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Multiresolution Modeling and Estimation of
Multisensor Data
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Abstract—This paper presents a multiresolution multisensor
data fusion scheme for dynamic systems to be observed by several
sensors of different resolutions. A state projection equation is in-
troduced to associate the states of a system at each resolution with
others. This projection equation together with the state transition
equation and the measurement equations at each of the resolutions
construct a continuous-time model of the system. The model meets
the requirements of Kalman filtering. In discrete time, the state
transition is described at the finest resolution and the sampling
frequencies of sensors decrease successively by a factor of two in
resolution. We can build a discrete model of the system by using
a linear projection operator to approximate the state space pro-
jection. This discrete model satisfies the requirements of discrete
Kalman filtering, which actually offers an optimal estimation
algorithm of the system. In time-invariant case, the stability of the
Kalman filter is analyzed and a sufficient condition for the filtering
stability is given. A Markov-process-based example is given to
illustrate and evaluate the proposed scheme of multiresolution
modeling and estimation with multiple sensors.

Index Terms—Kalman filtering, multiresolution analysis, multi-
sensor fusion, optimal estimation.

I. INTRODUCTION

I N many applications, such as system filtering and target
tracking, it is often beneficial to employ more than one

sensor to acquire sufficient information about an interested
object or system [1], [2], [8], [9]. An efficient data fusion algo-
rithm is then necessary to process the obtained measurements
aiming at an optimal, or nearly optimal, estimation of the
system. In this paper, we consider a class of dynamic systems
that are observed by multiple sensors of different resolutions.
Suppose the state transition of the system is characterized by

(1.1)

where is the state variable vector to be esti-
mated. Matrices and are system and input matrices,
respectively. System noise is assumed to be Gaussian white
process with zero mean and variance .
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Fig. 1. System is observed by J sensors with different resolutions.

Referring to Fig. 1, the system state vector is observed
by sensors, and each sensor has its independent observation

(1.2)

where is the measurement matrix and state belongs
to a subspace of . This subspace, in which observation
is made, depends on the resolution of sensor . The higher the
resolution is, the more accurately approximates . Ob-
servation noises are independent of each
other. They are Gaussian white processes with zero mean and
variances . The usual principle dealing with the mentioned
multisensor dynamic system is to insert the measurements of
coarser resolution sensors into the measurements of the finest
sensor by time adjustment and then implement Kalman filtering.
Such processing does not exploit the multiresolution structure
of the multisensor. In this paper, we will introduce the state pro-
jection equation to link the multiresolution states and construct
a model to estimate the system optimally in sense of minimum
mean-square error.

Indexing the sensors by their resolution from 1 to and sup-
posing that sensor 1 has the highest resolution, we approximate
the state transition equation (1.1) by

(1.3)
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Fig. 2. Structure of the multiresolution multisensor system state nodes in discrete time.

Obviously, when , (1.3) and (1.2) reduce to the classical
state-space model of an ordinary dynamic system, for which the
Kalman filtering [16], [18]–[20] is the optimal linear minimum
mean-square-error estimation (LMMSE) algorithm. In real ap-
plications, the system should be discrete. Denote the discrete
time versions of (1.3) and (1.2) by

(1.4)

(1.5)

where is the sampling time of sensor . and are
system and input matrices. is the measurement matrix
of sensor . and are independent Gaussian white
processes with zero mean and variances and .

Suppose that the sampling frequencies of the sensors decrease
successively by a factor of two from 1 to . Fig. 2 illustrates the
structure of the system state nodes. In each time block ,
there are state nodes for sensor 1, nodes for sensor
2, , and so forth, to only one node for sensor . The goal is to
get the real-time optimal estimation of the state nodes based on
the measurements of all sensors. Hong [8] discussed the filtering
of such a system in the application of target tracking. He used
wavelet transform [11]–[15] to link the state nodes of different
sensors. The state nodes of sensor are derived by filtering the
nodes of sensor with the lowpass wavelet filter

and then subsampling by two

(1.6)

Some details are lost from due to lowpass filtering,
which could be computed by filtering with the highpass
wavelet filter and then subsampling by two

