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Abstract

Oriented patterns, e.g. fingerprints, consist of smoothly
varying flow-like patterns, together with important singular
points (i.e. cores and deltas) where the orientation changes
abruptly. Gabor filters and anisotropic diffusion methods
have been widely used to enhance oriented patterns. How-
ever, none of them can well cope with regions of varying
curvatures or regions surrounding singular points. By in-
corporating the ridge curvatures and the singularities into
the diffusion model, we propose a new diffusion method to
better exploit the global characteristics of oriented patterns.
Specifically, we first locate the singular points, and regu-
larize the estimated orientation field by using a singularity
driven nonlinear diffusion process. We then enhance the
oriented patterns by applying an oriented diffusion process
which is driven by the curvature and singularity. Exper-
iments on synthetic data and real fingerprint images vali-
dated that the proposed method is capable of consistently
enhancing oriented patterns while well preserving the ridge
structures in singular regions.

1. Introduction
Oriented patterns, also known as oriented or flow-like

textures, have been attracting much research attention in ap-
plications of computer vision [4, 17] and pattern recognition
such as fingerprint recognition [13] for a long time. Refer-
ring to Fig. 1, fingerprint is a typical example of oriented
patterns consisting of smoothly varying flow-like patterns
(namely ridge structures), together with important singular-
ities (namely cores and deltas) [7]. Oriented patterns are
locally anisotropic with their ridge orientation field being
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Figure 1. Fingerprint, a typical example of oriented patterns.

well defined except at singular points [4]. Singular points,
viewed as important global features of oriented patterns, are
the points of discontinuity of the orientation field [4, 7, 13].
Two kinds of singularities are widely used in literature as
shown in Fig. 1: the core is the end point of the innermost
curving ridge, and the delta is the confluence point of three
different flow directions [7, 13]. The singular regions sur-
rounding singular points have the highest ridge curvatures
across the oriented patterns, and the orientation around the
singular points changes abruptly.

For real images of oriented patterns, the image quality
can be degraded significantly by a number of factors, in-
cluding the corrupted noise in the image acquisition pro-
cess, the creases and other interference that would break the
ridges (referring to Fig. 1). The enhancement of oriented
patterns is thus to reduce the noise and interference to make
the pattern structures easier for recognition. It is well known
that traditional linear and isotropic smoothing methods such
as Gaussian smoothing will blur or destroy ridge structures
[10]. Therefore, some nonlinear and anisotropic smoothing
methods were developed later [8, 18, 11, 15, 2, 20].

A popular approach to oriented pattern enhancement is
to use contextual filters that are tuned to proper orientations
and frequencies [8, 18, 11]. For instance, Hong et al. [11]
proposed to use a bank of Gabor filters to enhance the ori-
ented patterns on fingerprint images. They calculated the
dominant ridge orientation and the average ridge frequency
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at each pixel based on a neighborhood to the pixel. A Ga-
bor filter was then applied, which is tuned to the local ridge
orientation and frequency at the pixel. This method, if the
Gabor filters are tuned to correct orientations and frequen-
cies, can successfully suppress the noise on the ridges and
remove the creases. However, such contextual filter based
methods have three shortcomings. First, there is often block
effect on the enhanced oriented pattern images because the
ridge frequency is usually estimated block by block. Sec-
ond, when there are singular points on the ridge patterns,
it will be very difficult to accurately estimate the frequency
around the singular points. As a result, the contextual filters
can not accurately enhance the ridge patterns, but instead
often destroy the ridge structures in these regions. Third,
when the images are of very poor quality, it will be hard to
calculate the ridge frequency. Consequently, the contextual
filters will fail to effectively enhance the oriented patterns.

As a kind of partial differential equation (PDE) based
methods, various diffusion techniques [15, 2, 20] have been
proposed in the community of computer vision and im-
age processing in the past decades. They are proven to
be very useful for image de-noising, restoration, enhance-
ment, and feature extraction [15, 2, 20, 16]. Some nonlin-
ear and anisotropic diffusion methods have been recently
applied to oriented pattern processing, including ridge ori-
entation estimation [14, 5] and ridge pattern enhancement
[1, 6, 9, 21, 5, 10]. In general, these methods first esti-
mate the ridge orientation field on the oriented pattern im-
ages and then steer intensity diffusion processes primarily
along the ridge orientation. Advantages of the nonlinear
and anisotropic diffusion-based methods include that they
are free from frequency estimation and that they can better
preserve ridge edges.

