the new ground dis-
tances can characterize the intrinsic distance of the under-
lying Riemannian manifold of the space of Gaussians. (3)
We propose a simple yet effective supervised EMD learn-
ing method for GMMs, in order to adapt the distance met-
rics between GMMs to specific applications. Though met-
ric learning methods for vector data have been extensively
studied, little work has been done on the metric learning
for GMMs. Note that a recent paper [30] studies the EMD
learning for histogram, which is however not applicable to
our problem.

2. SR-EMD for GMMs and Supervised SR-
EMD Learning

In this paper, we use GMM for image modeling. Given
an input image, we first extract local image descriptors at
dense image grids. Estimation of GMM is accomplished by
the Expectation-Maximization (EM) algorithm. The num-
ber of component Gaussians that best fit the data can be
estimated based on minimum description length (MDL) cri-
terion. The estimated GMM which characterizes the prob-
ability distribution of the image descriptor f can be written
as

G(f) =
∑n

i=1
wiN (f |µi,Σi), (1)

where N (f |µi,Σi) (abbreviated as gi below) is a compo-
nent Gaussian with prior probability wi, mean vector µi

and covariance matrix Σi.

2.1. Sparse Representation-based EMD (SR-EMD)

Suppose that we have two GMMs Gp =
{(gpi , wp

i )}i=1,...,np and Gq = {(gqj , wq
j )}j=1,...,nq .

Let dpqi,j denote the ground distance between gpi and gqj . The
EMD is the minimal cost moving the “goods” from GMM
Gp to GMM Gq with unit transportation cost of dpqij . It is
modeled as a classical transportation problem, which can
be written in the standard matrix form

EMD(Gp, Gq) = min
zpq

cTpqzpq, (2)

s.t. Apqzpq = ypq, zpq � 0,

where cpq is an npnq-dimensional vector which is the vec-
torization of ground distance matrix {dpqij }np×nq , Apq is a
(np+nq)×(npnq)matrix with 0 or 1 entries, and the weight
vector ypq = [wp

1 , . . . , w
p
np
, wq

1, . . . , w
q
nq
]. Eq. (2) can be

solved by the simplex algorithm or interior-point algorithm.
As

∑np

i wi =
∑nq

j wj = 1, EMD (2) is guaranteed to
converge to the optimal solution zpq in which the non-zero
entry number is less than (np + nq)/(npnq) [6, Chap. 6].
Therefore zpq is sparse, for example, there are only less than
20% non-zero entries if np = nq = 10.

Let us consider a more general case where the data is
contaminated by noise, that is, Apqzpq = ypq +vpq , where
vpq is Gaussian noise of zero mean. Recalling the sparse
property of (2), we let Cpqzpq = xpq , where Cpq is a diag-
onal matrix whose diagonal entries are the elements of cpq .
After some manipulations, we re-write (2) as

SR–EMD(Gp, Gq) = (3)

min
xpq

1

2
‖ypq −ApqC

−1
pq xpq‖22 + λ‖xpq‖1, s.t. xpq � 0

where λ > 0 is a regularizing constant, ‖ · ‖2 and ‖ · ‖1
denote the �2 and �1-norm, respectively. As the ground dis-
tance may be zero, we add a very small real number, say,



1e-15, to the diagonal entries of Cpq so that every element
is larger than zero. Here the distance is the sum of two
terms: the first term measures the error of the system of lin-
ear constraint equations while the second one measures the
transportation cost. As the EMD (2) always has an optimal
solution, the value of the first term is actually very small
and negligible compared with that of the second. One ad-
ditional advantage of (3) is that the constraint is assimilated
and the objective function is differential with respect to the
parameters involved, which greatly facilities the minimiza-
tion procedures to optimize these parameters (see Section
2.3).

Formulating the conventional EMD (2) as a sparse rep-
resentation problem in (3) brings two benefits: robustness
to noise and efficiency. It is known that, from the Bayesian
viewpoint, the objective function (3) leads to the optimal
solution if vpq is Gaussian distributed and the prior distri-
bution of xpq is Laplacian. Hence, the sparse representation
based EMD (SR-EMD) is naturally more tolerable to noise
than the classical EMD. Similar interpretation is made in
[4].