(1.7)

where is called the detail wavelet coefficient.
In each time block , Hong [8] first estimated by

the measurements of sensor 1, and then, he wavelet transformed

the estimate to scales as the prediction of . The up-
dates of the prediction were conducted on each sensor with the
local measurements. At last, the locally updated estimates were
inversely transformed to sensor 1 and fused together. In Hong’s
algorithm, the updating is only performed on the prediction of

but not on the detail wavelet coefficient . In fact,
would contribute to the estimation of because it

is correlated with and the observation . Therefore,
should be updated too. The estimation by Hong’s scheme

is not optimal. In [9] Zhang et al. proposed an optimal estima-
tion scheme of the system by using Haar wavelet transform to
link the state nodes of each sensor. The advantage of using Haar
wavelet is that the state nodes of sensor can be represented by
the state nodes of the finest sensor within a time block ,
so a more compact modeling of the system becomes possible.
But this restricts the exploitation of the dependencies of node

with other nodes outside time block .
In this paper, we present a general modeling scheme of mul-

tisensor data. First, we model multisensor data in continuous
time by introducing a projection equation that relates multires-
olution states to one another. A corresponding discrete model is
realized by linking the state nodes of each sensor via a linear
projection. It is shown that the model meets the requirements of
discrete Kalman filtering. Consequently, the real-time optimal
estimation of the system can be carried out by Kalman filtering.

The next section is devoted to the modeling of the multi-
sensor data in continuous time. Section III presents the discrete
multiresolution modeling of the system. Since the Kalman fil-
tering is an optimal estimation algorithm of the realized discrete
model, the stability of the Kalman filter in time invariant case is
discussed in Section IV. A sufficient condition for stable Kalman
filtering is presented. In Section V, an example is presented to
illustrate the proposed modeling and estimation scheme. Sec-
tion VI concludes the paper.

II. MODELING OF THE MULTISENSOR DATA IN

CONTINUOUS TIME

As shown in Fig. 1, denote by the space expanded by
state variable , and then, state variable of the finest
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resolution belongs to space , which is a subspace of . Simi-
larly, , and we have the following subspace sequence:

(2.1)

in which can be considered as the projection of from
space to

(2.2)

where is the projection operator. Similarly, can be
considered as the projection of from space to with
projection operator . Denote

as the projection operator from space to ;
there is

(2.3)

Then, we have

(2.4)

where

(2.5)

The observation (1.2) can be rewritten as

(2.6)

Denote

...
...

...
(2.7)

We have

(2.8)

The covariance of is

diag (2.9)

Together with the state transition equation (1.1)

(2.10)

Equations (2.10) and (2.8) form a new state-space model of the
multiresolution multisensor system. Obviously, the model meets
the requirements of Kalman filtering, and then, the system state

Fig. 3. Link of a coarser resolution state node with the finer resolution nodes
by the N -tap lowpass filter, where h � l + 1 = N .

can be estimated by the standard continuous-time Kalman
filtering algorithm.

III. DISCRETE MODEL OF THE MULTISENSOR DATA

The continuous-time model of the multiresolution multi-
sensor systems has been presented in the previous section. In
practice, however, it is more convenient to use discrete-time
models for computation purposes. As mentioned in Section I,
the sampling frequency of sensors decreases by a factor of
two in each coarser resolution of sensors (refer to Fig. 2). The
projection operator relates a state node to the nodes

of the sensor of the finest resolution. In this section, we
will use a linear projection operator to represent the relation
analytically and then realize the discrete model of the system.
In [9], Zhang et al. has employed the discrete Haar wavelet
transform to link the state nodes. The filter of Haar wavelet has
only two taps. By the Haar wavelet transform, a node
can be written as the linear combination of the nodes of sensor
1 within the time block . It exactly forms a dyadic tree.
Although the dyadic tree is a convenient structure for data
processing, the Haar wavelet filter has only one order vanish
moment (two taps), and the Haar wavelet transform may not
approximate the linear projection sufficiently well. In many
situations, more accurate approximation of can be obtained
with a longer filter.

Denote by a lowpass filter with taps

(3.1)

where , and we have (3.2), shown at the bottom
of the page. We use filter to link the state nodes of adjacent
sensors.

A. Formalization of the Measurement Equation

Fig. 3 shows the relation of a node of sensor to
those nodes of sensor . Note that is the output of

passing through . It can be represented by the linear
combination of nodes:

. When , the linking structure of

is even
is odd

is even
is odd.

(3.2)
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Fig. 4. (a) State nodes linking structure with J = 2 and N = 4. (b) State nodes linking structure with J = 2 and N = 5.