However, most existing nonlinear and anisotropic dif-
fusion methods consider neither the local ridge curvatures
nor the global singular points of the oriented patterns when
determining the diffusivity. Consequently, they have two
drawbacks. First, they use similar diffusivity at locations
where the ridges could have different curvatures. In fact,
when the ridges have small curvatures, we can apply a large
amount of diffusion on the ridges. On the contrary, when
the ridges bend sharply, the diffusion should be reduced. By
taking into consideration the local ridge curvatures, we can
make the diffusion more consistently. Second, the existing
nonlinear and anisotropic diffusion methods ignore the sin-
gular points by simply applying the same diffusion process
in both singular regions and non-singular regions. This may
destroy the ridge structures in the singular regions due to the
rapid change of ridge orientation around singular points.

The goal of this paper is to explicitly incorporate the lo-
cal ridge curvatures and the global singular point features
into the diffusion model such that it can not only consis-
tently enhance the oriented patterns in non-singular regions,

but also well preserve the ridge structures in singular re-
gions. To this end, we first estimate an initial ridge orienta-
tion field and locate the singular points on the oriented pat-
tern, and then regularize the ridge orientation field by using
a nonlinear diffusion process which is driven by the singu-
larity of oriented patterns. Consequently, a curvature and
singularity driven diffusion process is applied to enhance
the ridge pattern.

The rest of the paper is organized as follows. Section 2
presents the proposed curvature and singularity driven dif-
fusion model. Section 3 presents the enhancement algo-
rithm. Section 4 shows experiments on synthetic data and
typical real fingerprint images. Section 5 concludes the pa-
per.

2. The curvature and singularity driven diffu-
sion model

The basic idea of diffusion is to exchange quantities be-
tween adjacent objects, and as the diffusion goes the whole
system will evolve to a smoother and smoother status [19].
In the context of image processing, the exchanged quantities
are the intensities of pixels in the image. Mathematically,
the diffusion process in an image I(x,y) can be formulated
as the following PDE

∂tu = div(D · ∇u) (1)

with initial condition

u(x, y; 0) = I(x, y) (2)

Here, ∇u = (ux, uy)T is the gradient vector (‘T’ denotes
the transpose) and D is the diffusivity term, which can be
either a scalar or a 2× 2 matrix.

When D is a constant scalar, the diffusion equation (1)
defines a linear isotropic diffusion, which will blur the
edges on the image. To better preserve the edges, Perona
and Malik [15] proposed to define the diffusivity by a de-
crease function of the local gradient magnitudes as follows

D = g(|∇u|2) = (1 + |∇u|2/k2)−1 (3)

where k is a parameter. By using this diffusivity, the diffu-
sion will be reduced at those locations which have a larger
likelihood to be edges. Although the above model can adapt
the diffusivity to the local features, at each pixel it still dif-
fuses identically in all directions. Therefore, it does not
have the ability of orientation selectivity.

Later, Weickert [19] proposed to use a diffusion tensor
to tune the diffusion directions according to the dominant
orientation at each pixel. The diffusion tensor is defined as

D = (p1 p2)
(

λ1 0
0 λ2

)
(pT

1 pT
2 ) (4)
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where λ1 and λ2 are the diffusivities along the two orthog-
onal diffusion directions p1 and p2 respectively. In We-
ickert’s diffusion model, p1 and p2 are defined by the two
eigenvectors of the following local structure tensor (suppose
p1 corresponds to the larger eigenvalue)

Sρ = Gρ ∗ (∇u∇uT ) (5)

where Gρ is a Gaussian kernel with standard variance ρ, ‘*’
denotes convolution, and the diffusivities along these two
directions are determined by the two eigenvalues of Sρ. Ba-
sically, we can steer the diffusion process along any orien-
tation with any diffusivity by adjusting the four components
in the diffusion tensor.