The LARS/Homotopy algorithms [9, Sec. 3.4] are well
suited for solving SR-EMD. As the algorithm converges
in about no more than np + nq iterations, and in each it-
eration the complexity is comparable to that of the least
squares [9, Sec. 3.4], the computational complexity of SR-
EMD is O((np + nq)

3npnq). In the conventional EMD,
as each iteration involves operation of Gaussian elimina-
tion of the constraint system, the computational complexity
is O(nl(np + nq)

2npnq), where nl denotes the number of
iterations involved. Generally we have nl � (np + nq),
and nl increases multinomially or even exponentially with
(np + nq) [6]. Hence, the efficiency of SR-EMD is signif-
icantly higher than the conventional EMD, particularly for
large size problems.

2.2. Ground Distances Between Component Gaus-
sians

We propose two novel ground distances between compo-
nent Gaussians based on information geometry [13], which
conerns the study of the probability and statistics from the
Riemannian geometrical point of view. By embedding the
space of Gaussians into a Lie group or regarding it as a prod-
uct of Lie groups, we can measure the intrinsic distance be-
tween Gaussians in the underlying Riemannian manifold.
The proposed ground distances make the metric learning
for GMMs possible.

Ground distance based on Lie Group The space of mul-
tivariate Gaussians is a Riemannian manifold and can be
embedded into the space of SPD matrices [19]. Let N (0, I)
denote a k-dimensional Gaussian distribution with the mean
vector 0 and covariance matrix I (identity matrix). We de-
note by | · | the matrix determinant. It is known that if the

random vector x follows N (0, I), then its affine transfor-
mation Qx + µ follows N (µ,Σ), where Σ has a decom-
position Σ = QTQ, |Q| > 0, and vice versa. As such the
Gaussian N (µ,Σ) can be characterized by the affine trans-
formation (µ,Q). Let τ1 be the mapping from the affine
group AFF+

k = {(µ,Q)|µ ∈ Rk,Q ∈ Rk×k, |Q| > 0}
to the special general linear group SLk+1 = {A|A ∈
R(k+1)×(k+1), |A| > 0}, and τ2 be the mapping from
SLk+1 to the space of SPD matrices SPD+

k+1 = {P|P ∈
R(k+1)×(k+1),P = PT , |P| > 0}, i.e.,

τ1 :AFF+
k �→ SLk+1 τ2 : SLk+1 �→ SPD+

k+1

(µ,Σ) �→ CQ

[
Q µ
0T 1

]
, S �→ SST

where CQ = |Q|−1/(k+1). Through these two mappings,
a k-dimensional Gaussian N (µ,Σ) can be embedded into
SPD+

k+1 and thus is uniquely represented by a (k + 1) ×
(k + 1) SPD matrix P; that is,

N (µ,Σ) ∼ P = |Σ|− 1
k+1

[
Σ+ µµT µ

µT 1

]
(4)

One may refer to [19] for detailed theory on the embedding
process.

The space of SPD matrices is a Lie group that forms a
Riemannian manifold, and in this paper we use the Log-
Euclidean metric [2] to measure the intrinsic distance in
this space. In the Log-Euclidean framework, the logarith-
mic multiplication � and the scalar logarithmic multipli-
cation ⊗ are defined such that SPD+

n has a linear space
structure. The Lie algebra Sn of SPD+

n is a linear space
with regular matrix addition + and scalar matrix multipli-
cation ·. The matrix exponential map exp : Sn �→ SPD+

n

is one to one and onto, smooth and isometry. This enables
us, through matrix logarithm, to regard operations on Sn

as being equivalent to those in SPD+
n . The geodesic dis-

tance between two SPD matricesP1 andP2 is d(P1,P2) =
‖ log(P1) − log(P2)‖F , where log denotes the matrix log-
arithm and ‖ · ‖F denotes the matrix Frobenius norm.

