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Two Denoising Methods by Wavelet Transform

Quan Pan, Lei Zhang, Guanzhong Dai, and Hongcai Zhang

Abstract—Two wavelet-based noise reduction methods are discussed
here. First, we improve the tradtional spatially selective noise filtration
technique proposed by Xuet al. Second, we introduce a new threshold-
based denoising algorithm based on undecimated discrete wavelet trans-
form. Simulations and comparisons are given.

Index Terms—Denoising, spatial correlation, threshold, undecimated
discrete wavelet transform.

I. INTRODUCTION

Wavelet transforms can decompose a signal into several scales that
represent different frequency bands, and at each scale, the position
of signal’s instantaneous structures can be determined approximately.
Such a property can be used for denoising.

In [2], a spatially selective noise filtration technique was proposed.
Based on the direct spatial correlation of wavelet transform at several
adjacent scales, a high correlation is used to judge if there is
a significant edge. The choice of noise power reference is very
important in implementation, and it was not shown in [2]. In this
correspondence, we give the noise power reference and an estimation
of the standard deviation of original noise. In addition, we introduce
some parameters and extract edges from coarse scales to fine scales
to improve the filtering performance.

Another powerful approach to noise reduction was proposed by
Donohoet al. [3]–[5]. In the case of orthogonal wavelet transform
(OWT), Donoho made use of a thresholdt = �

p
2 logN for

all scales to obtain an ideal risk, but partly due to the lack of
translation invariance of OWT, the results exhibit visual artifacts [9].
In this correspondence, a new thresholdt(m) = c�m in the case of
undecimated discrete wavelet transform (UDWT) is presented, and
why UDWT can suppress noise better than OWT is briefly illustrated.

II. DYALTIC WAVELET TRANSFORM AND

UNDECIMATED WAVELET TRANSFORM

The continuous wavelet transform can be defined as

(W f)(b; a) = jaj�
1

�1

f(t) 
t� b

a
dt; f 2 L2(IR) (1)

wherea; b 2 L2(IR), anda 6= 0. To allow fast numerical implemen-
tation, we impose that the scale parametera varies only along the
dyadic sequence(2j); j 2 Z. A wavelet 2 L2(IR) is a dyadic
wavelet if and only if there exist two strictly positive constantsA
and B so that

8! 2 IR; A �
1

j=�1

j ̂(2j!)j2 � B: (2)

Equation (2) ensures thatf(t) can be recovered from its dyadic
wavelet transform. The reconstructed wavelet�(t) may be any
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Fig. 1. Dyadic wavelet transform.

Fig. 2. Orthogonal wavelet transform.

Fig. 3. Undecimated wavelet transform.

function that satisfies
1

j=�1

 ̂(2j!)�̂(2j!) = 1: (3)

The dyadic wavelet transform is redundant. A fast discrete algo-
rithm [1] is shown in Fig. 1. The filterFj is obtained by putting
(2j � 1) zeros between each of the coefficients of the filterF0;
therefore, the bandwidth ofFj is 1=2j of the bandwidth ofF0.

If we also want to impose that the translation parameterb varies
along dyadic sequence(2j), then more constraints must be imposed
on constructing the wavelet. See Daubechies [6]–[8] for more details
about (bi-)orthogonal compactly supported wavelets. Mallat has given
the fast pyramid algorithm of (bi-)orthogonal wavelet transform
(OWT) (Fig. 2). Unfortunately, OWT is translation variant due to
subsampling. If we rotate the input signal by one position, then the
output signal at the first scale would be different. If the rotation were
by two positions, then the output at the first scale would be the same
except by one rotation, but the outputs at the second and higher
scales would be different. Several methods can be used to overcome
the dependence on the position of input signal. Here, we use the
undecimated discrete wavelet transform (UDWT), which was shown
in Fig. 3. It is noticeable that UDWT is almost the same as dyadic
wavelet transform because the (bi-)orthogonal wavelet can also be
called dyadic wavelet.

