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Mixed Noise Removal by Weighted Encoding with
Sparse Nonlocal Regularization

Jielin Jiang, Lei Zhang, and Jian Yang

Abstract—Mixed noise removal from natural images is a
challenging task since the noise distribution usually does not
have a parametric model and has a heavy tail. One typical kind
of mixed noise is additive white Gaussian noise (AWGN) coupled
with impulse noise (IN). Many mixed noise removal methods are
detection based methods. They first detect the locations of impulse
noise pixels and then remove the mixed noise. However, such
methods tend to generate many artifacts when the mixed noise is
strong. In this paper, we propose a simple yet effective method,
namely weighted encoding with sparse nonlocal regularization
(WESNR), for mixed noise removal. In WESNR, there is not
an explicit step of impulse pixel detection; instead, soft impulse
pixel detection via weighted encoding is used to deal with IN and
AWGN simultaneously. Meanwhile, the image sparsity prior and
nonlocal self-similarity prior are integrated into a regularization
term and introduced into the variational encoding framework.
Experimental results show that the proposed WESNR method
achieves leading mixed noise removal performance in terms of
both quantitative measures and visual quality.

Index Terms—Mixed noise removal, weighted encoding, non-
local, sparse representation.

I. Introduction

DURING image acquisition and/or transmission, noise
will be more or less introduced. Denoising (or noise

removal) is a fundamental problem in image processing,
aiming to estimate the original image from its noise-corrupted
observation while preserving as much as possible the image
edges, textures and fine scale details. The prior knowledge of
noise distribution plays an important role in noise removal.
Two types of commonly encountered noise are additive white
Gaussian noise (AWGN) and impulse noise (IN). AWGN
is often introduced due to the thermal motion of electron
in camera sensors and circuits [22]. IN is often introduced
by malfunctioning pixels in camera sensors, faulty memory
locations in hardware, or bit errors in transmission [23]. Many
papers have been published on removing either AWGN [12]-
[20] or IN [2]-[11]. The mixture of AWGN and IN, however,
is also commonly encountered in practice due to the multiple
sources of noise. A variety of mixed noise removal methods
have been proposed in past decades [22]-[36].

An image corrupted by IN will have a portion of its pixels
replaced by random noise values with the remaining pixels
unchanged. Two types of widely encountered IN are salt-and-
pepper impulse noise (SPIN) and random-valued impulse noise
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(RVIN). An image corrupted by SPIN shows dark pixels in
bright regions and bright pixels in dark regions. Nonlinear
filters such as median filters [1] have been dominantly used
to remove IN. However, one shortcoming of median filters
is that the image local structures can be destroyed, making
the denoised images look unnatural. This problem becomes
serious when the IN density is high. Various improvements
of median filters have been proposed to better preserve the
image local structures [2]-[10]. Among them, the weighted
median filter [2], the center-weighted median filter [3] and
the multistate median filter [4] do not distinguish whether
the current pixel is a noise pixel or not, and they tend to
over-smooth the fine scale image details. An alternative way
is to detect and process the corrupted IN pixels, and leave
the uncorrupted pixels unchanged. The representative methods
along this line include switching median filter [5], adaptive
median filter (AMF) [6], tristate median filter [7], adaptive
center-weighted median filter [8], conditional signal-adaptive
median filter [9], and directional weighted median filter [10],
etc. The genetic programming filter [11] by switching between
two IN detectors and their associated estimators was also
developed for IN removal.

AWGN is the most widely studied noise model in image
denoising literature [12]-[20]. At each pixel of an image
corrupted by AWGN, a value independently sampled from a
zero-mean Gaussian distribution is added to the pixel gray
level. Traditional linear filtering methods such as Gaussian
filtering can smooth noise efficiently but they will over-smooth
the image edges at the same time. To solve this problem,
nonlinear filtering methods have been developed. The well-
known bilateral filter (BF) [12] is good at edge preservation.
It estimates each pixel as the weighted average of the neighbor-
ing pixels but the weights are determined by both the intensity
similarity and spatial similarity. The nonlocal means (NLM)
filtering method [15] can be viewed as a significant extension
of BF based on the fact that similar pixels in an image can be
spatially far from each other. In NLM, each pixel is estimated
as the weighted average of all its similar pixels in the image,
and the weights are determined by the similarity between
them. By grouping the nonlocal similar patches into a 3D cube
and applying transform based shrinkage, the BM3D method
[14] has become a benchmark for AWGN removal. Zhang et
al. [16] grouped the similar patches into a matrix and applied
principal component analysis (PCA) to remove AWGN. The
so-called LPG-PCA algorithm achieves very good edge preser-
vation performance. In recent years, the sparse representation
and dictionary learning based methods have been attracting
significant attention in image restoration. The seminal work of
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K-SVD [13] initiates the study of learning a dictionary from
natural images for AWGN removal. The joint use of sparse
representation and nonlocal self-similarity regularization has
lead to state-of-the-art AWGN removal performance [17]. Very
recently, deep convolutional neural networks [18] have also
shown powerful capability to remove AWGN.

The mixture of IN and AWGN, however, makes the denois-
ing problem much more difficult because of the very different
properties of the two types of noises. A few methods have
been developed to remove the mixed IN and AWGN noise
[22]-[36]. The median-based signal-dependent rank ordered
mean (SDROM) filter [24] can be used for IN removal as
well as mixed noise removal. However, when applied to
image with mixed noise, it often produces visually unpleasant
artifacts. The trilateral filter (TF) [27] incorporates the rank-
order absolute difference (ROAD) statistics into the BF [12]
framework for IN detection. Switching bilateral filter (SBF)
[28] is also a modification of BF based on the method of
detection and replacement. The reference median is computed
to decide whether a current pixel is a noise pixel or not. If the
absolute value between the reference median and a target pixel
is large, then the target pixel is considered as a noise pixel,
and consequently the mixed noise is removed by switching
between the AWGN removal and IN removal. The FIRDM
filter [29] contains two separate steps: an IN detection step
and a noise reduction step that preserves edge sharpness. It
can effectively remove SPIN, but its performance in removing
RVIN is not satisfactory because RVIN may not produce large
gradient values. The HDIR filter [26] removes mixed noise
by kernel regression with Bayesian classification of the input
pixels. In [30], a new IN detection mechanism based on robust
outlyingness ratio (ROR) and NLM is proposed, where the
image pixels are divided into four clusters according to the
ROR value and by using an iterative coarse-to-fine strategy.

Cai et al. [31] proposed a modified two-phase method to
reconstruct images corrupted by IN and AWGN mixed noise,
and the efficiency of this method is improved in [32]. Xiao et
al. [33] proposed an l1 − l0 minimization approach to mixed
noise removal. This method achieves state-of-the-art denoising
results but its computational complexity is somewhat high.
Rodrίguez et al. [34] proposed a cost functional consisting
of a TV regularization term and l2 and l1 data fidelity terms,
which aim to reduce AWGN and IN, respectively. This method
achieves competitive mixed noise removal results but with
much better computational performance. Dong et al. [35]
presented two sparsity-based regularization models for blind
inpainting problems. A new variable is introduced in the
data fidelity term to represent the outliers. Meanwhile, this
new variable is used as a regularizer by assuming that the
percentage of pixels damaged by IN is small. Recently, Liu
et al. [36] proposed a weighted dictionary learning model for
mixed noise removal. This method integrates sparse coding
and dictionary learning, image reconstruction, noise clustering
and parameters estimation into a four-step framework, and
each step solves a minimization problem.

