# Supplementary Material to "Momentum Batch Normalization for Deep Learning with Small Batch Size" 

Hongwei Yong ${ }^{1,2}$, Jianqiang Huang ${ }^{2}$, Deyu Meng ${ }^{3,4}$, Xiansheng Hua ${ }^{2}$, and Lei Zhang ${ }^{1,2}$<br>${ }^{1}$ Department of Computing, The Hong Kong Polytechnic University \{cshyong, cslzhang\}@comp.polyu.edu.hk<br>${ }^{2}$ DAMO Academy, Alibaba Group<br>\{jianqiang.jqh,huaxiansheng\}@gmail.com<br>${ }^{3}$ Macau University of Science and Technology<br>${ }^{4}$ School of Mathematics and Statistics, Xi'an Jiaotong University<br>dymeng@mail.xjtu.edu.cn

In this supplementary file, we provide proofs of the theoretical results in the main paper, including Theorem 1 and Theorem 2.

## A1. Proof of Theorem 1

Theorem 1 Suppose samples $x_{i}$ for $i=1,2, \ldots, m$ are i.i.d. with $E[x]=\mu$ and $\operatorname{Var}[x]=\sigma^{2}, \xi_{\mu}$ and $\xi_{\sigma}$ are defined in Eq.(2), we have:

$$
\lim _{m \rightarrow \infty} p\left(\xi_{\mu}\right) \rightarrow \mathcal{N}\left(0, \frac{1}{m}\right), \quad \lim _{m \rightarrow \infty} p\left(\xi_{\sigma}\right) \rightarrow \frac{1}{m} \chi^{2}(m-1)
$$

Proof. From the classical central limit theorem, we have

$$
\lim _{m \rightarrow \infty} p\left(\sum_{i=1}^{m} x_{i}\right) \rightarrow \mathcal{N}\left(m \mu, m \sigma^{2}\right)
$$

that is

$$
\lim _{m \rightarrow \infty} p\left(m \mu_{B}\right) \rightarrow \mathcal{N}\left(m \mu, m \sigma^{2}\right)
$$

Therefore $\lim _{m \rightarrow \infty} p\left(\mu_{B}\right) \rightarrow \mathcal{N}\left(\mu, \frac{\sigma^{2}}{m}\right)$, and $\xi_{\mu}=\frac{\mu-\mu_{B}}{\sigma}$ is a linear function of $\mu_{B}$. Then according to the property of Gaussian distribution, we can obtain that

$$
\lim _{m \rightarrow \infty} p\left(\xi_{\mu}\right) \rightarrow \mathcal{N}\left(0, \frac{1}{m}\right)
$$

For $\chi^{2}$ distribution, it has the following property:

$$
\lim _{m \rightarrow \infty} \frac{\chi^{2}(m-1)}{m}=\lim _{m \rightarrow \infty} \frac{\chi^{2}(m-1)}{m-1} \rightarrow \mathcal{N}\left(1, \frac{2}{m}\right) .
$$

And we have $\lim _{m \rightarrow \infty} \mu_{B}=\mu$. Then for $\xi_{\sigma}$ we can also use the central limit theorem to obtain:

$$
\lim _{m \rightarrow \infty} p\left(\xi_{\sigma}\right)=\lim _{m \rightarrow \infty} p\left(\frac{1}{m \sigma^{2}} \sum_{i=1}^{m}\left(x_{i}-\mu_{B}\right)^{2}\right)=\lim _{m \rightarrow \infty} p\left(\sum_{i=1}^{m}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right) \rightarrow \mathcal{N}\left(1, \frac{\kappa}{m}\right),
$$

where $\kappa$ is the kurtosis of $x$. When $m$ is a very large number, both $\frac{\kappa}{m}$ and $\frac{2}{m}$ are close to zeros so that $\mathcal{N}\left(1, \frac{\kappa}{m}\right) \simeq \mathcal{N}\left(1, \frac{2}{m}\right)$. Therefore, in this case the distribution of $\xi_{\sigma}$ can be viewed as $\frac{1}{m} \chi^{2}(m-1)$.

