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Abstract—This paper presents a novel image descriptor to effectively characterize the local, high-order image statistics. Our work is
inspired by the Diffusion Tensor Imaging and the structure tensor method (or covariance descriptor), and motivated by popular
distribution-based descriptors such as SIFT and HoG. Our idea is to associate one pixel with a multivariate Gaussian distribution
estimated in the neighborhood. The challenge lies in that the space of Gaussians is not a linear space but a Riemannian manifold. We
show, for the first time to our knowledge, that the space of Gaussians can be equipped with a Lie group structure by defining a
multiplication operation on this manifold, and that it is isomorphic to a subgroup of the upper triangular matrix group. Furthermore, we
propose methods to embed this matrix group in the linear space, which enables us to handle Gaussians with Euclidean operations
rather than complicated Riemannian operations. The resulting descriptor, called Local Log-Euclidean Multivariate Gaussian (L2ZEMG)
descriptor, works well with low-dimensional and high-dimensional raw features. Moreover, our descriptor is a continuous function of
features without quantization, which can model the first- and second-order statistics. Extensive experiments were conducted to evaluate
thoroughly L2EMG, and the results showed that LZEMG is very competitive with state-of-the-art descriptors in image classification.

Index Terms—Image descriptors, space of Gaussians, Lie group, image classification.

1 INTRODUCTION

Characterizing local image properties has been attracting
great research interests in past years [1]. The local descrip-
tors can be either sampled sparsely for describing region
of interest localized by region detectors [2], or extracted at
dense, regular grids for image representation [3], [4]. Image
local descriptors play a fundamental role for the success of
many middle-level or high-level vision tasks. In particular,
densely sampled descriptors have proven to achieve state-
of-the-art performance in image-based classification tasks
such as scene categorization, object classification, texture
recognition, and image retrieval. However, it is challenging
to develop image descriptors with high distinctiveness for
general image classification tasks.

Our goal is to present a function-valued descriptor to
effectively represent the statistics of an image local region.
Our work is motivated by Diffusion Tensor Imaging (DTI)
[5] and the structure tensor model (STM) [6] or covariance
descriptors (COV) [7], which respectively enjoy important
applications in vision and medical imaging fields [8]. As
shown in Table 1, STM or COV computes the second-order
moment of image gradients or multiple cues in a neigh-
borhood, which reflects the correlation of features in local
image patches. In DTI each voxel is associated with a 3x3
symmetric matrix describing the molecular mobility along
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TABLE 1
Analogy of Matrix-valued and Function-valued image representation

Representation Description
Pu Pin Second-order moment of features which
STM or T : reflects the correlation in local patches.
[e)% R
Ppi ... Pon ) ) )
bbb Every voxel is associated with
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DTI D1y Das Doy || @ ?>><3 symmetric  matrix .de
D15 Da3 D3s scribing molecules diffusion.
We represent the local image statistics
using multivariate Gaussians at a dense
Ours . . L.
grid mapped to the linear space via in-
formation geometry.

three directions and the correlations among these directions.
Our idea is to associate one pixel point with a multivariate
Gaussian distribution (hereafter abbreviated as Gaussian
for simplicity) to characterize the first- and second-order
statistics in the local neighborhood. It extends the STM or
COV in that both the first- and second-order moments are
utilized; similar to DTI, our method can be interpreted as
an “imaging” method, which produces a function-valued
image where each point is a Gaussian describing the local
feature statistics.

Our work is also inspired by the popular distribution-
based descriptors, e.g., SIFT [9] and HoG [10]. Such de-
scriptors usually employ histogram to represent the local
image statistics. Though effective in a variety of applica-
tions, they only exploit zero-order statistics as only feature
occurrences (frequencies) are collected [4] and there lacks
a natural mechanism for multiple cue fusion. In addition,
discrete histograms often suffer from the quantization prob-
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Raw feature maps: pixel-wise
feature vectors consisting  of’
intensity, histogram, derivatives of’
varying orders, etc.

