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Abstract. Sweat pores on fingerprints have proven to be useful features for per-
sonal identification. Several methods have been proposed for pore matching. 
The state-of-the-art method first matches minutiae on the fingerprints and then 
matches the pores based on the minutia matching results. A problem of such 
minutia-based pore matching method is that the pore matching is dependent on 
the minutia matching. Such dependency limits the pore matching performance 
and impairs the effectiveness of the fusion of minutia and pore match scores. In 
this paper, we propose a novel direct approach for matching fingerprint pores. It 
first determines the correspondences between pores based on their local fea-
tures. It then uses the RANSAC (RANdom SAmple Consensus) algorithm to 
refine the pore correspondences obtained in the first step. A similarity score is 
finally calculated based on the pore matching results. The proposed pore match-
ing method successfully avoids the dependency of pore matching on minutia 
matching results. Experiments have shown that the fingerprint recognition accu-
racy can be greatly improved by using the method proposed in this paper. 
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1   Introduction 

Automatic fingerprint recognition systems (AFRS), as well-known biometric tech-
niques, are nowadays widely used in various applications such as forensics and access 
control [1-2]. Most existing AFRS utilize the minutiae (the endings and bifurcations 
of ridges, belonging to level-2 features) to recognize fingerprints and to identify per-
sons [11-14]. However, as people’s desire for higher security levels keeps increasing, 
it is highly necessary to base the recognition of fingerprints on more features, but not 
merely minutiae. 

An example non-minutia feature is the sweat pores on fingerprints [3] as shown in 
Fig. 1. They have been used for a long time by forensic officers [4], and proven to be 
very distinctive features [10]. However, as level-3 fingerprint features, pores can not be 
reliably extracted from normal low-resolution fingerprint images [1]. Instead, a mini-
mum of 1000dpi is required [3]. Recently, thanks to the development of high resolution 
imaging techniques, some pore-based AFRS have been proposed in literature [5-9].  

In the earliest pore-based AFRS developed by Stosz and Alyea [5], fingerprints are 
first aligned by searching for the best alignment in a discretized transformation pa-
rameter space. The correlation between manually marked regions is used to choose the 
best alignment. Such correlation based method was later used by Kryszczuk et al. [6-7] 
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in their study of using pores to recognize fragmentary fingerprints. After aligning the 
fingerprints, the pores on them can be matched by simply comparing their coordinates 
in the aligned fingerprint coordinate system. These pore matching methods are limited 
in the following factors. First, their accuracy highly depends on the way of discretizing 
the transformation parameters. Second, they have to search through all possible rota-
tions and translations, which is computationally very expensive.  

  

Fig. 1. Left: an example fingerprint image. Right: the extracted pores on it (marked by circles). 

The state-of-the-art pore matching method was recently proposed by Jain et al. [8-9] 
In the method, the fingerprint images were first aligned based on the minutia features 
on them by using a string-matching algorithm. Minutiae on the fingerprints were then 
matched and paired. Pores lying in a rectangular neighborhood to each pair of matched 
minutiae were cropped and rotated according to the directions of the two minutiae. 
Afterwards, they were matched by using the iterative closest point (ICP) algorithm 
which is capable to handle sets of points with different numbers of points and can 
compensate for non-linear deformation between them. The average distance between 
matched pores was taken as the pore match score. This score was then fused with the 
minutia match score by using the weighted summation scheme. Compared with previ-
ous pore matching methods, this method can cope with fingerprint transformation more 
efficiently. However, it matches pores based on the minutia matching results. Conse-
quently, the pore matching accuracy is limited by the minutia matching accuracy and 
the match scores of minutiae and pores will be not independent. Such dependency will 
impair the effectiveness of the subsequent fusion of the match scores. 

In order to decouple the matching processes of minutiae and pores and to make the 
fusion of minutia and pore match scores more effective, this paper proposes a novel 
direct approach to matching pores on fingerprints. The proposed method incorporates 
the alignment into the matching process and can handle complicated transformations. It 
successfully avoids the dependency of pore matching on minutia matching. As a result, 
the fusion of the match scores of minutiae and pores is expected to be more effective 
because they are independent. Section 2 will introduce the proposed method in detail. 
Section 3 then gives our experimental results and section 4 concludes the paper. 

2   Direct Pore Matching 

In this paper, the pores are extracted from fingerprint images by using a state-of-the-
art method proposed by Zhao et al. [15] Fig. 1 gives an example fingerprint image and 
the pores extracted from it. The extracted pores are recorded by their locations on the 
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fingerprint images and described by feature vectors defined later in this section. In 
order to match the pores on two fingerprint images, they are first pair-wise compared 
and initial correspondences between them are established based on their local fea-
tures. The initial pore correspondences are then refined by using the RANSAC 
(RANdom SAmple Consensus) algorithm to give the final pore matching results. A 
pore match score is finally calculated for the two fingerprint images based on both the 
initial and final pore correspondences. Below, we introduce the proposed method step 
by step. 