Let Pi and Pj be the embedding SPD matrices corre-
sponding to two Gaussians gi and gj , respectively. The
ground distance between them is defined as

dgi,gj (M) = tr((log(Pi)−log(Pj))
TM(log(Pi)−log(Pj)))

(5)
where M is an SPD matrix. If M is the identity matrix, (5)
reduces to the geodesic distance between Pi and Pj . As
d(Pi,Pj) is a metric, dgi,gj (M) is also a metric (matrix
mahalanobis norm). Let M = ATA. By re-writing (5) as

dgi,gj (A) = ‖A(log(Pi)− log(Pj))‖F , (6)

we see that the ground distance (5) can be seen as a linear
transformation of the matrix in the logarithmic domain. The



underlying reason that we can define the ground distance (5)
or (6) is that in the Log-Euclidean framework,SPD+

n is en-
dowed with a linear space structure. This is similar to what
has been commonly done for vector data in the Euclidean
space [33]. It can be interpreted as that while retaining the
geodesic distance, we attempt to seek a linear transforma-
tion so that the distance is more discriminative. The ma-
trix M can be learned to adapt to particular applications or
databases.

Ground distance based on product of Lie groups An n-
dimensionalGaussian is determined by its mean vector,µ ∈
Rn, and the covariance matrix, Σ ∈ SPD+

n . It is known
thatRn is a Lie group under vector addition and SPD+

n is a
Lie group under logarithmic multiplication �: Σ1 �Σ2 =
exp(log(Σ1) + log(Σ2)) for Σ1,Σ2 ∈ SPD+

n . Consider
the product groupRn×SPD+

n and define the operation �:

(µ1,Σ1)� (µ2,Σ2) = (µ1 + µ2,Σ1 �Σ2) (7)

It can be shown that this product group is also a Lie group
and its Lie algebra is Rn × Sn.

Now let us consider the distance between two Gaussians.
It is noteworthy that the distance in the Lie group Rn be-
tween two mean vectors should be appropriately weighted
by the associative covariance matrices, and it is also rea-
sonable to balance their distance in Rn and that in SPD+

n .
With the above considerations, we propose the following
ground distance:

dgi,gj (θ) = (1− θ)agi,gj + θbgi,gj , (8)

where

agi,gj =
(
(µi − µj)

T (Σ−1
i +Σ−1

j )(µi − µj)
)1/2

,

bgi,gj =
∥∥ log(Σi)− log(Σj)

∥∥
F
.

In Eq. (8), θ ∈ [0, 1] is a constant balancing the two terms,
agi,gj measures the difference between mean vectors, which
becomes the Mahalanobis distance (up to a scaling factor) if
Σi = Σj ; bgi,gj measures the Log-Euclidean distance be-
tween two covariance matrices, which is the geodesic dis-
tance in the Riemannian space. dgi,gj (θ) is a metric satis-
fying all the metric axioms, which can be easily shown by
noting that agi,gj and bgi,gj are both metrics. For simplicity,
hereafter dgi,gj , agi,gj and bgi,gj are abbreviated as dij , aij
and bij , respectively.

Computational complexity of the ground distances In
the proposed ground distances two component Gaussians
are “decoupled” in the sense that the logarithm of the
ebmedding SPD matrix (5), or the inverse and logarithm
of the covariance matrix (8) of each component Gaussian
can be computed offline. Hence, the computational com-
plexity of (5) is O((n + 1)3) while that of (8) is O(n3),
where n denotes the feature dimension. The logarithm

of an SPD matrix P ∈ SPD+
n can be computed via the

eigen-decomposition algorithm [2], in which the compu-
tational complexity is approximately O(10n3) (tridigonal-
ization followed by QR algorithm to compute the eigen-
decomposition of the SPD matrix [12] and further the ma-
trix multiplications to compute the logarithm).

2.3. Supervised SR-EMD Learning

Metric learning for vector data has been studied for years
[33] and has shown a great success. The EMD learning
for vector data was first studied in [30], which, however,
is not applicable to GMMs. Metric learning for GMMs
is very different from that for vector data. To the best of
our knowledge, no work has been reported. Here we pro-
pose a simple supervised pair-wise based metric learning
method for GMMs. Intuitively, we hope that training pairs
of intra-class samples are similar while those of inter-class
ones are dissimilar. Let C = {G1, . . . , Gm} be a collection
of GMMs, where m denotes the sample number. Denote by
S = {(Gp, Gq)|Gp and Gq belong to the same class} and
by D = {(Gp, Gq)|Gp and Gq belong to different class}
the sets of equivalence constraints and inequivalence con-
strains, respectively.