Cinprse ] = =

Function-valued image: Gaussians
at a dense image grid representing
local image statistics

Vector-valued image: embedding
Gaussians in the linear space by
DE-LogkE or IE-LogE, obtaining the
final L’EMG descriptors

(a) Flowchart of L’EMG
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Fig. 1. Overview of the Local Log-Euclidean Multivariate Gaussian (L2EMG) descriptor. (a) Given an input image, we compute raw features and
then extract Gaussians at a dense grid using these features; finally we embed the Gaussians in the linear space to obtain vectorized L2ZEMG
descriptors. We show that the space of n-dimensional Gaussians N(n) can be equipped with a Lie group structure, equivalent to a subgroup,
denoted by A+ (n + 1), of the upper triangular matrix group. It can be directly embedded in a linear space A(n + 1) by the matrix logarithm which is
called DE-LogE, or indirectly by IE-LogE which first maps A+ (n + 1) into the space Sym™* (n + 1) of SPD matrices and then into the linear space
Sym(n + 1), as shown in (b) and (c), respectively. The embedding processes preserve the algebraic and topological structures. Consequently, we
can handle Gaussians with Euclidean operations instead of Riemannian ones. See Section 4 for details.

lem which may bring side effects on vision tasks [11]. These
considerations instigate us to model image local statistics
using Gaussian, one of the most widely used continuous
probability density functions. Underlying our descriptor
are the maximum entropy principle [12] and the success
of covariance descriptors [7]. The maximum entropy prin-
ciple states that in the set of trial distributions encoding
the precisely stated prior or testable information, the one
with maximal entropy is the proper distribution. It is well-
known that Gaussian enjoys such a property among the
family of distributions with fixed empirical mean vector
and covariance matrix. The covariance matrices have proven
to be effective descriptors in a variety of applications [7];
beside, the mean vectors have also proven to be important
in image classification [4] and image search [13].

The challenge of using Gaussians to model local image
statistics lies in that the space N (n) of n-dimensional Gaus-
sians N (p, X), where p is the mean vector and ¥ is the
covariance matrix, is not a linear space but a manifold. We
study the geometry of N(n), and show, for the first time to
our knowledge, that the space of Gaussians can be provided
with a Lie group structure by defining a multiplication op-
eration on this manifold, and that it is isomporhic to a sub-
group, denoted by A™(n+1), of the upper triangular matrix
group. Based on this, we develop novel methods to embed
this space into some linear space, which enables us to handle
Gaussians with Euclidean operations instead of complicat-
ed Riemannian operations while respecting the geometry
of Gaussians. The proposed descriptor, called Local Log-
Euclidean Multivariate Gaussian (L?’EMG) descriptor, can
model statistics of both low-dimensional raw features and
high-dimensional ones. Unlike the popular histogram-based
descriptors such as SIFT and HoG which estimate zero-
order statistics by quantizing the feature spaces, L’~EMG is
continuous and can model higher-order statistics.

Fig. 1(a) illustrates the flowchart of our L2EMG descrip-

tor. Given an input image, we first extract n-dimensional
raw features, then compute multivariate Gaussians at a
dense grid, obtaining a function-valued image, and finally,
embed these Gaussians into a linear space to obtain the
vectorized L2EMG descriptors. We develop two embedding
methods, as shown in Figs. 1(b) and 1(c), respectively. The
first method, called direct embedding Log-Euclidean (DE-
LogE), maps A" (n + 1) via matrix logarithm to the linear
space A(n + 1). The second one, what we call indirect
embedding Log-Euclidean (IE-LogE), first maps A™(n + 1)
via the coset and polar decomposition into the space of
symmetric positive definite (SPD) matrices, Sym™(n + 1),
and then into the linear space Sym(n + 1) by the Log-
Euclidean framework [14]. DE-LogE has a simple, analytic
expression for diagonal-covariance Gaussians, particularly
suitable for high-dimensional raw features. Our methods
are primarily based on Lie group isomorphisms, which re-
spects the algebraic and topological structures of the spaces
involved.

This paper substantially extends our previous work
namely the local Log-Euclidean covariance matrix (LZECM)
[15] from three aspects. (1) We represent the local image
statistics by using multivariate Gaussians instead of using
only covariance matrices as in L2ECM. L2ECM is a special
case of LZEMG where the mean vectors are always constant.
Hence, L’EMG can capture richer statistical information. (2)
We equip the space of Gaussians with a Lie group structure
and present novel methods to deal with Gaussians by using
the Euclidean operations rather than the Riemannian opera-
tions. (3) We evaluate thoroughly the L2EMG descriptor and
compare it with L2ECM as well as other popular descriptors
on a variety of benchmark datasets, including object classi-
fication, scene categorization and material recognition.

The remainder of this paper is organized as follows.
Section 2 reviews the related works. Section 3 introduces
some basics of Lie groups. Section 4 presents the Lie group
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structure of the space of Gaussians and the methods to
embed Gaussians in the linear spaces. Section 5 describes the
computation of the proposed descriptors and the complexity
analysis. Section 6 presents experiments to evaluate and
analyze our descriptors. Finally, Section 7 concludes the
paper and discusses future work.