2.1   Initial Pore Correspondence Establishment 

The first step of our pore matching approach is to pair-wise compare the pores and 
establish the initial correspondences between them. In order to fulfill this purpose, we 
have to associate each pore with a descriptor and present a method to compare the 
pores based on their descriptors. In the literature of computer vision, lots of local 
descriptors have been proposed to describe point features [16]. Most of them are 
based on the gradients in the local neighborhood to the points. Unfortunately, from 
our experiments, we observed that the gradients in the local neighborhood to pores on 
fingerprints are not very distinctive. In the context of fingerprint recognition, Jain  
et al. [17] proposed to use a bank of Gabor filters to generate a feature vector from the 
region surrounding the reference point to describe the fingerprint. However, this 
method failed to cope well with different transformations on fingerprints. 

 

Fig. 2. The flowchart of constructing the descriptor for a pore (marked by circle). P is a row 
vector whose entries are pixel values on the rotated circular neighborhood. 

 

Fig. 3. The flowchart of establishing initial pore correspondences 

Our descriptor in this paper is directly built from the pixel values in the local 
neighborhood to the pore. Specifically, we first smooth the fingerprint image with a 
Gaussian filter. This is to remove noise in the fingerprint. Then we set up a circular 
neighborhood to each pore. The circular neighborhood is rotated such that the ridge 
orientation at the location of the pore becomes horizontal. By using this rotated circu-
lar neighborhood, the descriptor is rotation invariant. A feature vector is then obtained 
by flattening the neighborhood and it is normalized to have zero mean and unit length. 
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The normalization makes the feature vector invariant to monotone contrast changes 
and simplifies the subsequent computation of correlation between the feature vectors. 
This feature vector is defined as the descriptor for the pore. Fig. 2 shows the flowchart 
of the construction of the descriptor. 

Given the descriptors for pores on two fingerprints, we can now compare them 
pair-wise and establish initial correspondences between them. Suppose 

1{ | 1, 2, , }iP i M= L  and 2{ | 1, 2, , }jP j N= L  are the sets of pores on two fingerprints, 

1 2, n
i jP P R∈  are the descriptors of the pores. We define the similarity between two pores 

iP  and jP  as  

T
ij i jS PP= , (1)

where ‘ T ’ denotes the transpose. Note that this similarity is equivalent to the correla-
tion between the two feature vectors because they have zero mean and unit length 
after the normalization. After comparing all pores pair-wise, we get a similarity ma-
trix M NS R ×∈ . We find for each pore on the first fingerprint a pore which is the most 
similar one to it among all the pores on the second fingerprint. Similarly, a pore is 
also found for each pore on the second fingerprint from the pores on the first finger-
print. If 1 ki

P  has its most similar pore as 2 kj
P  and 1 ki

P  is also the most similar pore of 

2 kj
P , then a correspondence is established as 1 2( , )

k kk i jC P P= . Finally, we will get a num-

ber of pore correspondences. Let us assume there are K  pairs of corresponding pores 
and in the next subsection, we will further refine these correspondences to remove the 
false ones. Fig. 3 shows the flowchart of the initial pore correspondence establish-
ment. An example result of initial pore correspondences determined on two finger-
print images is shown in Fig. 4. 

 

Fig. 4. The initial pore correspondences on two example fingerprint images 

 

Fig. 5. The refined pore correspondences on the two example fingerprint images 
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2.2   Pore Correspondence Refinement 

In the above step of initial pore correspondence establishment, we consider only the 
local features and the translation and rotation on fingerprints. As a consequence, there 
are still lots of false pore correspondences among the initial pore correspondences as 
can be seen in Fig. 4. In this refinement step, we will cope with the pores in a global 
context and consider the non-rigid deformation between fingerprints. 

Among all the pore correspondences, we call the correct correspondences as inliers 
and the false ones as outliers. These outliers can severely disturb the estimated trans-
formation between fingerprints, and consequently make the matching results unreli-
able. In order to exclude the large number of outliers, we have to use a method which 
is robust to outliers. The ICP algorithm previously used for pore matching requires a 
good coarse alignment and is sensitive to outliers [20]. Therefore, we take the 
RANSAC algorithm proposed by Fishler and Bolles [18]. It is a widely used robust 
estimator for model fitting and has now become a standard in the field of computer 
vision. Based on the RANSAC algorithm, the pore correspondence refinement pro-
ceeds as follows. 