We first consider metric learning for the ground distance
based on Lie group. The learning problem may be formu-
lated as follows:

min
M,∀xpq

∑m

p=1

∑m

q=p+1
αpq

(‖ypq −ApqC
−1
pq (M)xpq‖22

+ λ‖xpq‖1
)
, s.t. M 
 0, ∀ xpq � 0, (9)

where αpq equals to 1/|S| if (Gp, Gq) ∈ S and equals to
−1/|D| if (Gp, Gq) ∈ D. Here | · | denotes the cardinality
of the set. The problem (9) involves the joint optimization
of ground distance matrix Cpq(M) and vector xpq , which,
similar to the problem of dictionary learning [1], is non-
linear and non-convex. It becomes tractable when we min-
imize one while keeping another fixed. When Cpq(M) is
fixed, seeking xpq reduces to a typical sparse representa-
tion problem; when xpq is fixed, we may optimize Cpq(M)
with gradient descent algorithm. Hence, the learning algo-
rithm can be accomplished by iterating two steps. In the
1st step, fixing Cpq(M), for any sample pair (Gp, Gq), we
compute SR-EMD(Gp, Gq) defined in (3) for ∀p, q; in the
2nd step, we fix xpq for ∀p, q and update Cpq(M) by a gra-
dient descent algorithm. Let f be the objective function in
(9). Differentiating f w.r.t M, we have

∂f

∂M
= −

∑m

p=1

∑m

q=p+1
αpq

(∑np+nq

i=1
r(i) (10)

×
∑npnq

j=1
Apq(i, j)C

−3
pq (j, j)xpq(j)Q

(j)
pq

)
,

In the above equation, r(i) denotes entry i of the vector
r = ypq − ApqC

−1
pq (M)xpq , Apq(i, j) denotes the en-

try at row i, column j of the matrix Apq , and Q
(j)
pq =



(log(Rp
k) − log(Rq

l ))(log(R
p
k) − log(Rq

l ))
T , where k =

(j+1) mod (np+nq), l = j/(np+nq)+1. The constraint
that M should be positive definite is naturally satisfied by
updating it along the geodesics in the Riemannian manifold
[23]

M = exp(log(M)− η∂f/∂M) (11)

where η is the step length in the gradient descent.
Let us then consider the metric learning for the ground

distance based on product of Lie groups. Note that the pa-
rameter θ is constrained on [0, 1]. By introducing the sig-
mod function θ = 1/(1 + e−β), β ∈ (−∞,+∞), the con-
straint on θ can be removed. In this case, the learning prob-
lem is formulated as

min
β,∀xpq

∑m

p=1

∑m

q=p+1
αpq(‖ypq −ApqC

−1
pq (β)xpq‖22

+ λ‖xpq‖1), s.t. ∀ xpq � 0, (12)

As (9), (12) can also be minimized by a two-stage iterative
method: first fix β and solve ∀xpq; then, update β by fixing
∀xpq . The partial derivative of the objective function f w.r.t
β is

∂f

∂β
= −2

∑m

p=1

∑m

q=p+1
αpqtr

(
C−1

pq xpq(ypq (13)

−ApqC
−1
pq xpq)

TApqC
−1
pq Ĉpq

)
,

where Ĉpq = diag{e−β(−apqij + bpqij )/(1 + e−β)2}. This
metric learning problem is simpler and more efficient than
the previous one since it involves only one parameter β.

3. Experiments

In this section, we first perform experiments on noisy
images to verify the robustness and efficiency of SR-EMD.
Then, we evaluate, on benchmark image retrieval databases
and texture databases, respectively, the SR-EMD with Lie
group-based ground distance (SR-EMD-M) and SR-EMD
with product of Lie groups-based one (SR-EMD-θ), as well
as SR-EMD-M and SR-EMD-θ with metric learning.

We use the CLUSTER software available at
https://engineering.purdue.edu/∼bouman/software/cluster/
to estimate GMM. SR-EMD is solved with the Homo-
topy/LARS algorithm (λ = 10−3 ) [9, Chap. 3.4] and
EMD is solved by the method in [24]. Both algorithms are
written in C++ and complied to mex files for use in Matlab.
In the default cases without metric learning, we set θ = 0.5
(or β = 0), M = I. The programs run on a workstation
equipped with 12 2.3 GHz CPU and 12G RAM.