Many existing mixed noise removal methods are detection
based methods and they involve two sequential steps, i.e., first
detect the IN pixels and then remove the noise. Such a two-

phase strategy will become less effective when the AWGN or
IN is strong. In this paper, we propose a simple yet effective
encoding based method for mixed noise removal, namely
weighted encoding with sparse nonlocal regularization (WES-
NR). There is no explicit impulse pixel detection in WESNR,
and we encode each noise-corrupted patch over a pre-learned
dictionary to remove the IN and AWGN simultaneously in
a soft impulse pixel detection manner. The major difficulty
of IN and AWGN mixed noise removal lies in the complex
distribution of mixed noise, which has a heavy tail and
cannot be readily characterized by a parametric model. The
conventional l2-norm data fidelity term, which is well suited
to characterize the Gaussian distributed data fitting residual,
is not suitable to suppress the mixed noise with complex
non-Gaussian distribution. In WESNR, the mixed noise is
suppressed by weighting the encoding residual so that the final
encoding residual will tend to follow Gaussian distribution.
The weighted encoding and sparse nonlocal regularization
are unified into a variational framework, which is easy to
minimize. Extensive experiments are conducted to validate the
proposed WESNR in comparison with state-of-the-art mixed
noise removal methods.

The rest of the paper is organized as follows. Section II
presents in detail the proposed WESNR scheme. Section III
presents the experimental results and discussions. Section IV
concludes the paper.

II. Weighted Encoding with Sparse Nonlocal Regularization

A. The mixed noise

Denote by x an image and by xi, j its pixel at location
(i, j). Let y be the noisy observation of x. For additive white
Gaussian noise (AWGN), each noisy pixel yi, j in y is modeled
as yi, j = xi, j + vi, j, where vi, j is i.i.d. noise and follows zero-
mean Gaussian distribution. For impulse noise (IN), the two
most common types of it are salt-and-pepper impulse noise
(SPIN) and random-valued impulse noise (RVIN). Denote by
[dmin, dmax] the dynamic range of y. The SPIN noise model
can be described as follows: yi, j = dmin with probability s/2,
yi, j = dmax with probability s/2, and yi, j = xi, j with probability
1− s, where 0 ≤ s ≤ 1. The RVIN noise model can be defined
as: yi, j = di, j with probability r, and yi, j = xi, j with probability
1− r, where 0 ≤ r ≤ 1 and di, j is uniformly distributed within
[dmin, dmax].

In this paper, we consider two types of mixed noise: 1)
AWGN mixed with SPIN, and 2) AWGN mixed with RVIN
and SPIN. For the first case, the signal observation model can
be described as

yi, j =


dmin, with probability s/2
dmax, with probability s/2
xi, j + vi, j, with probability 1 − s

. (1)

For the second case, the observation model is

yi, j =


dmin, with probability s/2
dmax, with probability s/2
di, j, with probability r(1 − s)
xi, j + vi, j, with probability (1 − r)(1 − s)

. (2)
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Examples of the images corrupted by the above two types of
mixed noise can be found in Figs. 7 and 8.

B. The denoising model

Many mixed noise removal methods [28]-[34] follow a
two-phase framework. First, the IN pixels are detected and
replaced, and then some AWGN removal methods are applied
to estimate the image. The trilateral filter (TF) [27] integrates
rank-order absolute difference (ROAD) statistics into BF [12]
to form a simple model that does not need impulse pixel
detection, and it achieves very good results for mixed AWGN
and RVIN removal. However, it does not work well for
either SPIN removal or mixed AWGN and SPIN removal.
Furthermore, ROAD could produce false values when half of
the pixels in the processing window are corrupted.

One natural question is that can we develop a mixed
noise removal method which does not perform impulse pixel
detection and AWGN removal separately but conducts the two
tasks in a unified framework? Inspired by the robust estimation
theory [41,44] and the sparse coding based image restoration
techniques [17], in this paper we propose a novel weighted
encoding model to remove mixed noise, which does not
have an explicit impulse pixel detection step and can process
AWGN and IN simultaneously. The sparsity and nonlocal self-
similarity priors of natural images are also integrated into the
proposed model to make it powerful for mixed noise removal.

Denote by x ∈ RN an image. Following the notation in [13],
we let xi = Rix ∈ Rn be the stretched vector of an image patch
of size

√
n ×
√

n, where Ri is the matrix operator extracting
patch xi from x at location i. Based on the sparse representation
theory [37], we can find an over-complete dictionary Φ =

[φ1;φ2; ...;φn] ∈ Rn×m to sparsely code xi, where φ j ∈ Rn is
the jth atom of Φ. The representation of xi over dictionary Φ
can be written as xi = Φαi, where αi is a sparse coding vector
with only a few non-zero entries. The least square solution of
x can be obtained as

x =
(∑

i
RT

i R
)−1 (∑

i
RT

i Φαi

)
. (3)

For the convenience of expression, we re-write the above
equation as

x = Φα, (4)

where α is the set of all coding vectors αi.
In image denoising, the observation of x is noise-corrupted,

and we can only encode the noisy observation y over the
dictionary Φ to obtain the desired α. In the case of AWGN,
the encoding model can be generally written as

α̂ = arg minα ‖y −Φα‖22 + λR(α), (5)

where R(α) is some regularization term imposed on α and
λ is the regularization parameter. With certain regularization
(e.g., sparsity) term [17, 39], the resolved coding vector is
the maximum a posteriori (MAP) solution for AWGN noise
model. For images corrupted by mixed noise, however, the
distribution of noise is generally far from Gaussian and thus
the l2-norm data fidelity term ‖y−Φα‖22 in Eq. (5) will not lead
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Fig. 1: The distribution of AWGN and mixed noise in (a) linear
and (b) log domains, respectively.

to a MAP solution for noise removal. Let’s use an example
to investigate the distributions of mixed noise. We simulated
AWGN (standard deviation σ = 10), RVIN (r = 20%)
and SPIN (s = 40%), and imposed them on image Lena,
respectively. Fig. 1(a) shows the distributions of data fitting
residual y−Φα (i.e., y−x in the case of denoising) for AWGN,
mixture of AWGN and RVIN, mixture of AWGN and SPIN,
and mixture of AWGN, RVIN and SPIN, respectively. Fig.
1(b) shows these distributions in log domain to better observe
the heavy tails. Compared with the Gaussian distribution, we
can clearly see that the distribution of mixed noise has a heavy
tail, which is caused by IN. Therefore, using the l2-norm to
characterize the data fitting residual y − Φα in Eq. (5) is not
optimal in the sense of MAP estimation.

From Fig. 1, one can see that the distribution of data
fitting residual is much more irregular than Gaussian, and
it has a heavy tail. Intuitively, if we can modify the data
fidelity term so that the residual can be more Gaussian-like,
then the l2-norm can still be used to characterize the coding
residual, making the mixed noise removal easier to handle.
This motivates us to adopt the robust estimation technique [38,
41, 44] to weight the data fitting residual so that its distribution
can be more regular.

Let
e = [e1; e2; ...; eN] = y −Φα, (6)

where ei = (y − Φα)(i). Assume that e1, e2, ..., eN are i.i.d.
samples. Instead of minimizing ‖e‖22 =

∑N
i=1 e2

i , which actually
assumes that ei follows Gaussian distribution, we use the
robust estimation technique [41, 44] to minimize the following
loss:
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Fig. 2: The distribution of residuals ei, weighted residuals
w1/2

i ei and the fitting Gaussian in log domain, respectively.

min
∑N

i=1
f (ei). (7)

The function f controls the contribution of each residual to the
whole loss. In general, f should have the following properties:
nonnegative, monotonic, and symmetric. That is: 1) f (e) ≥ 0
and f (0) = 0; 2) f (ei) ≥ f (e j) if |ei| ≥ |e j|; 3) f (e) = f (−e).