Fig. 5. State node-linking structure of the multiresolution multisensor system by the N -tap lowpass filter.

the state nodes will no longer be a dyadic tree. Supposing that
, Fig. 4(a) and (b) show the system nodes structures when

and , respectively. For example, when ,
to represent the coarser sensor node in time , not only
the two nodes in of the finer sensor but also one node in
time and one node in time should
be employed. Fig. 5 illustrates the general state node-linking
structure of the system by the -tap lowpass filter .

For compact denotation, we let be an integer variable
that takes on values from the set

. In time block , a node of
sensor 2 can be represented as a linear combination of the nodes
of sensor 1:

(3.3)

where denotes convolution operation, and denotes subsam-
pling by factor . Denote by (3.4), shown at the bottom of the
page, the dilation of by inserting zeros between each of
the coefficients of . Referring to Fig. 5, for sensor 3, its node

can be represented by convoluting with
, which is the convolution of with and then subsam-

pled by 4. Similarly, for sensor , its node is represented
as follows:

(3.5)

where the filter is obtained by

(3.6)

We let . The total coefficients number of filter
is

(3.7)

Denote

(3.8)

where

(3.9)

(3.4)
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For the coarsest sensor , the root state node can be rep-
resented as

(3.10)

It needs nodes of sensor 1 in total. Obviously, is the
maximum number of the finest state nodes that can be utilized
to represent the other nodes of coarser sensors in a time block

. Define (3.11) and (3.12), shown at the bottom of the
page, where col means column vector, is the identity
matrix, and

(3.13)

Then, the node and its measurement
can be written as

(3.14)

(3.15)

By defining

col

(3.16)

...
(3.17)

col

(3.18)

we have

(3.19)

and finally

(3.20)

where

col (3.21)

col (3.22)

col (3.23)

Equation (3.20) is the state augmented measurement equation
of the system. In the next subsection, we develop the corre-
sponding state transition equation to complete the state-space
model.

B. Formalization of the State Transition Equation

For , the linking structure of state nodes forms a dyadic
tree within a time block. The states vector can be transited
from one time block to the next block without overlap, but if

, the system state nodes structure is no longer a dyadic
tree. There are some overlapped nodes between the augmented
state vectors and . This means that when the mea-
surement is obtained, the estimation of the overlapped
nodes in should be further updated.

The last element of is , and the first
element of is . The number of their
overlapped nodes is , and the number
of nonoverlapped nodes is . For convenience, we let

(3.24)

Then, the last element of is , or in
another form. Denote the overlapped and nonoverlapped parts
in by

col

(3.25)

col (3.26)

For the nonoverlapped nodes in , we have

(3.27)

Define (3.28)–(3.31), shown at the bottom of the next page,
where is the zero matrix. Then, we have

(3.32)

col (3.11)

(3.12)
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For the overlapped part , we have

(3.33)

where diag . Let

(3.34)

By combining and , we have the system
state transition equation

(3.35)

Equations (3.35) and (3.20) form the discrete state space
model of the multisensor system

(3.36)

where and are independent Gaussian white pro-
cesses. The model meets the requirement of standard discrete
Kalman filtering [18]–[20] with which the optimal LMMSE of
the system can be computed.

Let the output of Kalman filtering be ; this is the LMMSE
of vector , which is actually the LMMSE of the finest sensor
nodes. The LMMSE of the state nodes of other sensors can be di-
rectly obtained from . In [9], Zhang has proved that if
is the LMMSE of , then the LMMSE of node

is

(3.37)

The dimension of the system model (3.36) is times that
of the subsystem model of the finest sensor. Supposing that ma-
trix is of dimension , then the dimension of matrix

is , where . In Kalman
filtering, one needs to compute the inverse of a matrix
to obtain the gain matrix. The computation burden will increase
rapidly in the number of sensors and in the number of taps of
filter . To reduce the computational complexity, a sequential
Kalman filtering algorithm for the model was presented in [10].
Since the measurements are captured independently and
the observation noise is uncorrelated interscale and in-
trascale, then the augmented state vector can be updated
by one by one instead of putting all within a time
block into one vector . The sequential filtering algorithm di-
vides the inverse computation of a huge dimension matrix into
the inverses of many small dimension matrices. It reduces the
computation greatly. Especially at the finest scale, the sequen-
tial filtering is equivalent to the classical Kalman smoothing.

In the discrete model construction described in this section,
we supposed that the sensor resolutions decrease by a power of
two. In fact, this condition can be relaxed. For any fixed rate
of resolution decrease, such as a power of three, etc., the cor-
responding discrete system model can be built in a similar way.
Even for the case where the resolution decrease rates vary along
scales, the associated model can be constructed as well but with
a much more complex form.