III. T HE STANDARD DEVIATION �m OF

GAUSSIAN WHITE NOISE AT EACH SCALE

From Fig. 1, supposeX is Gaussian white noisex � N(0; �2). It
is easy to get the deviation ofW1 = X � G0

�21 = D(W1) = D(X �G0) = g0n
2 �D(X) = �2 g0n

2

:

From the pyramid decomposing structure illustrated in Fig. 1, we
can prove that

�2m = �2 h0n � h1n � � � � � hm�2n � gm�1n

2

(4)

where k � k denotes the norm ofS(n) 2 l2(n), and � means
convolution.
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IV. SPATIALLY SELECTIVE NOISE FILTRATION (SSNF)

Xu et al. developed a SSNF technique in [2]. They used the
dyadic wavelet constructed by Mallat [1]. Based on the fact that
sharp edges have large signals over many wavelet scales and noise
will die out swiftly with scale, spatial correlationCorrl(m;n) is
defined to sharpen and enhance edges and significant features while
suppressing noise and small sharp features

Corrl(m;n) =
l�1

i=0

W (m+ i; n) n = 1; 2; . . .N (5)

whereW (m;n) denotes the wavelet transform data,m is the scale
index,n is the translation index,l < M �m+1, andM is the total
number of scales. Usually, we selectl = 2.

The algorithm [2] is described briefly as follows. The filtered data
is referred to asWnew(m;n):

1) Compute the correlationCorr2(m;n) for every wavelet scale
m.

2) Rescale the power offCorr2(m;n)g to that of fW (m;n)g
and getfNew Corr2(m;n)g.

New Corr2(m;n) = Corr2(m;n) PW (m)=P Corr(m)

where

P Corr(m) =
n

Corr2(m;n)
2

PW (m) =
n

W (m;n)2:

3) If jNew Corr2(m;n)j � jW (m;n)j, we accept the point as an
edge. PassW (m;n) to Wnew(m; n), and resetW (m;n) and
Corr2(m;n) to 0. Otherwise, we assumeW (m;n) is produced
by noise and then retainW (m;n) and Corr2(m;n).

4) Repeat 2) and 3) until the power ofW (m;n) is nearly equal
to some reference noise power at themth wavelet scale.

Finally, we get the vectorWnew(m; n) and then reconstruct the
signal. In [2], the reference noise power is not shown. Here, we give
a reference by supposing that original noise is white Gaussian.

It is well known that PX=N is an asymptotically unbiased
estimation of� for a sequenceX � N(0; �2), where PX =

n
x(n)2, and N is the length ofX. SupposeK points have

been extracted and thatW 0(m;n) denotes the unextracted points in
W (m;n). If W 0(m;n) can be viewed as produced exactly by noise,
PW 0(m)=(N�K) will be an asymptotically unbiased estimation of
�2m. (N �K)�2m can be taken as the reference noise power.

In fact,W 0(m;n) = W 0

s(m;n)+W
0

n(m;n), whereW 0

s(m;n) and
W 0

n(m;n) are the wavelet transform of true signals and, respectively,
noise. Then, we have

PW 0(m) = (N �K) � EfW 0(m;n)2g

= (N �K) � EfW 0

s(m;n)
2 +W 0

n(m;n)
2

+ 2W 0

s(m;n)W
0

n(m;n)g

= (N �K) � EfW 0

s(m;n)
2g+ (N �K) � �2m:

EfW 0

s(m;n)
2g is always positive.(N �K)�2m should not be the

reference noise power at coarse scales. We multiply(N � K)�2m
by a factor th(m) to be a new reference, whereth(m) > 1. For
different signals,EfW 0

s(m;n)
2g will be different; therefore,th(m)

should vary. Fortunately, the filtering results are not sensitive to
th(m), and we can choose a commonth(m) to the general case.
EfW 0

s(m;n)
2g will increase with scale, whereas�2m decreases with

scale. At fine scales,�2m is dominating inPW 0(m), but at coarse
scales,EfW 0

s(m;n)
2g will be dominating. Based on our experience,

TABLE I
NEW ENTIRE FILTERING PROCESS IN THEWAVELET TRANSFORM

DOMAIN DESCRIBED BY A “CONTROL FLOW” T YPE OF SCHEME

we can chooseth(1) = 1:1–1:2; th(2) = 1:2–1:4; th(3) = 1:4–1:6
and th(m) = 1:6–1:8 whenm > 3.