Obviously, when f (e j) = e2
j , the model in Eq. (7) reduces

to Eq. (5). In order to weaken the effect of the heavy tail in
mixed noise distribution, we can assign each residual a proper
weight, resulting in a weighted residual:

ew
i = w1/2

i ei. (8)

In the problem of mixed AWGN and IN removal, the residuals
can be classified into two categories. Those residuals obtained
at the pixels corrupted by AWGN will basically follow Gaus-
sian distribution and they can remain unchanged; that is, they
should be assigned with weights close to 1. The residuals
obtained at other pixels are mainly caused by IN, and they
should be assigned with smaller weights to reduce the heavy
tail of the distribution.

Let’s use an example to illustrate the effect of weighting.
Suppose that an image is corrupted by AWGN (σ = 10) and
SPIN (s = 40%). Fig. 2(a) shows the distribution of residuals
ei and the fitting Gaussian function based on the variance of ei,
Fig. 2(b) shows the distribution of weighted residuals w1/2

i ei

and the fitting Gaussian function based on the variance of
w1/2

i ei (how to set the weights will be discussed in the later
development). Clearly, the distribution of weighted residuals
is much closer to Gaussian distribution, implying that l2-norm
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Fig. 3: The histogram of γ and the fitting Gaussian and
Laplacian distributions in log domain.

can be used to model the weighted residuals for a MAP-like
solution of coding vector α .

According to the above analysis, we adopt a new loss
function f (ei) = (w1/2

i ei)2, and consequently we have a new
model for mixed noise removal:

α̂ = arg minα ‖W1/2(y −Φα)‖22 + λR(α), (9)

where W is a diagonal weight matrix with diagonal element
Wii = wi. To make the above weighted encoding model more
effective for mixed noise removal, some regularization terms
R(α) can be used based on the priors of natural images. Two
priors are widely used in image denoising: local sparsity and
nonlocal self-similarity (NSS). The local sparsity of encoding
coefficients α can be characterized by the l1-norm of α, while
the NSS can be characterized by the prediction error of a
patch by its similar patches. Inspired by the work in [17], we
integrated the two priors into a sparse nonlocal regularization
term and adopt it to Eq. (9).

For each patch xi, we search the similar patches to it within
a large enough window centered at location i. A patch xq

i is
collected as a similar patch to xi if the Euclidean distance
between them is not greater than a preset threshold. Then we
can select the first L closest patches to xi and use the weighted
average of them, x̂i =

∑L
q=1 bq

i xq
i , to predict xi. The weight bq

i
is inversely proportional to the distance between patches xi

and xq
i : bq

i = exp(−‖xi − xq
i ‖

2
2/h)/ω, where h is a preset scalar

and ω is a normalization factor. If a patch and its nonlocal
prediction are encoded by a given dictionary Φi, i. e., xi =

Φiαi and x̂i = Φiµi, then the coding coefficients αi and µi

should also be similar. Therefore, we can use
∑

i ‖αi−µi‖lp as
the regularization term to regularize the solution of Eq. (9):

α̂ = arg minα ‖W1/2(y −Φα)‖22 + λ
∑

i
‖αi − µi‖lp , (10)

where lp (p = 1 or 2) refers to the lp-norm.
In order to determine the value of p, we need to check the

distribution of αi − µi. Let

γi = αi − µi. (11)

We assume that the elements in γi are i.i.d. and follow
generalized Gaussian distribution (GGD), which is defined as:

f (γ) = β exp{−(|γ |/σγ)β}/(2σγΓ(1/β)), (12)

where Γ denotes the gamma function, and σγ is a scale
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Fig. 4: Five high-quality images.

parameter. The value of β in Eq. (12) determines the shape
of a GGD. In particular, setting β = 1 or β = 2 leads to
Laplacian distribution or Gaussian distribution, respectively.

We use an example to figure out which setting we should
use for the distribution f (γ). We run our algorithm without
the regularization

∑
i ‖αi − µi‖lp in Eq. (10) on image Lena

(the algorithm is summarized in Algorithm 1). In Fig. 3 we
plot the histogram of γ as well as the fitting Gaussian and
Laplacian distributions of it. Clearly, Laplacian distribution fits
the histogram of γ much better. Therefore, we approximately
assume that γ follows Laplacian distribution, and hence the l1-
norm regularization on γ could lead to a MAP-like estimation.
Finally, the proposed model becomes

α̂ = arg minα{‖W1/2(y −Φα)‖22 + λ‖α − µ‖1}. (13)

In the above model, the data fidelity term weights the encoding
residual, while the regularization term integrates sparsity and
NSS priors. We call the proposed model weighted encoding
with sparse nonlocal regularization (WESNR).

In the WESNR model Eq. (13), W is a diagonal weight
matrix, and its element Wii is to be automatically determined
and assigned to pixel i. Clearly, the pixels corrupted by IN
should have small weights to reduce their effect on the encod-
ing of y over Φ, while the weights assigned to uncorrupted
pixels should be close to 1. In our algorithm, the dictionary Φ
is pre-learned from clean natural images (please refer to next
sub-section for more information), and the pixels corrupted
by IN will have big coding residuals. Therefore, the coding
residual ei can be used to guide the setting of weight Wii,
and Wii should be inversely proportional to the strength of
ei. In order to make the weighted encoding stable and easy to
control, we set Wii ∈ [0, 1]. One simple and appropriate choice
of Wii is

Wii = exp(−ae2
i ), (14)

where a is a positive constant to control the decreasing rate
of Wii w.r.t. ei. With Eq. (14), the pixels corrupted by IN
will be adaptively assigned with lower weights to reduce their
impact in the process of encoding. Note that such a weighting
scheme will make the corresponding loss function f (ei) meet
the requirements 1), 2) and 3).

Once W is given, the WESNR model in Eq. (13) becomes
an l1-norm sparse coding problem and many existing l1-norm
minimization techniques [40, 42 ,43] can be used to solve it. In
this paper, we solve it via the iteratively reweighted scheme
[40] for its simplicity. Let V be a diagonal matrix. We first
initialize it as an identity matrix, and then in the (k + 1)th

iteration, each element of V is updated as

V (k+1)
ii = λ/((α(k)

i − µi)2 + ε2)1/2, (15)

where ε is a scalar and α(k)
i is the ith element of coding vector

α in the kth iteration. Then we update α as

α̂(k+1) = (ΦT WΦ + V(k+1))−1(ΦT Wy −ΦT WΦµ) + µ. (16)

By iteratively updating V and α, the desired α can be effi-
ciently obtained. The convergence of the iteratively reweighted
scheme has been proved in [40].

C. The dictionary

In sub-section II-B, we assumed that the dictionary Φ is
given. The selection of dictionary is an important issue to
the sparse coding and reconstruction of a signal. In particular,
learning dictionaries from natural image patches has shown
promising results in image restoration [13, 39]. The seminal
work of K-SVD [13] learns an over-complete and universal
dictionary to process any input patch; however, it is not adap-
tive to the content of the given patch and is not efficient due
to the large number of atoms in the over-complete dictionary.
In this paper, we adopt the strategy in [39] to learn a set of
local PCA dictionaries from natural images.

We use the same 5 high-quality images (which are indepen-
dent of the test images used in this paper) as in [39] to train the
PCA dictionaries. The scenes of the five images are shown in
Fig. 4. A number of 876,359 patches (size: 7×7) are extracted
from the five images and they are clustered into 200 clusters
by using the K-means clustering algorithm. For each cluster,
a compact local PCA dictionary is learned. Meanwhile, the
centroid of each cluster is calculated. For a given image patch,
the Euclidian distance between it and the centroid of each
cluster is computed, and the PCA dictionary associated with
its closest cluster is chosen to encode the given patch. Note that
since the selected dictionary, denoted by Φi, is orthogonal, the
µi for patch xi can be simply computed as µi = ΦT

i x̂i. In our
PC (3.2 GHZ CPU, 8 GB RAM memory) and under the Matlab
R2011b programming environment, the patch clustering and
dictionary learning process takes about 745 seconds in total.
In addition, the final denoising results are not sensitive to the
training images used for PCA dictionary learning. By using
another five high-quality images with sufficient texture/edge
regions, similar denoising results will be obtained. This is
identical to the observation in [39].