2 RELATED WORK

This section begins with a review of image descriptors and
then introduces the existing methods to handle Gaussians
by means of information geometry.

2.1 Image Descriptors

We focus on distribution-based descriptors which have
achieved state-of-the-art performance in image classification
(cf. [1] for other types of descriptors such as those based on
spatial-frequency analysis or image moments).

2.1.1 Histogram-based descriptors

The SIFT descriptor which builds three-dimensional his-
tograms of spatial cells and gradient orientation [9] is one of
the representatives in this category. PCA-SIFT [16] packs the
gradients in an image patch by using principal component
analysis (PCA) for dimensionality reduction. Extensions of
SIFT by considering color invariance improve the discrim-
inative capability but increase the size of descriptors [17].
In [1], image patches are divided into log-polar cells rather
than Cartesian ones to extract the Gradient Location and
Orientation Histogram (GLOH). Histogram of Orientation
Gradient (HOG) [10] is originally proposed for human de-
tection and now widely used in many vision tasks. SURF
[18] and DAISY [19] descriptors enjoy computational effi-
ciency while preserving the strengths of SIFT and GLOH.
Chen et al. [20], inspired by the law of the perception of
human beings, proposed the Weber local descriptor (WLD)
by building 2D histograms of differential excitation and
gradient orientation.

Another line of research employs the order measure to
improve robustness to complex, nonlinear intensity varia-
tions induced by illumination or lighting changes. The local
binary pattern (LBP) [21], based on the order relation of
image intensity in a local neighborhood, is intensity and
rotation invariant. The CENTRIST estimates histogram of
Census Transform values and it works well for place and
scene recognition [22]. The locally stable monotonic change
invariant feature descriptor (SMD) [23] models intensity
orders of pairs of pixels. The ordinal spatial intensity distri-
bution (OSID) descriptor [24] is a 2D histogram of intensity
orderings and spatial sub-division spaces.

2.1.2 Probability density function based descriptors

Tuzel et. al [7] proposed the covariance descriptor and
adopted the Affine-invariant Riemannian metric [25] since
the space of covariance matrices is not a vector space but
forms a Riemannian manifold. The L?ECM descriptors [15]
consist of pixel-wise covariance matrices to represent the
local feature correlations, which are embedded in the linear
space through the Log-Euclidean metric [14]. In object track-
ing, Gong et al. [26] proposed the shape of Gaussian descrip-
tor utilizing both the mean vector and covariance matrix.
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In scene categorization, Nakayama et al. [27] modeled a
whole image with a Gaussian distribution and measured
the dissimilarity based on the a-divergence [28]. In [29], the
local high-order statistics are employed by using the Fisher
Vector method [4]. Giuseppe et al. [30] adopted multivariate
Gaussians as image descriptors, in which the mean vector
is concatenated with the covariance matrix mapped to the
tangent space through the Affine-invariant Riemannian met-
ric. Ma et al. [31] described the human body regions with
multivariate Gaussians and evaluated the distance based on
the product of Lie groups [32].

2.2 Gaussian Embedding

The space N(n) of Gaussians can be naturally seen as a
Riemannian manifold equipped with the Fisher metric [33].
However, the geodesics distance on N(n) has no closed
form, except for univariate Gaussians or multivariate ones
with fixed mean vectors or fixed covariance matrices [34].
Amari et al. [28] established a dually-flat structure to handle
the manifolds of probability distributions, i.e., two flat affine
coordinate systems which are mutually orthogonal with
respect to the Fisher-Rao metric. Therein a-divergence is
proposed to evaluate the dissimilarity between distributions
and it is equivalent to the Kullback-Leibler (KL) divergence
when o = —1. In [26], the space of Gaussians is embedded
into an affine group and the Riemannian metric is adopted
to measure the distance. Calvo et al. [35] and Lovri¢ et al.
[36] identified Gaussians as SPD matrices by embedding
Gaussians in the Siegel group or the Riemannian symmetric
space, respectively. They also studied the Riemannian metric
between SPD matrices.