3.1. SR-EMD vs. EMD

This section compares the robustness and efficiency of
the SR-EMD and conventional EMD. We randomly select

two classes from the Corel Wang database [31]. Then we
randomly select thirty images from each class. Every image
is polluted by additive Gaussian noises of zero mean and in-
creasing levels of variances. From each image a GMM with
20 component Gaussians using three-dimensional color fea-
tures is estimated.

We first compare SR-EMD with the conventional EMD
on “similar” GMMs. We compute the distance of two
GMMs estimated from a clean image and its polluted coun-
terpart using SR-EMD and the conventional EMD (the
ground truth is 0). The errors for each noise level are av-
eraged over sixty pairs. Fig. 2(a) shows the curves of the
absolute errors (the values of SR-EMD are scaled by 1/λ,
c.f. (3)) vs. noise level. It can be seen that with the in-
crease of noise level, the errors of both methods get larger;
but apparently, the errors of SR-EMD are much smaller that
those of the conventional EMD. Next, we compare the two
methods on “dissimilar” GMMs. For each noise level, we
compute the distance between a clean image and a polluted
image from different classes; the relative errors (the ground
truth can be calculated from the two clean images involved)
are computed and averaged over all such pairs at that level.
As shown in Fig. 2(b), the SR-EMD again demonstrates
better robustness to noise than the conventional EMD.
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Figure 2. The robustness of SR-EMD and conventional EMD to
noise.

To empirically assess the efficiency of SR-EMD, we
build GMMGp with varying number (np=10∼150) of com-
ponent Gaussians, and let Gq = Gp. We compare the run-
ning time of SR-EMD and EMD in computing one distance
(averaged over 1000 times). Note that the computation of
ground distances is the same for SR-EMD and EMD and
this part is not counted since we aim to compare the opti-
mization algorithms. Table 1 presents the running time of
the two methods vs. np. When np<10, the two algorithms
are comparable; however, as np increases, the speedups of
SR-EMD over EMD becomes more and more significant.

3.2. Image Retrieval

We use two benchmark databases, Corel Wang [31] and
Coil100 [20], for performance evaluation in image retrieval.
The Corel Wang database consists of 1,000 images from 10
different classes. As this database contains large intra-class

https://engineering.purdue.edu/~bouman/software/cluster/


Table 1. Running time comparison between SR-EMD and conven-
tional EMD (unit: s).

np 10 20 30 40 50 60
EMD 6.3e-4 1.0e-2 5.5e-2 2.0e-1 5.6e-1 1.28
SR-EMD 5.9e-4 4.7e-3 1.8e-2 4.7e-2 1.2e-1 0.23

np 70 80 100 120
EMD 2.80 5.24 14.7 23.7
SR-EMD 0.40 0.78 1.79 4.02

variations, it is considered as a very difficult benchmark
database. The Coil100 database consists of 7,200 images
from 100 classes. Each class contains images of the same
object which is photographed from 72 different viewing an-
gles.

We produce a GMM of 10 componentGaussians for each
single image. Three kinds of local feature descriptors are
extracted at dense grids (stride of 2∼3 pixels) for estimat-
ing GMM: (1)128-dimensional SIFT descriptors computed
via the code released in [27], the dimension of which is re-
duced to 15 by PCA; (2) the covariance descriptors [26],
computed by taking the feature vector as R,G,B color
values, and the absolute value of the first- and second-
order partial derivatives of the illuminance image I , i.e.,
[R,G,B, |Ix|, |Iy|, |Ixx|, |Iyy|], which are subject to matrix
logarithm and then vectorized to 28-dimensional vectors;
and (3) the 45-dimensional RGB histogram via the code re-
leased in [27].

We compare our method with Match-KL [7], EMD-KL
[18], GQFD [3], and Bag-of-visual-words (BoW) methods.
In GQFD the diagonal covariance matrices are used and all
features involved are free of dimensionality reduction; all
the other methods use full covariance matrices in estimating
GMMs. The results of GQFD and BoW listed here are the
best ones reported in [3]. Note that the results of Match-KL
obtained in [3] were not satisfactory and we conjecture that
this metric may not be suitable for high-dimensionalGMMs
of diagonal covariance matrices. In this paper we imple-
ment it by ourselves for comparison of GMMs with full
covariance matrices. The Mean Average Precision (MAP)
values of complete database rankings w.r.t 100 different ran-
dom queries are used for quantitative comparison. Table
2 lists the MAP values of different methods on the two
databases.