D. Algorithm of WESNR

Once the dictionary Φ is adaptively determined for a given
patch, the proposed WESNR model can be solved by itera-
tively updating W and α. The updating of W depends on the
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Fig. 6: The ten test images. From left to right and top to bottom: Lena, F16, Leaves, Boat, Couple, Fingerprint, Hill, Man,
Peppers and Painting.

coding residual e. In the literature of mixed AWGN and SPIN
noise removal [31]-[34], AMF [6] is widely used to detect
SPIN. In order to make a fair comparison with them, in the
case of AWGN+SPIN noise revoval, we apply AMF to y to
obtain an initialized image x(0), and then initialize e as:

e(0) = y − x(0), (17)

In the case of AWGN+RVIN+SPIN noise removal, AMF
cannot be applied to y to initialize x. We initialize e as

e(0) = y − µy · 1, (18)

where µy is the mean value of all pixels in y and 1 is a column
vector whose elements are all 1. In other words, we simply
use the mean value of y to initialize x. Then the initial coding
residual can be roughly computed. This simple initialization
strategy works very well in all our experiments.

With the initialized coding residual e(0), W can be initialized
by Eq. (14). The main procedures of the proposed WESNR
based mixed noise removal algorithm are summarized in
Algorithm 1.

In our algorithm, we set t = ‖Φα(k+1) −Φα(k)‖2/‖Φα(k)‖2 <
τ as the termination condition. Fig. 5 shows the curve of
log(t) versus the number of iterations by applying the WESNR
algorithm to a noisy Lena image. Because of the weighting
matrix W, the IN pixels in the image can be well identified
and their effect is suppressed in the encoding of y. As a
result, both IN and AWGN will be gradually removed in
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Fig. 5: A typical curve of convergence of the proposed
WESNR algorithm.

Algorithm1: Mixed noise removal by WESNR
Input: Dictionary Φ, noisy image y;

Initialize e by Eq. (17) (or Eq. (18)) and then
initialize W by Eq. (14);
Initialize µ to 0.

Output: Denoised image x.
Loop: iterate on k = 1, 2, ...K;

1. Compute α(k) by Eq. (16);
2. Compute x(k) = Φα(k) and update the nonlocal

coding vector µ;
3. Compute the residual e(k) = y − x(k) ;
4. Calculate the weights W by e(k) using Eq. (14);

End
Output the denoised image x = Φα(K).

the iteration. Generally, our algorithm will terminate in six
to twelve iterations.

III. Experimental results

In this section, experiments are carried out to demonstrate
the performance of the proposed WESNR algorithm. We first
discuss the parameter setting in Section III-A; in Section
III-B we conduct experiments on ten commonly used test
images: Lena, F16, Leaves, Boat, Couple, Fingerprint, Hill,
Man, Peppers and Painting, respectively (please refer to Fig.
6 for the scenes of the ten images); finally, we make some
discussions in Section III-C.

A. Parameter setting

There are several parameters to set in the proposed WESNR
algorithm, and they all can be easily fixed by experience.
The parameter τ is to control the termination of iteration.
In order to balance the denoising results and the number of
iterations, we empirically set it to 0.003. The parameter a in
Eq. (14) controls the decreasing rate of weights w.r.t. e and
we empirically set it to 0.0008.

In Eq. (16), there are two parameters to compute the
diagonal matrix V: λ and ε. In our method, the sparse nonlocal
regularization is mainly to remove AWGN. In the first loop of
our algorithm, since the IN is severe, the block-matching based
nonlocal similar patch searching process is not accurate. Thus,
the nonlocal regularization is not very helpful and we assign λ
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TABLE I: PSNR (dB) and FSIM (%) results of mixed noise removal (AWGN + SPIN).

Image
s = 30% s = 40% s = 50%

ROR-NLM Cai et al. l1-l0 WESNR ROR-NLM Cai et al. l1-l0 WESNR ROR-NLM Cai et al. l1-l0 WESNR
L

en
a

σ = 10 29.23±0.05 31.76±0.04 33.52±0.06 33.22±0.05 28.52± 0.09 31.01±0.05 32.59±0.06 32.72±0.07 24.73±0.20 30.14±0.06 31.60±0.04 31.93±0.06
94.94±0.07 96.29±0.04 97.17±0.05 97.06±0.05 93.98± 0.08 95.60±0.05 96.65±0.07 96.70±0.05 89.57±0.28 94.58± 0.07 95.94±0.04 96.18±0.07

σ = 20 26.26±0.03 29.34±0.03 30.76±0.08 30.73±0.05 25.41± 0.05 28.96±0.04 30.09±0.06 30.27±0.06 22.38±0.17 28.42± 0.05 29.27±0.07 29.68±0.08
87.21±0.14 93.15±0.08 94.30±0.10 94.19±0.09 84.69±0.12 92.66±0.10 93.62±0.09 93.75±0.14 78.74±0.26 91.81±0.11 92.88± 0.10 93.06±0.13

σ = 25 25.15±0.09 28.33±0.03 29.78±0.07 29.85±0.08 24.12± 0.10 28.04±0.04 29.25±0.07 29.42±0.06 21.23±0.06 27.56± 0.05 28.45±0.06 28.79±0.08
83.17±0.18 91.32±0.12 92.99±0.10 93.06±0.11 80.12±0.26 90.95± 0.13 92.33±0.08 92.41±0.13 73.49±0.15 90.18±0.13 91.33± 0.09 91.51±0.15

F1
6

σ = 10 28.10±0.06 30.93±0.07 32.81±0.06 32.17 ±0.05 27.09± 0.14 29.76±0.08 31.59±0.07 31.48±0.06 24.15±0.12 28.50± 0.08 30.05±0.07 30.26±0.07
94.30±0.06 95.77±0.06 96.89±0.04 96.37±0.05 92.77± 0.14 94.69±0.08 96.13±0.05 95.86±0.06 87.88±0.18 93.12± 0.09 94.93±0.07 95.01±0.07

σ = 20 25.38±0.03 28.56±0.05 29.63±0.07 29.67±0.07 24.24± 0.08 27.87±0.06 28.78±0.08 28.91±0.08 21.72±0.09 26.96± 0.06 27.72±0.08 27.99±0.10
86.13±0.15 92.10±0.13 93.13±0.09 93.17±0.10 82.97±0.12 91.04± 0.15 92.29±0.12 92.36±0.12 77.22±0.24 89.34±0.16 90.88±0.15 91.04±0.12

σ = 25 24.25±0.06 27.39±0.04 28.55±0.10 28.59±0.09 22.85± 0.04 26.77±0.05 27.67±0.09 27.86±0.10 20.58±0.11 25.91±0.05 26.71±0.07 26.96±0.11
82.01±0.16 89.70±0.14 91.56±0.13 91.68±0.14 78.40±0.08 88.47± 0.18 90.46±0.14 90.54±0.17 73.17±0.28 86.56±0.18 89.11± 0.15 89.28±0.19