First, we choose at random a set RC  of three pairs of corresponding pores from the 

initial results. We choose three pairs because they are sufficient to exactly determine 
an affine transformation that we assume occurring to fingerprints. Let ( , )x y  be a pore 
on the first fingerprint image and ( , )x y% %  its corresponding one on the second print after 
affine transformation. They are associated by 

11 12

21 22

x

y

ta ax x

ta ay y

⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞
= + ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

%

%
. (2)

There are six parameters in this model and therefore at least three pairs of correspond-
ing pores are needed to uniquely determine the transformation. Based on the chosen 
three pairs of pores, we estimate the affine transformation simply by solving a set of 
linear equations. 

Second, we evaluate the obtained transformation. The pores on the first fingerprint 
are transformed according to the obtained transformation. They are then compared 
with the pores on the second fingerprint. If the distance between two pores is below a 
given threshold, they are then thought to be matched. If two corresponding pores in 
the initial results are still matched after the transformation, the correspondence is then 
a correct one under the transformation. The set IC  of these correct correspondences 

with respect to the transformation is the consensus set of the chosen correspondences 
and defines the inliers of RC . 

Third, we check the termination conditions. We set two conditions. One is that the 
maximum number of iterations mN  has been reached and the other is that the suffi-

cient number of iterations sN  has been reached. mN  is pre-specified, and sN  is calcu-

lated as follows. Suppose we want to ensure with a probability p  that at least one 
chosen correspondence set RC  in the iterations is free from outliers, in other words, all 

the correspondences and thus the transformation estimated based on them are correct. 
Let ε  be the percentage of outliers over the initial correspondence set with respect to 
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the transformation obtained in the current iteration. According to [19], the sufficient 
number of iterations is then given by 

3log(1 ) / log(1 (1 ) )sN p ε= − − − . (3)

If either of the two conditions is met, the algorithm is stopped and the largest set of 
inliers, *

IC , is output as the final result of pore correspondences. Otherwise, go back to 

the first step and iterate until either of the termination conditions is met. Fig. 5 gives 
the result of refining the initial pore correspondences shown in Fig. 4. Obviously, the 
false matches are removed successfully. 

2.3   Match Score Computation 

In sub-sections 2.1 and 2.2, we show our approach to matching pores. In the process, 
we get the initial and refined correspondences between the pores on two fingerprints. 
Based on these results, we can define a similarity between the two fingerprints, i.e. 
the pore match score of the two fingerprints. In this paper, we define it as 

*

2 min{ , }pore

C C
MS

M N

+
=

×
, (4)

where C  and *C  are the set of initial pore correspondences and the set of refined pore 
correspondences respectively, ‘ C ’ denotes the number of elements in the set C , and 

M  and N  are the numbers of pores on the two fingerprints. 

3   Experiments 

In order to objectively assess the performance of the proposed method, we need a 
dataset of high resolution (at least 1000dpi) fingerprint images. Because there is no 
such a free high resolution live-scan fingerprint image database in the public domain, 
we built by ourselves a high resolution fingerprint scanner (approx. 1200dpi). Using 
this scanner, we collected a set of 1,480 fingerprint images of 148 fingers (see Fig. 1 
for an example image). Five images were scanned for each finger in each of two ses-
sions (about two weeks apart). These images have a spatial size of 320 by 240 pixels. 
They capture a fingerprint area of about 6.5mm by 4.9mm. Therefore, they are very 
small partial fingerprints and it is very challenge to recognize such fingerprints. Ac-
cording to [6-7], the fingerprint recognition benefits more from the pores when the 
used fingerprint images cover small fingerprint areas. In order to emphasize the con-
tribution of pores, we thus conducted our experiments in this paper with the above 
mentioned fingerprint images. 

We compared our direct pore matching method (denoted as DP) with the state-of-the-
art minutia-based pore matching method (denoted as MICPP) proposed in [8]. In the 
implementation, the minutiae on two fingerprints are first extracted and matched by using 
the algorithm in [21]. After matching the minutiae, the pores lying in the neighborhoods 
of each pair of matched minutiae are matched by using the ICP algorithm, resulting in  
N match scores (N is the number of pairs of matched minutiae), which are defined  
as the summation of two terms: the mean distance between all matched pores and the 
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percentage of unmatched pores. The pore match score between the two fingerprints is 
finally defined as the average of the first three smallest match scores. 