Table 2. Comparison of MAP values (%) in image retrieval
Corel Wang [31] Coil100 [20]

Method SIFT Cov Hist SIFT Cov Hist
Match-KL [7] 40.0 36.7 36.9 28.3 36.1 41.1
GQFD [3] 45.7 46.7 36.8 45.0 47.8 60.0
BoW [3] 46.3 – – 44.2 – –
EMD-KL [18] 45.1 38.2 37.1 28.2 39.3 59.7
SR-EMD-M 48.7 48.3 46.9 48.4 61.7 81.8
SR-EMD-θ 49.7 51.6 45.5 52.2 64.2 82.0

SR-EMD-M 50.1 51.0 48.7 51.4 64.5 84.9
(with learning)

SR-EMD-θ 52.6 53.0 48.9 55.4 69.8 85.5
(with learning)

On the Corel Wang database, SR-EMD-M and SR-
EMD-θ (without metric learning) are both better than the
other methods while SR-EMD-θ performs the best. The
MAP values of the proposed method are 3.4%, 4.9% and
9.8% higher than the current best results for SIFT, Covari-
ance and RGBHist features, respectively. With metric learn-
ing, the MAP values of SR-EMD-M and SR-EMD-θ in-
crease about 1.4%∼4.4%. Note that the proposed meth-
ods have clear advantages over EMD-KL. As they are close
relatives, we attribute the performance gains to the novel
sparse representation-based formulation and the ground dis-
tances.

On the Coil100 database, while SR-EMD-M and SR-
EMD-θ are both superior to other methods, the latter has
obviously higher MAP values than the former. Compared
with the current best results obtained by GQFD, the MAP
values of SR-EMD-θ are over 7%, 16%, and 22% higher
for SIFT, Covariance and RGBHist features, respectively.
The improvement of MAP values of SR-EMD-M and SR-
EMD-θ with metric learning is about 2.2%∼5.6%. Finally,
it is noteworthy to mention that the performance increase of
SR-EMD-θ (with learning) is overall striking, which outper-
forms by over 10%, 22% and 25% the current best results
of SIFT, Covariance and RGBHist features, respectively.

We compare the running time of the competing methods.
The algorithms of Match-KL and GQFD are implemented
in Matlab. In EMD-like methods, while the computations
of the ground distances are implemented with Matlab, the
algorithm for solving EMD is written with C++. Table 3
presents the the average time for one distance computation
in image retrieval averaged over 1000 trials. SR-EMD-
M and SR-EMD-θ are both faster than its close relatives,
namely, EMD-KL, while SR-EMD-θ is more computation-
ally efficient. It is relatively unfair to compare EMD-like
algorithms with Match-KL and GQFD because of their dif-
ferent implementation. However, please note that in EMD-
like algorithms, ground distance computation takes a large
portion of the total running time. If all algorithms are im-
plemented with C++, the EMD-like algorithms may be still
comparable to Match-KL and GQFD.

Table 3. Running time of different methods (ms)
Method Match-KL GQFD EMD-KL SR-EMD-θ SR-EMD-M
Time 6.99 8.70 10.22 5.55 7.63

3.3. Texture Classification

We further use three benchmark texture databases
to evaluate the performance of the proposed
method: KTH-TIPS [10], CUReT [5], and UMD
http://www.cfar.umd.edu/∼fer/website-texture/texture.htm.
Table 4 makes a summary of them in terms of whether they
contain rotation, changes of scale, illumination and viewing
angles, as well as the number of classes and images (the

http://www.cfar.umd.edu/~fer/website-texture/texture.htm


last two columns). Among SIFT, Covariance and RGBHist
descriptors, the Covariance descriptors are more compact
and effective and thus it is used here. We use 5-dimensional
raw features, i.e., [I, |Ix|, |Iy |, |Ixx|, Iyy|], and the final
covariance descriptor is 15-dimensional. For a texture
image, we uniformly divide it into four sub-images, on
each of which we estimate a GMM with five component
Gaussians. Hence, each image is represented by four
GMMs. In the testing stage, each one of the four GMMs
is compared to all GMMs of the training set and its label
is determined by the KNN algorithm (k=3). The vote of
four GMMs associated with the test image determines the
class label it belongs to. We randomly select n=1∼20 (or
n=1∼40) images as the training set and the remaining ones
as the testing set. For each n, the result is averaged over 20
trials.