L
ea

ve
s

σ = 10 24.81±0.10 28.44±0.06 30.68±0.07 30.80±0.09 23.03± 0.06 26.95±0.06 28.95±0.07 29.33±0.16 20.48±0.12 25.33±0.08 27.08±0.06 27.60±0.17
92.24±0.13 95.67±0.07 96.94±0.05 97.21±0.06 89.86± 0.08 94.25±0.09 95.77±0.08 96.43±0.08 85.22±0.28 92.06±0.13 94.04±0.09 95.23±0.12

σ = 20 23.31±0.06 26.10±0.05 27.81±0.07 27.96±0.09 21.82± 0.08 25.03±0.05 26.49±0.07 26.71±0.12 19.50±0.06 23.69± 0.07 24.92±0.08 25.10±0.14
87.05±0.16 91.43±0.10 94.63±0.09 94.70±0.11 84.68±0.15 90.14± 0.12 93.57±0.09 93.71±0.12 80.34±0.13 88.30±0.15 91.72± 0.12 92.14±0.16

σ = 25 22.60±0.06 25.09±0.04 26.61±0.09 26.66±0.10 21.18±0.11 24.13±0.05 25.32±0.07 25.40±0.13 18.91±0.17 22.88±0.06 23.87±0.10 23.93±0.17
84.66±0.17 89.72±0.11 93.23±0.10 93.35±0.13 82.65±0.21 88.69± 0.14 92.09±0.10 92.20±0.13 78.23±0.32 87.17±0.18 90.47±0.12 90.60±0.18

B
oa

t

σ = 10 26.94±0.06 28.79±0.04 31.43±0.06 30.60±0.06 26.07± 0.06 27.91±0.04 30.33±0.07 29.86±0.07 22.81±0.22 26.90± 0.06 29.03±0.05 28.92±0.10

93.81±0.07 94.62±0.06 96.85±0.05 96.18±0.06 92.48± 0.09 93.16±0.07 95.94±0.06 95.54±0.07 87.51±0.36 91.04±0.11 94.63±0.04 94.57±0.08

σ = 20 24.77±0.04 27.09±0.03 28.71±0.04 28.19±0.05 23.96± 0.07 26.50±0.04 27.74±0.04 27.61±0.07 21.18±0.11 25.77± 0.05 26.76±0.05 26.85±0.08
87.67±0.09 91.28±0.11 93.21±0.11 92.50±0.11 85.61±0.15 89.88± 0.11 91.71±0.08 91.57±0.13 80.30±0.24 87.85±0.14 90.28± 0.11 90.38±0.19

σ = 25 23.91±0.03 26.32±0.03 27.29±0.05 27.30±0.06 23.01± 0.10 25.84±0.04 26.68±0.04 26.74±0.07 20.26±0.04 25.16± 0.05 25.96±0.05 26.03±0.12
84.80±0.09 89.56±0.11 90.74±0.12 90.85±0.12 82.28±0.07 88.29±0.14 90.03±0.12 90.11±0.14 76.50±0.37 86.23±0.14 88.57± 0.15 88.66±0.18

C
ou

pl
e

σ = 10 26.82±0.04 28.53±0.03 31.12±0.04 30.55±0.07 25.93± 0.09 27.66±0.04 29.92±0.06 29.84±0.05 22.81±0.22 26.73± 0.04 28.81±0.06 28.95±0.06
94.00±0.08 94.37±0.08 96.71±0.06 96.26±0.04 92.68±0.15 92.84±0.10 95.77±0.06 95.61±0.06 87.51±0.27 90.63±0.12 94.38±0.08 94.60±0.09

σ = 20 24.70±0.03 26.81±0.02 28.36±0.05 28.08±0.04 23.90± 0.05 26.25±0.02 27.51±0.06 27.55±0.05 21.18±0.06 25.57± 0.03 26.64±0.08 26.85±0.05
88.87±0.10 91.28±0.08 93.14±0.09 92.52±0.12 86.99±0.07 89.73±0.08 91.42±0.08 91.56±0.14 81.75±0.24 87.53±0.14 90.12±0.09 90.23±0.13

σ = 25 23.84±0.03 26.07±0.03 27.12±0.07 27.18±0.05 22.94± 0.05 25.60±0.03 26.50±0.07 26.68±0.04 20.41±0.12 25.02± 0.03 25.89±0.07 26.03±0.06
86.28±0.12 89.76±0.09 90.42±0.09 90.53±0.15 83.92±0.10 88.27±0.14 89.24±0.15 89.49±0.23 78.63±0.24 86.15±0.17 88.24± 0.13 88.41±0.15

Fi
ng

er
pr

in
t

σ = 10 26.21±0.03 27.44±0.03 29.26±0.03 28.91±0.02 24.72± 0.10 26.13±0.03 27.75±0.03 28.07±0.03 21.06±0.15 24.43± 0.04 26.12±0.03 27.04±0.03
97.56±0.05 97.71±0.04 98.36±0.03 98.30±0.03 96.44±0.05 96.52± 0.06 97.47±0.04 97.81±0.04 93.02±0.16 94.18±0.09 96.01± 0.05 97.06±0.04

σ = 20 23.55±0.03 24.66±0.03 26.09±0.05 26.17±0.05 22.44± 0.05 23.82±0.03 25.23±0.02 25.63±0.06 19.52±0.12 22.60± 0.03 24.08±0.03 24.93±0.07
94.98±0.07 95.42±0.06 96.41±0.04 96.47±0.05 93.67± 0.12 93.81±0.08 95.42±0.07 95.80±0.07 90.12±0.17 90.83±0.10 93.87±0.08 95.01±0.12

σ = 25 22.61±0.03 23.67±0.03 25.16±0.05 25.21±0.03 21.48± 0.05 22.92±0.03 24.35±0.03 24.72±0.03 18.63±0.02 21.85± 0.03 23.25±0.04 24.08±0.04
93.60±0.07 94.24±0.07 95.32±0.06 95.37±0.05 92.30± 0.06 92.46±0.10 94.34±0.07 94.74±0.08 88.58±0.02 89.30±0.13 92.58±0.10 93.96±0.09

H
ill

σ = 10 28.09±0.03 29.78±0.03 31.72±0.03 31.01±0.02 27.46± 0.06 29.14±0.02 30.85±0.05 30.51±0.03 24.30±0.22 28.42± 0.04 29.99±0.03 29.87±0.04

93.85±0.08 94.74±0.06 96.56±0.03 95.95±0.05 92.45± 0.11 93.58±0.05 95.74±0.05 95.39±0.07 88.01±0.32 91.93±0.09 94.63±0.08 94.57±0.06

σ = 20 25.49±0.03 27.89±0.02 28.81±0.07 28.71±0.05 24.78± 0.04 27.50±0.03 28.27±0.06 28.33±0.05 22.17±0.09 26.98± 0.03 27.69±0.05 27.83±0.04
86.70±0.12 91.01±0.09 92.46±0.09 92.26±0.09 84.44±0.16 89.72±0.12 91.33±0.08 91.38±0.10 79.30±0.27 87.92±0.13 90.13± 0.10 90.30±0.11

σ = 25 24.50±0.03 27.08±0.03 27.91±0.06 27.93±0.04 23.57± 0.07 26.73±0.03 27.48±0.05 27.55±0.06 20.98±0.07 26.23± 0.03 26.93±0.07 27.06±0.05
83.33±0.25 89.04±0.13 90.39±0.12 90.44±0.15 80.36±0.04 87.79± 0.13 89.50±0.12 89.60±0.16 75.10±0.33 86.01±0.13 88.19± 0.13 88.34±0.18

M
an

σ = 10 27.85±0.05 29.73±0.03 31.45±0.04 30.81±0.03 27.08± 0.04 29.01±0.04 30.49±0.03 30.22±0.04 23.88±0.19 28.19± 0.04 29.43±0.04 29.48±0.04
94.34±0.07 94.97±0.05 96.47±0.05 96.05±0.04 93.19± 0.07 93.79±0.07 95.59±0.06 95.46±0.06 88.73±0.26 92.13± 0.08 94.35±0.07 94.61±0.09

