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In this supplementary file, we provide proofs of the theoretical results in the
main paper, including Theorem 1 and Theorem 2.

A1. Proof of Theorem 1

Theorem 1 Suppose samples xi for i = 1, 2, ...,m are i.i.d. with E[x] = µ and
V ar[x] = σ2, ξµ and ξσ are defined in Eq.(2), we have:

lim
m→∞

p(ξµ)→ N (0,
1

m
), lim

m→∞
p(ξσ)→ 1

m
χ2(m− 1).

Proof. From the classical central limit theorem, we have

lim
m→∞

p(

m∑
i=1

xi)→ N (mµ,mσ2),

that is

lim
m→∞

p(mµB)→ N (mµ,mσ2).

Therefore limm→∞ p(µB)→ N (µ, σ
2

m ), and ξµ = µ−µB
σ is a linear function of µB .

Then according to the property of Gaussian distribution, we can obtain that

lim
m→∞

p(ξµ)→ N (0,
1

m
).

For χ2 distribution, it has the following property:

lim
m→∞

χ2(m− 1)

m
= lim
m→∞

χ2(m− 1)

m− 1
→ N (1,

2

m
).
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And we have limm→∞ µB = µ. Then for ξσ we can also use the central limit
theorem to obtain:

lim
m→∞

p(ξσ) = lim
m→∞

p(
1

mσ2

m∑
i=1

(xi − µB)2) = lim
m→∞

p(

m∑
i=1

(
xi − µ
σ

)2)→ N (1,
κ

m
),

where κ is the kurtosis of x. When m is a very large number, both κ
m and 2

m are
close to zeros so that N (1, κm ) ' N (1, 2

m ). Therefore, in this case the distribution
of ξσ can be viewed as 1

mχ
2(m− 1).

The proof is completed. �

A2. Proof of Theorem 2

Theorem 2: If the infinite derivative of l(x) exists for any x, given two random

variables ξµ and ξσ (> 0), then we have the Taylor expansion for l(
x+ξµ√
ξσ

):

Eξµ,ξσ [l(
x+ ξµ√

ξσ
)] = l(x) +Radd(x) +Rmul(x) +R(x), R(x) =

∞∑
n=1

E[ξµ
n]

n!

dnRmul(x)

dxn

(1)
where Radd(x) and Rmul(x) are defined in Eq.(5) and (6), respectively.

Proof.

Eξµ,ξσ [l(
x+ ξµ√

ξσ
)] = Eξµ,ξσ [l(

x√
ξσ

+
ξµ√
ξσ

)]

= Eξσ [l(
x√
ξσ

)] + Eξµ,ξσ [

∞∑
n=1

(
ξµ√
ξσ

)
n

n!

dnl( x√
ξσ

)

d( x√
ξσ

)n
]

= l(x) +Rmul(x) + Eξµ,ξσ [

∞∑
n=1

ξµ
n

n!

dnl( x√
ξσ

)

dxn
]

= l(x) +Rmul(x) + Eξµ [

∞∑
n=1

ξµ
n

n!

dnEξσ [l( x√
ξσ

)]

dxn
]

= l(x) +Rmul(x) + Eξµ [

∞∑
n=1

ξµ
n

n!

dn(l(x) +Rmul(x))

dxn
]

= l(x) +Rmul(x) + Eξµ [

∞∑
n=1

ξµ
n

n!

dn(l(x))

dxn
] + Eξµ [

∞∑
n=1

ξµ
n

n!

dn(Rmul(x))

dxn
]

= l(x) +Rmul(x) +Radd(x) +R(x).
(2)

The proof is completed. �


