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In this supplementary file, we provide proofs of the theoretical results in the
main paper, including Theorem 1 and Theorem 2.

Al. Proof of Theorem 1

Theorem 1 Suppose samples x; for i = 1,2,...,m are i.i.d. with E[z] = p and
Var(z] = 0%, &, and &, are defined in Eq.(2), we have:
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Proof. From the classical central limit theorem, we have
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that is
lim p(mpp) — N(mu, ma?).

m—roo

Therefore lim,, oo p(p) — N (u, %2), and &, = F=F£ is a linear function of up.

Then according to the property of Gaussian distribution, we can obtain that
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For x? distribution, it has the following property:
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And we have lim,, o g = p. Then for £, we can also use the central limit
theorem to obtain:
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where & is the kurtosis of z. When m is a very large number, both £ and 2 2 are
close to zeros so that NV (1, £) ~ N (1, 2 =). Therefore, in this case the distribution
of &, can be viewed as %XQ( —-1).

The proof is completed. B

A2. Proof of Theorem 2

Theorem 2: If the infinite derivative of l(z) exists for any x, given two random

variables &, and &, (> 0), then we have the Taylor expansion for l(%)
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where R (x) and R™%(z) are defined in Eq.(5) and (6), respectively.

Proof.
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The proof is completed. B