σ = 20 25.36±0.04 27.83±0.03 28.45±0.06 28.48±0.05 24.50± 0.08 27.38±0.03 27.93±0.04 28.03±0.04 21.79±0.12 26.82± 0.03 27.32±0.06 27.48±0.04
87.47±0.09 91.61±0.08 92.25±0.09 92.33±0.08 85.11± 0.19 90.41±0.08 91.26±0.10 91.36±0.12 79.61±0.27 88.76±0.11 90.27± 0.10 90.35±0.12

σ = 25 24.34±0.03 26.99±0.03 27.59±0.06 27.65±0.07 23.37± 0.09 26.60±0.03 27.05±0.04 27.23±0.06 20.71±0.06 26.09± 0.04 26.45±0.06 26.72±0.05
84.02±0.16 89.73±0.10 90.57±0.10 90.66±0.11 81.37±0.23 88.54± 0.13 89.55±0.12 89.62±0.13 75.59±0.28 86.82±0.16 88.42± 0.17 88.57±0.20

Pe
pp

er
s

σ = 10 28.94±0.08 31.53±0.10 32.71±0.06 32.54±0.11 27.37±0.11 30.73±0.14 31.83±0.08 31.95±0.11 24.92±0.18 29.79±0.11 30.79± 0.11 31.09±0.13
94.97±0.06 96.78±0.04 97.37±0.06 97.17±0.04 93.89± 0.08 96.29±0.06 96.61±0.07 96.82±0.05 90.39±0.21 95.59± 0.06 96.14±0.05 96.32±0.06

σ = 20 26.20±0.05 29.17±0.06 30.35±0.06 30.42±0.09 24.94± 0.06 28.66±0.07 29.78±0.06 29.88±0.12 22.68±0.10 28.06± 0.09 28.88±0.11 29.13±0.13
87.91±0.10 93.68±0.08 94.53±0.09 94.69±0.08 85.68±0.17 93.39±0.10 94.25±0.06 94.36±0.09 80.80±0.18 92.83±0.18 93.47±0.09 93.59±0.10

σ = 25 25.13±0.03 28.17±0.05 29.54±0.08 29.61±0.09 23.80± 0.05 27.77±0.06 28.73±0.06 29.02±0.11 21.22±0.14 27.17±0.06 27.95±0.08 28.21±0.13
84.28±0.14 91.99±0.11 93.44±0.08 93.61±0.08 81.69±0.02 91.74±0.12 92.74±0.07 92.96±0.13 76.19±0.27 91.28±0.12 91.85± 0.09 92.13±0.13

Pa
in

tin
g

σ = 10 29.04±0.02 31.86±0.05 33.41±0.06 32.99±0.05 28.32± 0.08 30.99±0.06 32.45±0.05 32.33±0.05 25.15±0.20 29.92± 0.07 31.39±0.04 31.52±0.05
94.99±0.04 95.99±0.05 96.83±0.04 96.51±0.04 93.96± 0.07 95.08±0.06 96.26±0.04 96.08±0.05 90.42±0.26 93.68±0.10 95.35±0.05 95.41±0.07

σ = 20 26.10±0.03 29.15±0.03 30.06±0.09 30.10±0.07 25.27± 0.09 28.66±0.04 29.46±0.08 29.59±0.07 22.67±0.14 27.95± 0.04 28.73±0.05 28.97±0.07
88.35±0.06 92.56±0.09 93.10±0.08 93.19±0.10 86.25±0.16 91.63±0.09 92.29±0.07 92.41±0.12 81.43±0.25 90.21±0.13 91.61±0.15 91.75±0.17

σ = 25 25.00±0.02 28.06±0.04 29.09±0.10 29.12±0.06 24.03±0.08 27.77±0.05 28.41±0.04 28.53±0.06 21.48±0.02 26.96± 0.05 27.71±0.05 27.91±0.06
84.97±0.15 90.76±0.10 91.22±0.09 91.34±0.17 82.25±0.08 89.85±0.14 90.44±0.11 90.64±0.17 77.03±0.04 88.37±0.15 89.44± 0.14 89.87±0.18

A
ve

ra
ge

σ = 10 27.60±0.05 29.88±0.05 31.81±0.05 31.36±0.05 26.56± 0.08 28.93±0.06 30.68±0.06 30.63±0.07 23.43±0.18 27.84± 0.06 29.43±0.05 29.67±0.08
94.50±0.07 95.69±0.06 97.02±0.05 96.71±0.05 93.17± 0.09 94.58±0.07 96.19±0.06 96.17±0.06 88.83±0.26 92.89±0.09 95.04±0.06 95.36±0.08

σ = 20 25.11±0.04 27.66±0.04 28.90±0.06 28.85±0.06 24.13± 0.07 27.06±0.04 28.13±0.06 28.25±0.07 21.48±0.11 26.28± 0.05 27.20±0.07 27.48±0.08
88.23±0.11 92.35±0.09 93.72±0.08 93.60±0.09 86.01±0.14 91.24±0.10 92.72±0.08 92.83±0.12 80.96±0.23 89.54±0.14 91.52±0.11 91.79±0.14

σ = 25 24.13±0.04 26.72±0.04 27.86±0.07 27.91±0.07 23.04±0.07 26.22±0.04 27.14±0.06 27.32±0.07 20.44±0.08 25.48± 0.05 26.32±0.07 26.57±0.09
85.11±0.15 90.58±0.11 91.99±0.10 92.09±0.12 82.53±0.12 89.51±0.14 91.07±0.11 91.23±0.15 77.25±0.23 87.81±0.15 89.82± 0.13 90.13±0.16
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a small value (0.0001 in our algorithm) to weaken the role of
nonlocal regularization term. From the second loop, the IN is
largely reduced, and thus the nonlocal similar patch searching
becomes more accurate. Then we assign λ a large value to
remove AWGN. When the standard deviation of AWGN is
higher than 10, we set λ = 1; otherwise, we set λ = 0.5 to
suppress AWGN while preserving the image details as much
as possible. The parameter ε is a small scalar to increase the
numerical stability of computing Eq. (16). We set it to

ε(k+1) = min(ε(k), (median(|α(k) − µ|)), (19)

with ε(0) = 0.1. This is to ensure that ε will decrease with the
iteration and it is adaptive to the range of |α(k) − µ|. All the
parameters are fixed in all our following experiments.

B. Results

We then conduct extensive experiments to demonstrate the
performance of the proposed WESNR model. We consid-
er two types of mixed noise: AWGN+SPIN, and AWGN
+RVIN+SPIN. For AWGN+SPIN mixed noise, the standard
deviation of AWGN varies with σ = 10, 20, 25 and the
SPIN ratio varies with s = 30%, 40%, 50%, respectively. For
AWGN+RVIN+SPIN mixed noise, the standard deviation of
AWGN varies with σ = 5, 10, 15, the RVIN ratio varies
with r = 5%, 10%, 15% and the SPIN ratio varies with
s = 30%, 40%, 50%, respectively.

For AWGN+SPIN, we compare our WESNR method
with the following three state-of-the-art mixed noise removal
methods: ROR-NLM [30], Cai et al. [32], and l1-l0 [33].
Both Cai et al. [32] and l1-l0 [33] cannot be applied to
AWGN+RVIN+SPIN mixed noise removal. Therefore, for
AWGN+RVIN+SPIN we compare WESNR with ROR-NLM
[30], TF [27] and BM3D [14] coupled with median filter 1

(denoted by M+BM3D, which first applies median filtering to
remove IN and then applies BM3D to remove AWGN). The
size of median window is set 7 × 7.