At fine scales, noise is dominating except some sharp edges. If
we comparejNew Corr2(m;n)j with jW (m;n)j directly, then too
much noise will be extracted as edges. To avoid this, we multiply
jW (m;n)j by a weight �(m) � 1 and impose that only when
jNew Corr2(m;n)j � �(m)jW (m;n)j can we extractW (m;n) as
edges. In the simulations, we take�(m) = [1:15; 1:06; 1; 1; . . . ; 1],
and the results are satisfying.

The edges will appear at all scales; therefore, we can assume that
if there is no edge to be extracted at coarser scales, then we will
not extract edge at finer scales at the corresponding indexes. Thus,
we will extract edges from coarser scales to finer scales only at the
indexes that have been extracted as edges. This will avoid extracting
a lot of noise as edges at fine scales.

The new algorithm is summarized in Table I, whereM denotes
the total number of scales.

V. ESTIMATION OF THE STANDARD DEVIATION �

At fine wavelet scales, noise is dominating; thus,� can be
estimated from the first two scales.

If jNew Corr2(1; n)j � �(1)jW (1; n)j, reset the corresponding
data inW (1; n) to 0. Refer to the remainder ofW (1; n) as ~W (1; n).
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Fig. 4. True HeaviSine and the noisy one (SNR= 20:17 db).

Fig. 5. Recovered HeaviSine by SSNF (SNRG = 7:08 db) and by new
SSNF (SNRG = 11:54 db).

SupposeK points are killed totally; then,~W (1; n) can be roughly
considered to be produced by noise. From� = �m=kg0nk and the
asymptotically unbiased estimation of�21 , i.e., P ~W (1)=(N � K),
we can get

�̂ = P ~W (1)=(N �K) g0n : (6)

VI. THRESHOLD-BASED DENOISING BY UDWT

Threshold-based denoising was first proposed by Donoho [3]–[5].
It is very simple and of satisfying performance. It can be divided
into three steps:

1) Transform the noisy signaly into wavelet coefficientw.
2) Employ a hard or soft thresholdt at each scalem.
3) Transform back to the original domain, and get the estimated

signal.

In case of orthogonal wavelet transform (OWT), Donoho gave the
following soft threshold:

�t(w) = sgn(w)(jwj � t)+ (7)

wheret = �
p
2 logN , andN is the length of signal.

Fig. 6. True Doppler and the noisy one (SNR= 12:46 db).

Fig. 7. Recovered Doppler by SSNF (SNRG = 4:74 db) and by new SSNF
(SNRG = 7:68 db).

Lack of a translation invariant will make denoising by OWT exhibit
visual artifacts. In this correspondence, we describe UDWT and hard
threshold [see (8)]. Although Donoho proved the optimality of soft
threshold in theory, hard threshold has shown better results for certain
applications [14].

ŵ(m;n) =
w(m;n); w(m;n) � t(m)
0; w(m;n) < t(m)

(8)

We chooset(m) = c��m, wherec is a constant. It is well known that
for i.i.d. Gaussian noiseX � N(0; �2), a thresholdt = �; 2�; 3�; . . .
will suppress 68.26%, 95.44%, and 99.74% of its values. Therefore,
by imposingc between 3–4, we will have good results. Donoho’s
threshold is varying withN , and whenN is too large, the threshold
may oversmooth the signal.

Why does UDWT do better than OWT on denoising? We will
explain this briefly as follows. From Figs. 2 and 3, suppose that we
only decompose white Gaussian noiseX at the first scale.[Se1;We1]
and [So1;Wo1] denote the wavelet coefficients for keeping even and
odd index, respectively. For the case of OWT, we apply the same
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Fig. 8. True Bumps and the noisy one (SNR= 7:72 db).

Fig. 9. Recovered Bumps by SSNF (SNRG = 7:45 db) and by new SSNF
(SNRG = 7:36 db).

thresholdt to We1 and Wo1, and after up-sampling, we have

Se1(!) =
N=2

l=1

Se1(2l)e
�j2l!; We1(!) =

N=2

l=1

We1(2l)e
�j2l!

So1(!) =
N=2

l=1

So1(2l� 1)e�j(2l�1)!