We consider the recognition accuracy in five cases: using only minutia match 
scores (denoted as MINU), using only pore match scores of DP, using only pore 
match scores of MICPP, using fused scores of MINU and DP (MINU-DP), and using 
fused scores of MINU and MICPP (MINU-MICPP). The fused score MS  is calculated 
by using the weighted summation scheme defined as 

(1 )pore minuMS MS MS , (5)

where poreMS  is the pore match score, minuMS  is the minutia match score, and [0,1]ω ∈  is 

the weight for poreMS . Before fusion, both the match scores of pores and minutiae are 

normalized to [0, 1] by using the maximum-minimum normalization. 

  

Fig. 6. The EER of MINU-DP and MINU-
MICPP when different weights are used 

Fig. 7. The FMR1000 of MINU-DP and 
MINU-MICPP when different weights are 
used 

In the fingerprint recognition experiments, the following matches were carried out: 
1) Genuine matches: Each of the fingerprint images in the second session was matched 
with all the fingerprint images in the first session, leading to 3,700 genuine matches, 
and 2) Imposter matches: the first fingerprint image of each finger in the second ses-
sion was matched with the first fingerprint image of all the other fingers in the first 
session, resulting in 21,756 imposter matches. Based on these match scores, we calcu-
lated the equal error rates (EER) and FMR1000 [22] of the methods MINU-MICPP 
and MINU-DP when different weights were used. The results are presented in Figs. 6 
and 7. As shown in Fig. 6, the EER of using only minutiae is 17.67%, and the EER of 
the proposed DP and its counterpart MICPP are respectively 20.49% and 30.45%. By 
fusing the minutia and pore match scores, our proposed method MINU-DP gets the 
lowest EER of 12.4% when 0.2ω = , which improves the EER of using only minutiae 
by 29.82%. In contrast, the MINU-MICPP method fails to make any improvement at 
all. As for the FMR1000, according to the curves shown in Fig. 7, using only minutiae, 
the obtained FMR1000 is 59.24%, whereas using only pores are 48.11% and 78.95% 
by DP and MICPP respectively. After fusing the minutia and pore match scores, the 
FMR1000 can be improved to 37.05% and 49.68% respectively by MINU-DP and 
MINU-MICPP. The best accuracy of each case is listed in Table 1. 
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Table 1. The best EER and FMR1000 of the five cases 

Method MINU DP MICPP MINU-DP MINU-MICPP 
EER 17.67% 20.49% 30.45% 12.4% 21.66% 

FMR1000 59.24% 48.11% 78.95% 37.05% 49.68% 

 
From these experimental results, we can see that when only using the pore match 

scores, the EER is worse than that of minutia match scores, but the FMR1000 could 
be better. This demonstrates that pores, if advanced pore matching methods are used, 
are good choices for applications where a very low false acceptance rate is required 
(or the cost of false acceptance is much higher than that of false rejection). When 
using only pores, our proposed method obtains much better recognition accuracy 
(32.71% improvement on EER and 39.06% improvement on FMR1000) compared 
with the MICPP method. When fusing the match scores of minutiae and pores, the 
accuracy can be further improved by our method. When the MICPP method is used 
for pore matching, compared with the results of using only minutiae, no improvement 
is observed on EER and 16.14% improvement on FMR1000. But when using our 
proposed method, the fusion can achieve 29.82% and 37.46% improvement respec-
tively upon the EER and FMR1000 of using only minutia match scores. We believe 
that this improvement owes to the following factors. First, our proposed direct pore 
matching method incorporates the alignment into the matching process and can better 
cope with complicated transformations between fingerprints. Second and more impor-
tant, it enables the independency between minutia and pore matching processes and 
thus makes the fusion between the minutia and pore match scores more effective. 

4   Conclusions 

This paper presents a direct pore matching approach for fingerprint recognition. It in-
corporates the alignment into the pore matching process and can cope with complicated 
transformations between fingerprints. By making the pore matching independent from 
the minutia matching, it enables the fusion of the minutia and pore match scores more 
effective in improving the fingerprint recognition accuracy. Experiments testified that 
better recognition accuracy can be obtained by using the proposed method. Compared 
with the state-of-the-art minutia-based pore matching method, our method can achieve 
more than 30% improvement on the recognition accuracy when using only pores. By 
fusing minutia and pore match scores, our method improves the recognition accuracy 
with respect to that of using only minutiae by 29.82% and 37.46% respectively in terms 
of EER and FMR1000, whereas the counterpart method makes no improvement at all 
on EER and only 16.14% improvement on FMR1000. A shortcoming of the proposed 
method is its complexity in describing the pores. Considering the large number of pores 
on fingerprints, it is worthy to reduce the dimension of the pore descriptors while not 
impairing the discrimination power and to speed up the comparison of pores. 
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