The source codes of all the competing methods were ob-
tained from the original authors. We use the default parameter
settings except for Cai et al.’s method [32]. Since Cai et al. ’s
method is originally designed for deblurring with IN, in the
experiment we set the out-of-focus kernel to have radius 0 and
set βm=[0.1, 0.3, 0.3, 0.3, 0.3]. The original setting of βm is
[0.00001, 0.00002, 0.00002, 0.00002, 0.00002], but this is not
suitable for mixed noise removal.

Apart from PSNR, we also compute the recently developed
image perceptual quality index, FSIM [21], to evaluate quan-
titatively the denoising results. For each experiment, we run
the programs 50 times independently, and report the mean and
standard deviation of the 50 outputs. The PSNR and FSIM
results on the ten test images by the competing methods are

1The adaptive median filter (AMF) and adaptive center-weighted median
filter (ACWMF) are commonly used for SPIN and RVIN detection, respec-
tively. However, for mixed noise such as AWGN+RVIN+SPIN, to the best
of our knowledge, there is no adaptive filter which can detect SPIN and
RVIN simultaneously. We tested to use AMF for SPIN detection and then use
ACWMF for RVIN detection, followed by BM3D for AWGN removal, the
experimental results are similar to coupling BM3D with median filter but the
whole algorithm becomes much more complex. Thus we use BM3D coupled
with median filter for comparison.

TABLE III: Running time (second) comparison on image Lena
with different levels of AWGN+SPIN.

Lena ROR-NLM Cai et al. l1-l0 WESNR

σ = 10, s = 40% 275 93 214 89
σ = 20, s = 40% 313 125 165 112
σ = 25, s = 40% 338 142 158 137

listed in Tables I and II for the two types of mixed noise,
respectively. For our WESNR algorithm, the average number
of iterations is about 10.

From Table I, it can be seen that for mixed AWGN+SPIN
noise removal, the proposed WESNR method could consis-
tently achieve much higher PSNR and FSIM indices than
the ROR-NLM and Cai et al.’s methods, and better PSNR
and FSIM performance than the l1-l0 method. With the in-
crease of the strength of either AWGN or IN, the improve-
ment of WESNR over the l1-l0 method is getting higher
and higher. From Table II, one can clearly see that for
mixed AWGN+RVIN+SPIN removal, the proposed WESNR
achieves significantly better PSNR and FSIM indices than all
the competing methods.

Let’s give some visual comparisons of the denoising results
by different methods. Fig. 7 shows the denoising results
on image Lena. Fig. 7(b) and Fig. 7(c) show the Lena
images corrupted by AWGN+SPIN (σ = 10, s = 50%) and
AWGN+RVIN+SPIN (σ = 15, r = 15%, s = 30%). In the
2nd row of Fig. 7, the denoising results by the four mixed
AWGN+SPIN noise removal methods are displayed. One can
see that the proposed WESNR reconstructs much cleaner and
sharper image edges and generates much less artifacts, leading
to visually much more pleasant denoising results than the other
competing methods. The 3rd row of Fig. 7 shows the denoising
results of the four mixed AWGN+RVIN+SPIN noise removal
methods. One can see that M+BM3D over-smoothes much the
image details and destroys the image local structure; TF results
in severe SPIN caused image distortions; ROR-NLM leads to
better results than TF, but it remains many Gaussian like and
impulse like noises. In Fig. 8, we show the denoising results
on image Leaves. Clearly, WESNR reconstructs much better
the edges of leaves than all the other competing methods.
Particularly, in the case of AWGN+RVIN+SPIN, all the other
three methods fail to recover the image structures, while the
proposed WESNR can still faithfully reconstruct the edge and
texture features.

Finally, let’s compare the running time of the competing
methods. All the algorithms are run under the Matlab R2011b
programming environment on a PC equipped with 3.2 GHZ
CPU and 8 GB RAM memory. Table III lists the running
time (second) of the four mixed AWGN+SPIN noise removal
methods in processing the image Lena (size: 512 × 512)
with different noise levels. It can be seen that the proposed
WESNR method is much faster than the other three methods.
In Table IV, we list the running time (second) of the four
mixed AWGN+RVIN+SPIN noise removal methods. WESNR
is much faster than ROR-NLM. It is not a surprise that TF
runs faster than WESNR because it is basically a type of local
nonlinear filtering method. M+BM3D runs the fastest because
the BM3D algorithm is implemented by C but with a Matlab
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Fig. 7: Denoising results of different methods on test image Lena. (a) Original image. (b) Image corrupted by mixed noise
AWGN+SPIN (σ = 10, s = 50%). (c) Image corrupted by mixed noise AWGN+RVIN+SPIN (σ = 15, r = 15%, s = 30%).
Second row, from left to right: the denoising results of image (b) by ROR-NLM [30], Cai et al. [32], l1 − l0 [33] and WESNR.
Third row, from left to right: the denoising results of image (c) by ROR-NLM [30], TF [27], M+BM3D [14] and WESNR.

interface.

C. Discussions

As can be seen in sub-section III-B, the proposed WESNR
algorithm shows very powerful mixed noise removal perfor-
mance. It can deal with either mixed AWGN+SPIN noise or
mixed AWGN+RVIN+SPIN noise, and runs faster than the
state-of-the-art methods in [32, 33]. The superior denoising
performance of WESNR to other competing methods comes
from both its weighted encoding based data fidelity term and
sparse nonlocal regularization term. The role of weighted
encoding is to suppress IN and the role of sparse nonlocal
regularization is to suppress AWGN. Since the goal here is to
remove mixed AWGN and IN noise, both of the two terms are
necessary and they should work together to remove the mixed
noise. Without the weighted encoding term, the IN cannot be
effectively removed; without the sparse nonlocal regularization

term, the AWGN noise will largely remain in the output image.
The two terms play the same important role in mixed noise
removal.

In WESNR, the weights W are introduced in the data
fidelity term, and they are adaptively updated in the iteration
process. W are with real values, and the pixels corrupted by
IN will be assigned small weights to reduce their effect on
the encoding of y over the dictionary Φ so that clean images
can be reconstructed. In our algorithm, a set of orthogonal
PCA dictionaries are pre-learned from some high quality
images, and one local PCA dictionary is adaptively selected to
process a given image patch. In a recent work [36], a weight-
ed dictionary learning model is developed for mixed noise
removal. Though both our method and Liu et al.’s method
introduce weights in the data fidelity term, they have clear
differences. First of all, the method in [36] mainly focuses
on weighted dictionary learning, while our method focuses on
weighted encoding. In [36], the dictionary is online learned
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Fig. 8: Denoising results of different methods on test image Leaves. (a) Original image. (b) Image corrupted by mixed noise
AWGN+SPIN (σ = 20, s = 40%). (c) Image corrupted by mixed noise AWGN+RVIN+SPIN (σ = 5, r = 5%, s = 50%). Second
row, from left to right: the denoising results of image (b) by ROR-NLM [30], Cai et al. [32], l1 − l0 [33] and WESNR. Third
row, from left to right: the denoising results of image (c) by ROR-NLM [30], TF [27], M+BM3D [14] and WESNR.

and updated in each iteration. In our method, the dictionary
is offline learned and it is fixed in the whole algorithm. That
is, our algorithm is purely a sparse encoding algorithm, while
the algorithm in [36] involves sparse coding and dictionary
learning. The implementations of the two methods are also
very different. The model in [36] is mathematically beautiful
but it is somewhat complex. It needs four steps to optimize,
and in each step there is a minimization problem. Our model
is much simpler and it can be easily solved by iteratively
re-weighted method. In another recent work [23], a 0 or 1
valued parameter is introduced in the data fidelity term and
the penalty term to detect IN and remove AWGN. This is
basically a detection based method, and no dictionary is used
to reconstruct the image.