Our diffusion model for oriented pattern enhancement
originates from Weickert’s model. For oriented patterns, the
ridge orientation can be approximately estimated before the
diffusion. Therefore, it is not necessary to do the structure
tensor analysis in each step of the diffusion, which is quite
time-consuming. In addition, the oriented patterns consist
of locally parallel dense patterns [4]. Thus, to enhance the
oriented patterns, we should diffuse along the ridge orien-
tation but never the perpendicular orientation. Let θ be the
ridge orientation at a pixel. The diffusion orientation p1 at
the pixel is then defined as

p1 = (cos θ, sin θ)T (6)

The diffusivity along this orientation is positive (λ1 > 0),
while the diffusivity along its perpendicular orientation is
set to zero (λ2 = 0). Therefore, the diffusion is along p1

only, i.e. the ridge orientation at the pixel.
As discussed in the introduction, the oriented patterns are

globally characterized by singular points and the ridge cur-
vatures change greatly between singular regions and non-
singular regions. It is important to take these character-
istics into consideration when enhancing the oriented pat-
terns. Bearing this in mind, we define the diffusivities as

λ1 = exp{−(
c2

k2
1

+
1

k2
2 · d2

S

)} (7)

λ2 = 0 (8)

Here, k1 and k2 are two parameters to control the diffusion
velocities, c is the ridge curvature at the pixel, and dS is the
distance from the pixel to the closest singular point (if there
is no singular point, dS is infinity). By substituting (4) and
(6-8) into (1), we obtain the curvature and singularity driven
oriented diffusion model as follows

∂tu = uθθ · exp{−(
c2

k2
1

+
1

k2
2 · d2

S

)} (9)

where uθθ = uxx cos2 θ + uyy sin2 θ + 2uxy cos θ sin θ.

In the proposed diffusion model, the diffusion is exactly
along the ridge orientation. It diffuses fast in small curva-
ture regions and non-singular regions and will slow down
while it approaches to high curvature regions or singular
points. Such adaptivity is desired in order to consistently
enhance the oriented patterns in regions of different curva-
tures and preserve the ridge structures in singular regions.

3. The enhancement algorithm
In this section, we will develop a new algorithm for ori-

ented pattern enhancement based on the proposed diffusion
model in (9). We first introduce the method for singular
point detection and orientation field regularization and then
present the enhancement scheme.

3.1. Singular point detection and orientation field
regularization

In order to use the curvature and singularity driven ori-
ented diffusion model to enhance oriented patterns, we need
to estimate the ridge orientation field and detect the singular
points in the oriented patterns. Meanwhile, in order to sup-
press noise in the orientation field, we need to regularize the
orientation field. However, regularization such as smooth-
ing will lead to the shifting of singular points. Therefore,
some tradeoff has to be made between regularizing the ori-
entation field and preserving the singular points. In this
section, we propose to regularize the orientation field by
explicitly considering the singular points.

According to Perona’s observation [14], the singular
points of oriented patterns have the causal property: singu-
lar points may disappear, but not appear, when diffusing in
the orientation field. Inspired by this finding, we propose to
detect the singular points in the process of orientation diffu-
sion. We start from an initial estimation of the ridge orienta-
tion field which is obtained by analyzing the local structure
tensor as defined in (5) [3]. Because a large scale smooth-
ing of the structure tensor will lead to large displacements
of singular points, we use a small scale in the structure ten-
sor analysis. Once we have the initial ridge orientation field
(referring to Fig. 2(a)), we locate the singular points on it by
using the Poincare index [13]. At this moment, we may find
many singular points, some of which might be false ones
(see Fig. 2(b)).

We then apply to the orientation field a linear diffusion
process as defined in (1) by setting D as a constant. Because
the value of orientation is within the range of 0 to π, which
is intrinsically discontinuous [14], we map the orientation θ
to a continuous complex plane as

U = cos (2θ) + i sin (2θ) = R + iI (10)

where R = cos (2θ) and I = sin (2θ) are the real and imag-
inary parts. The diffusion is then conducted on these two
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(a) (b) (c) (d) (e) (f)

Figure 2. Singular point detection and orientation field regularization. (a) shows the initial orientation field, and (b) shows the singular
points detected on it; (c) is the orientation field after linear diffusion of 50 iterations; (d) shows the singular points detected on the
smoothed orientation field in (c); (e) shows the final singular point detection results; and (f) is the final orientation field regularized by
using the singularity driven nonlinear diffusion.

parts simultaneously. After diffusion by N iterations (in our
experiments, N=10), we can retrieve a smoother orientation
field from the diffused real and imaginary parts according
to θ = 1

2 arctan (I/R). We then detect the singular points
on the obtained smoother orientation field. If the number
of singular points keep unchanged for a sufficient number
of iterations, or a specific number of iterations has been
reached, the diffusion in the ridge orientation field stops.
Otherwise, we diffuse for N more iterations. Fig. 2(c)
shows the smoothed orientation field after 50 iterations of
diffusion.