Wo1(!) =
N=2

l=1

Wo1(2l� 1)e�j(2l�1)!:

Xe and Xo reconstructed by[Se1;We1] and [So1;Wo1], respec-
tively. Xe andXo should have the same deviation�1.

Xe(!) = Se1(!) ~H(!) + We1(!) ~G(!)

Xo(!) = So1(!) ~H(!) + Wo1(!) ~G(!):

In the case of UDWT, we applyt=2 to uW1

uS1(!) =
1

2
Se1(!) +

1

2
So1(!)

uW1(!) =
1

2
We1(!) +

1

2
Wo1(!):

Fig. 10. True Blocks and the noisy one (SNR= 15:89 db).

Fig. 11. Recovered Blocks by SSNF (SNRG = 10:32 db) and by new
SSNF (SNRG = 10:68 db).

Therefore, the reconstructed signalXu

Xu(!) = uS1(!) ~H0(!) + uW1(!) ~G0(!)

=
1

2
Xe(!) +

1

2
Xo(!)

i.e., Xu = 1
2Xe +

1
2Xo. The deviation ofXu will be

�2u =
1

2
�21 +

1

2
E(XeXu) �

1

2
�21 +

1

4
(D(Xe) +D(Xo)) = �21 :

If we use SNR as the measure of filtering performance, we can
see that UDWT will be better.

In practice, the noise is superimposed onto the signal. However,
in fine scales, the wavelet coefficients are dominated by noise except
some sharp edges, and the effect of signal can be ignored.

VII. SIMULATION RESULTS

The simulations are made by using new SSNF method in this
section. Fig. 4 shows the true HeaviSine and the noisy version.
Fig. 5 shows the filtering results by the new method and the original
one. Figs. 6–11 show the results for Doppler, Bumps, and Blocks,
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Fig. 12. Recovered HeaviSine by OWT (SNRG = 10:10 db) and by
UDWT (SNRG = 13:95 db).

Fig. 13. Recovered Doppler by OWT (SNRG = 6:18 db) and by UDWT
(SNRG = 10:65 db).

respectively. It can be seen that the new method is much better than
the old one for HeaviSine and Doppler. For Bumps and Blocks, the
two methods are almost the same.

Figs. 12–15 are the denoising results by Donoho’s method (OWT)
[3], [4] and the new threshold method of this correspondence
(UDWT). It can be seen that the new method is always better
than Donoho’s.

Compared with the SSNF technique, threshold-based methods
perform better and need less computation. However, the SSNF
technique can analyze edges well and can be easily extended to edge
detection, image enhancement, and other applications.

VIII. C ONCLUSION

We improve the SSNF technique and present a new threshold-based
denoising method by using UDWT. In the new SSNF method, we
propose a noise power reference and an estimation of the standard
deviation of original noise. In addition, we introduce parameters
�(m) and th(m) and extract edges from coarse scales to fine
scales to improve the filtering performance. Simulations show that

Fig. 14. Recovered Bumps by OWT (SNRG = 5:56 db) and by UDWT
(SNRG = 10:88 db).

Fig. 15. Recovered Blocks by OWT (SNRG = 5:23 db) and by UDWT
(SNRG = 14:85 db).

the improved SNNF method performs much better than the old
one when signals are of good smoothness. This correspondence
presents a new threshold-based method by using UDWT. We illustrate
briefly that by thresholding with UDWT, the standard deviation of
noise would be smaller. Simulation results also show that the new
method performs better for typical signals. Comparing the SSNF
technique with the threshold-based method, the latter performs more
satisfactorily and needs less computation, whereas the former can
analyze edges satisfactorily and can be extended to edge detection,
image enhancement, and other applications.
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Wavelet-Based Estimation of 1/ -Type Signal
Parameters: Confidence Intervals Using the Bootstrap

Angelo M. Sabatini

Abstract—We propose to construct confidence intervals of parame-
ters of 1/f -type signals using a nonparametric wavelet-based bootstrap
method. Bootstrap-based confidence intervals of maximum likelihood
parameter estimates are compared to the confidence intervals derived
from the Cramér–Rao lower bound (CRLB). For moderately large data
sample sizes, the bootstrap approach achieves the nominal coverage and
may perform better than the CRLB-based parametric approach.