IV. STABILITY OF THE KALMAN FILTER FOR

TIME-INVARIANT SYSTEM

Stability [16], [18]–[20] is a critical property to the Kalman
filter, and it guarantees the filtering error to be convergent. It is
well known that if the state-space model (3.36) is stochastically
controllable and observable, then the associated Kalman filter
is stable. In the discrete model (3.36), the matrices ,

col (3.28)

(3.29)

...

...

(3.30)

...
...

(3.31)
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and contain many zero elements, and the system matrix
is singular. Except for some special cases, the system

model (3.36) will be neither completely controllable nor com-
pletely observable, even if the subsystem of the finest sensor
is stochastically controllable and observable [10]. Therefore,
it is necessary to determine whether the Kalman filter is still
stable or not if the model is neither completely controllable
nor observable. In this section, we restrict our discussion to
time-invariant systems, where matrices and
the variance matrices of and in (1.4) and (1.5)
are all constants. Then, the model (3.36) becomes

(4.1)

where

col (4.2)

col

...
...

. . .
...

(4.3)

Denote by and the covariance matrices of and ,
respectively. Here, we normalize as a unit white Gaussian
process, i.e., is an identity matrix.

For the time-invariant linear system, the following lemma
given in [19] offers a sufficient condition for the stability of its
associated Kalman filter.

Lemma 4-1: Given a time-invariant linear system

(4.4)

where is unit Gaussian white process with zero mean. If
pair is completely detectable and pair is com-
pletely stabilizable, then the system’s Kalman filter is asymp-
totically stable.

The definitions of “completely detectable” and “completely
stabilizable” are as follows [19]:

Definition 4-1: Pair is completely stabilizable if there
exists a nonsingular matrix such that

(4.5)

where is completely controllable, and
.
Definition 4-2: Pair is completely detectable if there

exists a nonsingular matrix such that

(4.6)

where is completely observable, and
.
The above tells us that if the eigenvalues of the subsystem

matrix for uncontrollable elements are within the unit circle,
then the whole system is stabilizable, and if the eigenvalues of
the subsystem matrix for unobservable elements are within the
unit circle, then the whole system is detectable. With Lemma
4-1, a theorem can be presented to guarantee the stability of
the associated Kalman filter for the multiresolution multisensor
system model (4.1).

Theorem 4-1: If at the finest resolution pair is
completely controllable and pair is completely observ-
able, then for the multiresolution multisensor system (4.1), pair

is completely stabilizable, and pair is completely
detectable; thus, the associated Kalman filter of system (4.1) is
asymptotically stable.

Proof 1) Is Completely Stabilizable: Notice
that for the -dimensional pair , if there exists a non-
singular matrix such that col , where

is of full row rank, and is the controllability matrix
, then col , where

is controllable and is uncontrollable [17]. This gives us
a way to find .

Denote , i.e., is the maximum integer no
greater than . We have . From the structure
of matrix , when , there is

...
...

...

(4.7)

where , and diag .

When , there is

...
...

(4.8)

where is the last rows of , and

.
Denote by and the as-

sociated square matrices of and , respectively. Let-
ting , the controllability matrix of pair is
as in (4.9), shown at the bottom of the next page, where
is the last rows of . Define

...
...

. . .
. . .

...
...

(4.10)
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Obviously, is nonsingular. Transforming by , we have
(4.11), shown at the bottom of the page, where and are
independent in row. Then, there is

(4.12)

Define

...
...

. . .
. . .

...
...

(4.13)

Transforming as

(4.14)

we have (4.15), shown at the bottom of the page. Obviously,
and are independent in row. Now

(4.16)

It is easy to validate that

...
. . .

...
...

...
. . .

...

(4.17)

...
...

...
...

...
...

(4.9)

...
...

...
...

...
...

(4.11)

...
...

. . .
...

...
...

. . .
...

...
. . .

...
...

...

...
...

. . .
...

...
...

. . .
...

...
. . .

...
...

...

(4.15)
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Thus, we can denote

(4.18)

It is obvious that is a top triangle matrix with all its eigen-
values being zeros.

Because pair is completely controllable, its con-
trollability matrix is of full row rank;
therefore, will be of full row rank. There exists nonsin-
gular matrix so that

(4.19)

where is of full row rank and independent of . Then

(4.20)

is the canonical controllable decomposition of ; therefore,
there must be

(4.21)

Since and are similar matrices, they have the same
eigenvalues, and then, , which is the subsystem matrix for
the uncontrollable elements, has all zero eigenvalues. According
to Definition 4-1, is completely stabilizable.