When the diffusion stops, the false singular points will be
eliminated but the survived singular points may shift from
their true locations due to the smoothing effect of diffusion
as can be seen in Fig. 2(d). For more accurate localization
of these singular points, we turn to the detection results in
the initial ridge orientation field. The singular points in the
initial ridge orientation field which are the closest ones to
those survived singular points are taken as the final singular
point detection results. By using such a feedback scheme,
we can not only remove false singular points, but also locate
the true singular point more accurately (see Fig. 2(e)).

Based on the detected singular points, we can now regu-
larize the initial orientation field. Here, we adopt a nonlin-
ear diffusion process to reduce the diffusion around singu-
lar points such that the orientation field close to the singular
points can be better preserved. To this end, we define the
diffusivity at a pixel (i, j) based on its distance to the closest
singular points as follows

D(i, j) = exp{− 1
k2d2

S(i, j)
} (11)

where k is a constant, and

dS(i, j) = min{ds(i, j)|s = 1, 2, · · · , n} (12)

with ds being the distance between the pixel and the sth sin-
gular point, and n is the total number of singular points.
With the above defined singularity driven nonlinear diffu-
sion on the orientation field, most noisy orientation can be

corrected while preserving the orientation around singular
points. Fig. 2(f) shows an example of the final orientation
field regularized by the singularity driven nonlinear diffu-
sion. Compared with the regularized orientation field in
Fig. 2(c), the proposed method successfully avoids over
smoothing the orientation field around singular points while
correctly regularizing the orientation at the crease and other
interference.

3.2. Oriented pattern enhancement

Once the ridge orientation field and the singular points
have been obtained, we can now apply the curvature and
singularity driven oriented diffusion model to enhance the
oriented patterns. Different from conventional diffusion ap-
plications, for oriented pattern enhancement, we calculate
only once the diffusivity at each pixel before the diffusion,
and then use this diffusivity throughout the whole diffusion
process. This makes our algorithm more efficient. Referring
to the definition of the diffusion model in (9), the diffusion
orientation θ is just the ridge orientation at the pixel, and the
diffusivity will be determined by the local ridge curvature
and its distance to the closest singular point. The distance
at the pixel is calculated according to (12). As for the cur-
vature, we refer to the orientation difference proposed by
Perona [14]. Specifically, we calculate the curvature at the
pixel (i, j) as follows

c(i, j) =
∑

(i′,j′)∈N(i,j)

(1− cos (2θ(i′, j′)− 2θ(i, j)))

(13)
where N(i, j) denotes the neighborhood to the pixel (i, j).
In our experiments, we use the 4-connected neighborhood.
Finally, the diffused intensity at the pixel (i, j) in the (t+1)th

iteration can be calculated by

u(i, j; t + 1) = u(i, j; t)+

uθθ(i, j; t) · exp{−(
c(i, j)2

k2
1

+
1

k2
2d

2
S(i, j)

)} (14)
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(a) (b)

Figure 3. Enhancement results of the image in Fig. 1 by using (a)
the proposed method and (b) the Gabor filters.

As the diffusion proceeds, noise as well as other distrac-
tions like creases on ridges and valleys will be gradually
removed. On the resulting enhanced oriented patterns, bro-
ken ridges and valleys are connected and the ridges and val-
leys are becoming more separable. More importantly, the
ridge structures in the singular regions are also well pre-
served. The parameters involved in the diffusion model and
the number of iterations can be determined by experience
for specific oriented pattern data according to their quality
and to the application requirement.

Fig. 3 shows the enhancement results of Fig. 1 in com-
parison with the Gabor filter based enhancement method
[11]. While the Gabor filter based method has obvious
block effect especially in the singular regions, we see that
the proposed method enhances much better the ridge struc-
tures in singular regions than the Gabor filters.