The proof is completed.

## A2. Proof of Theorem 2

Theorem 2: If the infinite derivative of $l(x)$ exists for any $x$, given two random variables $\xi_{\mu}$ and $\xi_{\sigma}(>0)$, then we have the Taylor expansion for $l\left(\frac{x+\xi_{\mu}}{\sqrt{\xi_{\sigma}}}\right)$ :

$$
\begin{equation*}
E_{\xi_{\mu}, \xi_{\sigma}}\left[l\left(\frac{x+\xi_{\mu}}{\sqrt{\xi_{\sigma}}}\right)\right]=l(x)+R^{a d d}(x)+R^{m u l}(x)+R(x), R(x)=\sum_{n=1}^{\infty} \frac{E\left[\xi_{\mu}{ }^{n}\right]}{n!} \frac{d^{n} R^{m u l}(x)}{d x^{n}} \tag{1}
\end{equation*}
$$

where $R^{\text {add }}(x)$ and $R^{\text {mul }}(x)$ are defined in Eq.(5) and (6), respectively.
Proof.

$$
\begin{align*}
E_{\xi_{\mu}, \xi_{\sigma}}\left[l\left(\frac{x+\xi_{\mu}}{\sqrt{\xi_{\sigma}}}\right)\right] & =E_{\xi_{\mu}, \xi_{\sigma}}\left[l\left(\frac{x}{\sqrt{\xi_{\sigma}}}+\frac{\xi_{\mu}}{\sqrt{\xi_{\sigma}}}\right)\right] \\
& =E_{\xi_{\sigma}}\left[l\left(\frac{x}{\sqrt{\xi_{\sigma}}}\right)\right]+E_{\xi_{\mu}, \xi_{\sigma}}\left[\sum_{n=1}^{\infty} \frac{\left(\frac{\xi_{\mu}}{\sqrt{\xi_{\sigma}}}\right)^{n}}{n!} \frac{d^{n} l\left(\frac{x}{\sqrt{\xi_{\sigma}}}\right)}{d\left(\frac{x}{\sqrt{\xi_{\sigma}}}\right)^{n}}\right] \\
& =l(x)+R^{m u l}(x)+E_{\xi_{\mu}, \xi_{\sigma}}\left[\sum_{n=1}^{\infty} \frac{\xi_{\mu}{ }^{n}}{n!} \frac{d^{n} l\left(\frac{x}{\sqrt{\xi_{\sigma}}}\right)}{d x^{n}}\right] \\
& =l(x)+R^{m u l}(x)+E_{\xi_{\mu}}\left[\sum_{n=1}^{\infty} \frac{\xi_{\mu}{ }^{n}}{n!} \frac{d^{n} E_{\xi_{\sigma}}\left[l\left(\frac{x}{\sqrt{\xi_{\sigma}}}\right)\right]}{d x^{n}}\right] \\
& =l(x)+R^{m u l}(x)+E_{\xi_{\mu}}\left[\sum_{n=1}^{\infty} \frac{\xi_{\mu}{ }^{n}}{n!} \frac{d^{n}\left(l(x)+R^{m u l}(x)\right)}{d x^{n}}\right] \\
& =l(x)+R^{m u l}(x)+E_{\xi_{\mu}}\left[\sum_{n=1}^{\infty} \frac{\xi_{\mu}{ }^{n}}{n!} \frac{d^{n}(l(x))}{d x^{n}}\right]+E_{\xi_{\mu}}\left[\sum_{n=1}^{\infty} \frac{\xi_{\mu}{ }^{n}}{n!} \frac{d^{n}\left(R^{m u l}(x)\right)}{d x^{n}}\right] \\
& =l(x)+R^{m u l}(x)+R^{a d d}(x)+R(x) . \tag{2}
\end{align*}
$$

The proof is completed.