Proof 2) Is Completely Detectable: Notice that
for the -dimensional pair , if there exists a non-
singular matrix such that where
is of full column rank, and is the observability matrix

col , then col ,
where is observable and is unobservable [17]. This gives
a way to find . From (4.7) and (4.8), we can denote

...

(4.22)

...
...

(4.23)

Therefore, the observability matrix of pair is

...

...
...

...

(4.24)

where is the last columns of , and is the other
columns of . First, we illustrate that and are indepen-
dent in column. Because of the special structures of and ,
the rows in correspond to those rows in , where blocks

are located, are all zeros. There exists
a row transformation matrix such that

(4.25)

where col . Since pair
is complete observable, its observability matrix

col is of full column
rank. It is observed that all the rows of are contained in
col ; therefore, col must be of full column
rank, and and are independent in column. Since is just
a linear row transformation, and are then independent in
column, and is of full column rank. There exists a column
transformation matrix such that

(4.26)

and it can be written as

(4.27)

where is of full column rank. Denote as

(4.28)

is a top triangle matrix with all zeros on the diagonal. We
have

(4.29)
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Divide as

(4.30)

where the square matrix has the same number of columns
as . Then, can be rewritten as

(4.31)

Apply column transformation to such that

(4.32)

Now

(4.33)

Since is the canonical observable decomposition of
must be zero, and because is the submatrix of ,

it is also a zero matrix, i.e.,

Then, we can see that the eigenvalues of are part of those
of , which is the similar matrix of . Because
is a top triangle matrix with all zeros on the diagonal, the eigen-
values of are all zeros. According to Definition 4-2,
is completely detectable.

Since pair is completely stabilizable and pair
is completely detectable, according to Lemma 4-1, the corre-
sponding Kalman filter of model (4.1) is asymptotically stable.

V. EXAMPLE

In the implementation of the proposed multiresolution mul-
tisensor data fusion scheme, the coefficients of the lowpass
filter should be first determined. In some systems, is
known priorly. Otherwise, needs to be estimated. Actually,
the correlation information of across sensors is also hidden
in to some extent. In applications, can be first estimated
by the prior knowledge of the system and then updated by
the measurements via an appropriate estimation approach.
In recent years, the wavelet [11]–[15] has been successfully
used to represent and model a variety of random processes
[3]–[7], such as the multiscale autoregressive (MAR) frame-
work [3]–[5] of statistical signals. The wavelet transform
has a natural multiresolution and multiscale structure. In the
following example, we set the original state projection filter

to be and use the lowpass CDF(2, 2)

wavelet filter of [11] to approximate .
Interestingly, the experimental results show that the approxi-
mation error of only slightly affects the performance of the
system estimation. In contrast, if we use the Haar wavelet filter

to approximate , as what was done in [9],
the system estimation error increases significantly.

The first-order scalar Markov processes are used in our sim-
ulation. The state transition equation is

(5.1)

where is Gaussian white noise with zero mean and vari-
ance . Suppose there are two sensors available to measure
the system, i.e.,

(5.2)

where Gaussian white noises and are of
zero-mean, their variances are and , respectively, and

and are independent of each other. Letting
and referring to Fig. 6, the states

at the second scale are generated from the states at the
first scale by

(5.3)

According to the modeling scheme of Section III, we have

col

col

col

col

and the matrices in time invariant model (4.1) are

Cov Cov

To evaluate the proposed scheme, we perform experiments
by assuming that the true filter is known and that is
unknown and approximated by the CDF(2, 2) wavelet filter

. The experimental results of the method
in [9], in which the Haar wavelet was used to approximate ,
are also given for comparison.

The parameters in the simulations are set as
, and . By imple-

menting the Kalman filtering of model (4.1), we obtained ,
which is the LMMSE of . From , the LMMSE
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Fig. 6. State nodes linking by filter D = f(1=3); (1=3); (1=3)g of a two
sensors system.