4. Experimental results
We first use a synthetic toy example to illustrate the ef-

fectiveness of including the ridge curvature in the diffusion.
As shown in Fig. 4(a), in the synthetic oriented pattern im-
age, there are some straight lines and some curves which
have different curvatures. They are broken by a straight line,
resulting in a break point on each line and each curve. We
use the proposed curvature driven oriented diffusion method
as well as the other two representative oriented diffusion
methods [6, 10] to repair the breaks.

The oriented diffusion in [6] sets the diffusivity using a
method similar to that of Weickert’s model [20], which is
based on local structure tensor analysis. In [10], the dif-
fusivity is set to be a constant. The results of the three
methods after 10 iterations and 20 iterations are shown in
Figs. 4(b)-4(d) and Figs. 4(e)-4(g) respectively. As can be
seen from the results, the curvature driven oriented diffu-
sion enhances regions of different curvatures more consis-
tently, whereas the diffusion driven by local structure ten-
sor analysis [6] performs quite differently in flat and curved
regions. Besides, compared with the other oriented diffu-
sion methods [6, 10], the curvature driven oriented diffu-
sion method can repair the curves more smoothly (note the

intensity along the lines and curves). This is because neither
the local structure tensor analysis [6] nor the constant diffu-
sivity [10] can capture the curved characteristics of oriented
patterns (note that the structure tensor uses the first order
derivatives whereas the curvature is a second order deriva-
tive feature).

In order to assess the effect of singularity on enhancing
oriented patterns, we use a variety of real fingerprint images
for experiments. These images are taken from the FVC2002
fingerprint image databases [12]. In our experiments, we
first use the histogram equalization to pre-process the fin-
gerprint images such that the contrast between ridges and
valleys is improved. We compare the proposed method with
the representative Gabor filter based method [11] and the
state-of-the-art oriented diffusion based methods [6, 10] ac-
cording to their performance in enhancing various patterns
with singular points. In the literature of fingerprint classifi-
cation, according to the singular points on the fingerprints,
there are generally six classes of oriented patterns, i.e. arch,
tented arch, whorl, twin loop, left loop, and right loop [13].
We thus consider four cases in our experiments: one core
point, one core point and one delta point, two core points
on a whorl pattern, two core points on a twin loop pattern.
Fig. 5 shows four typical example images used in the ex-
periments.

These images are enhanced by the Gabor filter based
method [11], Cheng’s method [6], Hastings’ method [10],
and the proposed method (all the three diffusion based
methods conduct 30 iterations of diffusion). The enhance-
ment results are given in Fig. 6. In the results of Gabor filter
based method, obvious block effect can be observed (espe-
cially in regions close to singular points) and the ridge edges
are displaced. The diffusion based methods do not have
these problems. However, as can be seen from the marked
regions on the results, when there are singular points, the
Gabor filter based method and the other two diffusion based
methods fail to accurately enhance the ridge structures in
the singular regions. On the contrary, the proposed method
successfully preserves the ridge structures in the singular
regions by well controlling the diffusion in these regions.
Take the third row in Fig. 6 as an example. All the coun-
terpart methods destroy the ridge structures in the singular
regions, i.e. the innermost ridge is broken by them. But the
proposed method preserves it very well. Overall, the pro-
posed method not only enhances very well the ridge struc-
tures in non-singular regions, but also accurately preserves
the ridge structures in singular regions.

5. Conclusions
This paper studied the problem of enhancing oriented

patterns with singular points. Oriented patterns like fin-
gerprints are commonly seen in computer vision and pat-
tern recognition relevant applications such as biometrics. In
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 4. Toy example for curvature driven oriented diffusion. (a) is the original oriented pattern image. (b-d) are the enhancement results
by the proposed method, Cheng’s method [6], and Hastings’ method [10], after 10 iterations, and (e-g) after 20 iterations.

Figure 5. Four typical fingerprints with different singular points.

this paper, we proposed a novel oriented diffusion based
approach. It inherits the merits from diffusion based en-
hancement methods, such as frequency estimation free and
good edge preservation. Moreover, the proposed oriented
diffusion model determines the diffusivity based on ridge
curvatures and singular points. Our experiments on both
synthetic data and real fingerprint images demonstrated that
the proposed method could not only enhance the ridge struc-
tures in different regions more consistently, but also en-
hance the ridge structures in singular regions more accu-
rately. Such improvement on oriented pattern image en-
hancement is expected to benefit the following feature ex-
traction and pattern recognition processes.
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