In the l1-l0 algorithm [33], a dictionary is also used to
reconstruct the image. However, the use of dictionary in [33]
is very different from that in our method. In [33], an over-
complete dictionary is online learned from the patches col-

TABLE IV: Running time (second) comparison on image Lena
with different levels of AWGN+RVIN+SPIN.

TF ROR-NLM M+BM3D WESNR

σ = 5, r = 5%, s = 50% 9 317 4 103

σ = 10, r = 10%, s = 40% 9 303 4 97

σ = 15, r = 15%, s = 30% 9 335 4 87

lected at those outlier-free pixels in each iteration. A modified
K-SVD algorithm is used for dictionary learning. The whole
algorithm needs three phases to optimize. In our method, the
offline learned compact PCA dictionaries are used. This is one
of the reasons why our algorithm runs much faster than [33].

IV. Conclusion
We presented a novel model for mixed noise removal,

namely weighted encoding with sparse nonlocal regularization
(WESNR). The distribution of mixed noise, e.g., additive
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TABLE II: PSNR (dB) and FSIM (%) results of mixed noise removal (AWGN +RVIN+ SPIN).

Image
σ = 5, r = 5%, s = 50% σ = 10, r = 10%, s = 40% σ = 15, r = 15%, s = 30%

TF ROR-NLM M+BM3D WESNR TF ROR-NLM M+BM3D WESNR TF ROR-NLM M+BM3D WESNR

Lena
17.71±0.14 24.93±0.21 26.57±0.11 31.80±0.07 22.51±0.19 27.87± 0.12 26.88±0.09 30.34±0.07 25.05±0.13 27.01±0.04 26.32± 0.07 28.47±0.08
75.51±0.50 92.23±0.27 92.04±0.18 96.67±0.06 85.72±0.27 93.10± 0.09 91.58±0.09 95.32±0.06 88.65±0.17 89.81±0.12 90.77± 0.08 93.11±0.13

F16
18.26±0.12 24.71±0.11 24.41±0.12 29.73±0.12 21.51±0.15 26.39± 0.11 24.48±0.11 28.36±0.10 23.27±0.12 25.98±0.06 24.29± 0.06 26.51±0.07
78.76±0.34 91.50±0.30 88.70±0.13 94.86±0.10 83.05±0.23 91.67± 0.13 88.03±0.11 92.93±0.14 85.83±0.17 88.71±0.14 87.37± 0.13 90.31±0.15

Leaves
16.22±0.09 20.51±0.10 20.56±0.07 26.21±0.09 18.08± 0.07 22.53±0.11 20.92±0.06 24.98±0.09 19.34±0.08 23.30± 0.08 20.64±0.05 23.53±0.07
72.18±0.30 86.71±0.23 84.90±0.12 92.71±0.25 77.22±0.27 88.71± 0.16 84.80±0.12 89.66±0.25 80.81±0.26 87.65±0.16 83.80± 0.13 88.09±0.17

Boat
16.15±0.12 22.79±0.14 23.60±0.07 28.23±0.10 20.39±0.11 25.37± 0.11 23.84±0.05 27.32±0.08 22.57±0.10 25.14±0.05 23.48± 0.06 26.13±0.05
67.46±0.44 89.17±0.30 86.71±0.09 94.53±0.07 78.02±0.25 91.35±0.16 85.96±0.14 92.75±0.10 83.06±0.17 89.27±0.13 84.96±0.13 90.51±0.13

Couple
16.05±0.11 22.74±0.11 23.49±0.08 28.18±0.10 20.31±0.13 25.36± 0.09 23.74±0.06 27.21±0.06 22.54±0.08 25.06±0.03 23.34±0.05 26.05±0.04
66.51±0.40 89.01±0.22 85.66±0.16 94.53±0.13 75.65±0.20 91.66± 0.09 85.05±0.09 92.96±0.07 80.26±0.14 90.05±0.10 83.96± 0.13 90.77±0.14

Fingerprint
13.40±0.07 21.00±0.16 19.73±0.03 26.45±0.06 16.49±0.08 23.64±0.07 19.94±0.04 25.16±0.07 18.41±0.06 22.73± 0.09 19.44±0.06 23.50±0.05
73.65±0.29 93.10±0.24 85.35±0.11 96.57±0.06 79.24±0.28 94.38± 0.08 84.50±0.16 95.04±0.06 86.66±0.21 91.01±0.12 82.63± 0.22 92.43±0.07

Hill
17.25±0.11 24.56±0.18 25.67±0.12 29.66±0.06 22.03±0.16 26.90± 0.06 25.95±0.07 28.66±0.05 24.34±0.10 26.13±0.04 25.41± 0.05 27.31±0.06
72.81±0.30 90.83±0.24 88.90±0.12 94.67±0.12 79.69±0.17 91.50± 0.07 88.33±0.11 92.91±0.09 83.28±0.16 88.91±0.11 87.49± 0.11 90.84±0.14

Man
17.02±0.10 24.02±0.16 24.99±0.13 29.10±0.06 21.44±0.18 26.47± 0.10 25.25±0.10 28.13±0.06 23.75±0.10 25.91±0.05 24.81± 0.06 26.80±0.04
73.01±0.30 91.16±0.24 88.66±0.14 94.84±0.09 80.28±0.20 92.15± 0.13 87.95±0.13 93.16±0.13 83.71±0.13 89.63±0.12 86.98± 0.12 90.93±0.10

Peppers
18.06±0.13 25.36±0.09 26.35±0.12 29.83±0.13 22.58±0.17 27.53±0.14 26.81±0.13 28.84±0.09 24.85±0.13 26.83±0.04 26.11±0.07 27.17±0.06
78.83±0.36 93.05±0.16 93.02±0.12 95.64±0.08 87.52±0.22 93.12±0.10 92.72±0.09 94.23±0.06 89.63±0.14 90.07±0.09 91.74±0.09 92.25±0.11

Painting
18.35±0.15 25.57±0.20 26.27±0.09 31.50±0.12 22.73±0.18 27.71± 0.11 26.59±0.08 29.96±0.07 24.84±0.11 26.88±0.03 25.88± 0.06 27.95±0.05
77.13±0.32 92.77±0.17 90.34±0.07 95.78±0.08 82.88±0.21 93.06±0.10 89.80±0.06 94.27±0.06 89.66±0.12 90.49±0.07 88.69±0.09 92.19±0.07

Average
16.85±0.11 23.62±0.15 24.16±0.09 29.07±0.09 20.81±0.14 25.98± 0.10 24.44±0.08 27.90±0.07 22.90±0.10 25.50±0.05 23.97± 0.06 26.34±0.06
73.59±0.36 90.95±0.24 88.43±0.12 95.08±0.10 80.93±0.23 92.07±0.11 87.87±0.11 93.32±0.10 85.16±0.17 89.56±0.12 86.84±0.12 91.14±0.12

white Gaussian noise mixed with impulse noise, is much more
irregular than Gaussian noise alone, and often has a heavy tail.
To address this difficulty, we adopted the weighted encoding
technique to remove Gaussian noise and impulse noise jointly.
We encoded the image patches over a set of PCA dictionaries
learned offline, and weighted the coding residuals to suppress
the heavy tail of the distribution. The weights were adaptively
updated to decide whether a pixel is heavily corrupted by
impulse noise or not. Meanwhile, image sparsity prior and
nonlocal self-similarity prior were integrated into a single
nonlocal sparse regularization term to enhance the stability
of weighted encoding. The results clearly demonstrated that
WESNR outperforms much other state-of-the-art mixed noise
removal methods.
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