Table 4. Summary of benchmark texture databases
Database Rot. Scal. Illu. Ang. Size Class Image
KTH-TIPS no yes yes no 200x200 10 810
UMD yes yes no yes 320x240 25 1000
CUReT yes no yes no 200x200 61 5612

We first compare the proposed methods with Match-
KL[7] and EMD-KL[18]. Note that we also implemented
GQFD with 128-dimensional SIFT, but the results are not
satisfactory and we do not report here to save space. The
results are depicted in Figures 3(a), 3(b) and 3(c) for the
KTH-TIPS, UMD and CUReT databases, respectively. On
KTH-TIPS, Match-KL and EMD-KL have very similar per-
formance, both of which are obviously outperformed by the
proposed methods. Between SR-EMD-M and SR-EMD-θ,
the former has clear advantage and its performance is even
comparable to SR-EMD-θ with metric learning. Both SR-
EMD-θ and SR-EMD-M’s performance can be improved
by 2%∼3% with metric learning. On UMD, EMD-KL has
clear advantage over Match-KL when the number of train-
ing images are greater than five. SR-EMD-θ and SR-EMD-
M perform similarly on this database. After metric learn-
ing, both have performance increase of 2%∼3%, while SR-
EMD-θ is a little better than SR-EMD-M. On CUReT, SR-
EMD-θ and SR-EMD-M have very similar performance be-
fore and after metric learning, and they have clear superior-
ity to the other two methods.

Finally, we compare SR-EMD-θ and SR-EMD-M (with
metric learning) with six state-of-the-art methods on texture
classification. Table 5 presents a summary of the classi-
fication rates (“-” means that the result is unavailable). On
KTH-TIPS, the proposed method has over 10%, 6% and 6%
improvement over the current best results when 1, 5, or 10
training images per class are used, respectively. On UMD,
we have over 6% gain with only one training image, while
the performance growth is obvious as the number of training
samples grows. On CUReT, compared with the state-of-the-
art results, the improvement of classification rates is nearly
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Figure 3. Classification rate vs. the number of training examples
on three benchmark texture databases.

4% when the number of training images is small (2 or 10),
while our results are comparable to state-of-the-arts when
the number of training images is large (26 or 46).

4. Conclusion

This paper presented a novel methodology of EMD
for matching GMMs. Our contributions lie in the sparse
representation formulation of EMD, and the novel ground
distances between component Gaussians based on in-
formation geometry. In addition, we presented a simple
yet effective supervised metric learning method to adapt
the distance metrics between GMMs to the given data.
Compared with the conventional EMD, it is more efficient
and more robust to noise while enjoying significant perfor-
mance gains. Though metric learning has been extensively
studied for vector data, to the best of our knowledge, the
problem of metric learning for GMMs is not explored
yet and we made the first attempt on this problem in this
paper. It would be interesting to study more advanced
metric learning methods for GMMs, which may improve
further the efficacy of content-based image classification
applications.
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Table 5. Comparison of texture classification rates (%) with state-of-the-art
KTH-TIPS UMD CUReT

Method 1 5 10 40 1 5 10 20 2 10 26 46
Zhang et al. [34] 55.1 80.1 90.0 96.1 – – – – 53.6 80.0 91.1 95.3
Hayman et al. [10] 50.2 78.3 85.3 94.8 – – – – 60.2 91.0 97.6 98.5
VZ-joint [28] 50.5 72.9 80.5 92.1 – – – – 54.4 83.4 93.1 97.4
WMFS [14] – – – 96.5 – – – 98.7 – – – –
Liu et al. [17] 56.5 80.5 87.8 99.3 73.9 95.0 97.5 99.3 68.2 91.5 98.3 99.4
CLBP [8] 49.0 76.1 85.5 96.8 73.6 92.4 96.0 98.0 60.2 83.6 92.9 95.9
SR-EMD-M 67.3 86.5 96.8 99.8 78.9 97.3 98.4 99.5 71.8 95.2 98.3 99.5
SR-EMD-θ 63.9 84.0 95.1 99.6 80.1 97.6 99.1 99.9 72.1 95.4 98.7 99.5
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