Index Terms—Bootstrap, 1/f -type stochastic processes, wavelets.

I. INTRODUCTION

In statistical signal processing, 1/f -type stochastic processes are
regarded as useful models for phenomena, which exhibit long-term
dependencies among observations, and a statistical self-similarity
property [1]. A popular model for 1/f -type stochastic processes is
the fractional Brownian motion (fBm) [2]. The fBmBH(t) is a zero-
mean nonstationary Gaussian random process with the covariance
function

RB (t; s) =EBH(t)BH(s) =
�2H

2
[jtj2H + jsj2H � jt� sj2H ]

(1)

with the Hurst exponent0<H < 1:
Since the statistics of self-similar processes are invariant to dila-

tions and contractions of the time axis to within an amplitude factor,
orthonormal wavelet bases have been proposed as an appropriate
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tool to analyze and synthesize 1/f -type signals [3]. In this regard,
several detection and estimation problems involving 1/f -type sto-
chastic processes are approached using the maximum likelihood (ML)
estimation theory [1], [4]. The ML estimation theory for estimating
the parameters of a given model, and the Cram´er-Rao lower bound
(CRLB) approach for estimating the statistical accuracy of the ML
estimates, demand that the joint probability density function (PDF)
of the observed data is known [5]. Furthermore, for the CRLB to be
valid, the observation sample size must be large and tend to infinity.
Unfortunately, available signals are usually finite-length, resolution-
limited time series. Hence, the CRLB may be of limited value because
parameter estimates are biased in consequence of the finite-size effect
[6], and its computation may require the (unknown) parameter values.

The bootstrap permits us to solve the statistical problems at
hand—in this correspondence, the construction of confidence inter-
vals of 1/f -type signal parameters—with minimal modeling assump-
tions, regardless of the validity of asymptotic conditions [7]. The
main difficulty is that 1/f -type stochastic processes are nonstationary,
with a long-term correlation structure, whereas typical bootstrap
implementations for time series require stationarity and weak depen-
dence among observations [8]. The connection we establish between
wavelet analysis and the use of bootstrap relies on the capability of a
wavelet decomposition to whiten a broad class of covariance kernels,
including the one associated with fBm signals [1], under conditions
that are valid for almost any wavelet function [9], [10]. This argument
allows us to cast the bootstrap as a procedure of multiple, uncorre-
lated block-resamplings applied to the stationary, weakly dependent
sequences that are obtained from the multiresolution analysis of a
single 1/f -type time series.

This correspondence is organized as follows: Section II provides
the description of the proposed algorithm. Computer simulation ex-
periments are reported in Section III. The discussion of the obtained
results is developed in Section IV. The conclusions are in Section V.

II. M OVING BLOCKS BOOTSTRAP OFfBm TIME SERIES

A. Estimation Algorithm

The parameters of a Gaussian 1/f signalBH(t) are estimated from
a noisy time seriesr[n] composed ofN samples

r[n] = BH [n] + w[n] n = 0; � � � ; N � 1: (2)

Without loss of generality, the sampling interval is assumed to
be unity; w[n] is modeled as a zero-mean white Gaussian noise
with variance�2w uncorrelated with the signalBH [n]: The discrete
wavelet transform (DWT) is used in [1] to decomposer[n] into a
collection of wavelet detail coefficientsdj [n], which can be modeled,
at first approximation, as stationary, mutually uncorrelated, zero-mean
random variables whose variances obey the power law

var d2j [n] = �
2

j = �
22j + �

2

w j = JM ; � � � ; JM (3)

where 0< < 2R with  = 2H + 1; JM and JM are,
respectively, the finest and the coarsest of theM available scales.R
is the order of regularity of the selected wavelet function. Provided
that R � 1, which is a mathematical prerequisite for any wavelet
function, the decomposition of a nonstationary 1/f -type stochastic
process is known to produce a stationary output [10].

In [1], the variances of the wavelet coefficients for theM scales
are fed to an iterative estimate-maximize (EM) algorithm, which
computesĤ; �̂2; and �̂2w: In this correspondence, the EM algorithm
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