TABLE I
AVERAGE NOISE COMPRESSION RATIOS OF THE PROPOSED SCHEME BY TRUE

STATE PROJECTION FILTER D = f(1=3);(1=3); (1=3)g AND CDF(2, 2)
WAVELET FILTER D = f(1=4); (1=2); (1=4)g, AND THAT OF THE METHOD

IN [9], WHERE THE HAAR WAVELET FILTER IS USED TO APPROXIMATE THE

STATE PROJECTION FILTER. WE RAN MONTE CARLO SIMULATIONS 200 TIMES

TO CALCULATE THE AVERAGE RESULTS

of , can be directly derived, and , which is the
LMMSE of , can be computed by (3.37). The estimation
error is , and the noise-suppression
ratio is defined as the ratio of the norm of observation noise

to that of

(5.4)

After running Monte Carlo simulations for 200 times, we listed
the average values of noise suppression ratio by setting

and
in Table I. The result of the scheme in [9] was also listed for
comparison. It is interesting that the result of the approximation
filter is only slightly worse than that
of the true filter . This implies that the
proposed scheme is robust to the approximation errors of state
projection filters to some extent, whereas the result of [9] is
much worse than the new scheme. The reason for this is that the
short Haar wavelet filter is incapable of sufficiently representing
the state node correlation information cross scales.

Fig. 7(a) shows a sequence of true states and its
measurements , and Fig. 7(b) shows the associated
state sequence , which is calculated by (5.3) and its
measurement . Fig. 8(a) illustrates the estimation errors

by true filter (solid line)
and by approximation filter (dotted
line) for visual comparison. The noise suppression ratios
are 1.978 and 1.969, respectively. Obviously, the two error
sequences are almost the same. In Fig. 8(b), we illustrated the
errors by true filter (solid
line) and by Haar wavelet filter (dotted
line), which is used in [9]. The noise suppression ratio by the
Haar wavelet filter is 1.721. It is seen that the error sequence
by the Haar wavelet has a much higher magnitude. Similarly,
in Fig. 9(a) and (b), we showed the estimation error sequences

Fig. 7. Data of a one-order scalar Markov process. (a) True statex (k ) (solid)
and observation z (k ) (dotted). (b) True state x (k ) (solid) and observation
z (k ), where x (k ) is obtained by filtering x (k ) with the lowpass filter
D = f(1=3);(1=3); (1=3)g.

by the three filters
and . The noise

suppression ratios are 2.329, 2.302, and 2.042, respectively.

VI. CONCLUSION

In this paper, we developed a modeling and estimation
approach for a class of multiresolution multisensor dynamic
systems, whose states are observed by several sensors of
different resolutions. By introducing the state space projection
equation to relate the states in each resolution space, we
constructed the continuous-time model of the system. In discrete
time applications, the sampling frequencies of sensors are made
to decrease by a factor of two for each coarser resolution. We
employed a linear projection to be associated with the state
nodes of each of the sensors and constructed a discrete model
of the system. It is shown that the Kalman filtering is the
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Fig. 8. Kalman filtering errors at the first scale. (a) Estimation error
sequence ~x (k ) by true filter D = f(1=3); (1=3); (1=3)g (solid) and
that by approximation filter D = f(1=4); (1=2); (1=4)g (dotted). The
two curves are almost the same, and the noise compression ratios c are
1.978 and 1.969, respectively. (b) Estimation error sequence ~x (k ) by true
filter D = f(1=3);(1=3); (1=3)g (solid) and that by Haar wavelet filter
D = f(1=2);(1=2)g (dotted). Obviously, the error sequence by the Haar
wavelet has higher magnitude, and the associated noise compression ratio c
is 1.721.

optimal LMMSE algorithm for the developed system model. We
proved that as long as the subsystem at the finest resolution is
completely controllable and observable, the associated Kalman
filtering of our system model is asymptotically stable. The
first-order Markov processes were used to evaluate the new
scheme in simulations. Our empirical results showed that the
proposed scheme is robust to the approximation error of the
state projection filter. Future work will develop an adaptive
estimation algorithm of the state projection filter. The goal is
to make filter estimation stable and optimal in some sense.
One idea is to update iteratively the filter, which is initialized
at the beginning, once a new measurement of the system is
made.

Fig. 9. Kalman filtering errors at the second scale. (a) Estimation error
sequence ~x (k ) by true filter D = f(1=3);(1=3); (1=3)g (solid) and that
by approximation filter D = f(1=4);(1=2); (1=4)g (dotted). The noise
compression ratios c are 2.329 and 2.302, respectively. (b) Estimation error
sequence ~x (k ) by true filter D = f(1=3);(1=3); (1=3)g (solid) and that by
the Haar wavelet filter D = f(1=2);(1=2)g (dotted). The noise compression
ratio c by the Haar wavelet is 2.042.
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