Table 2 summarizes and compares various embedding
methods. We have the following observations. (1) Almost
all the existing methods regard N(n) as a Riemannian
manifold and fail to explore its algebraic structure. Note that
[26], [35], [36] showed that the space of Gaussians can be
embedded into some groups. In contrast, we show that the
space of Gaussians itself can be considered as a Lie group by
defining a multiplication operation directly on the manifold
formed by Gaussians (Section 4.1), i.e., a group with smooth
group multiplication and inverse operations. This gives us
insights into the algebraic and geometrical structure of the
space of Gaussians. (2) When evaluating the distances [26],
[35], [36] or dissimilarity measures [27], [28], the involved
matrices in these methods entangle, making them hard to
handle Gaussians conveniently and efficiently, particularly
for large-scale problems. Based on the Lie group structure
of N(n), we further propose novel methods to embed
N(n) in linear spaces. Our embedding processes depend
primarily on Lie group isomorphisms, establishing equiv-
alences between the corresponding spaces. Consequently,
we can handle Gaussians with Euclidean operations instead
of Riemannian operations, while respecting the geometry
of Gaussians. Compared to previous works, our metric is
untangled and can handle efficiently large-scale problem.

3 A BRIEF INTRODUCTION ON LIE GROUP

This section introduces some basic background of Lie group
and matrix group; for complete theory one may refer to
textbooks such as [37], [38].
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TABLE 2
Comparison of embedding methods for Gaussian distributions. Here L and L denote the Cholesky factors of = and X!, respectively, while
Gaussians N'(p,%1) and N(p,, X2) are respectively identified as B, and Bs.

Space of

J5i . Embedding method Embedding form B of A (p, X) Metric or (dis)similarity Decoupling
1dUsSs1ans
Skovgaard | Riemannian | Embeded in an open subset of [(1)s (0i;)1<5] Fisher information metric «
et al. [34] manifold the Euclidean space RiJi=1,..ny (9ij)i<; (No closed-form in general)
Amari et Ri . Embeded in a flat manifold a-divergence (a=1)
al. [27], en}?riglan by taking an affine coordinate [(wi)i=1,...,n, (005 + pitj)i<j] (k1 *uz)T(Ef1+Egl)(u1 —n2) X
[28] manito system (S 'S -2 25 ) —2n
Gong et Riemannian . 3 [ L -
AL [§6] manifold Embeded in an affine group B= |7 ‘1‘} || log(BT'B2)|| X
Calvo et Riemannian | Embeded via a diffemorphism | =4uuT n 1
al. [35] manifold in a Siegel group B = w1 H log( BT 'B; )” F X
y . . Embeded via group action in 5
L;)I\_,r[;%]et isﬂ?agmn a Riemannian symmetric s- | B = x| A+T [2+;;uT T} |log(B'B2) |, X
pace
T
. Embeded in the linear spaces st+upT w]2 L-T
2 — log bpt . w _
L°EMG Lie group via Lie group theory B = log [ T 1 »log [ ol 1 ] [ B1-B2 HF v
3.1 Lie Group 3.2 Matrix Group

A group G is a set equipped with a multiplication operation
- G x G — G, which combines any two elements a and
b in G to produce an element, written a - b, of G, and the
following properties are satisfied:
(1) The multiplication operation is associative. For all a, b
andcin G, (a-b)-c=a-(b-c).
(2) There is an identity element e such that for each ¢ in G
a-e=e-a=a.
(3) For each element a in G, there is an inverse a~' for
whicha-a™ ' =a"t-a=e
For all a,b in G, if a-b = b - a, then G is said to be a
commutative (or abelian) group. A subset H of G is called
a subgroup of G if H forms a group under the operation -.
A Lie group is a group that is also a differential manifold,
with the property that the group multiplication and inverse
are smooth functions. A Lie group is locally equivalent
to a linear space and thus the local neighborhood of any
element can be adequately described by its tangent space.
The tangent space of the identity element forms a Lie algebra,
a linear space with a bilinear product called Lie bracket.
Let G be a Lie group. A Lie subgroup H of G is a closed
subgroup of G which is also a submanifold. A left coset of H
in G is a subset of the form

aH ={a-hlh € H},

where a € G. aH and bH are equal if they have an element
in common. The set of all the cosets of H, denoted by G/H,
forms a partition of the group G, i.e., G is the union of all
distinct cosets of H. One can also define the right coset of
H in G, ie, Ha = {h-alh € H}, where a € G and the
aforementioned arguments hold similarly.

Let G,G be Lie groups and -,o be their correspond-
ing multiplication operations. A Lie group homomorphism
¢ : G — @' is a smooth function that satisfies

d(a-b) = ¢(a) o p(b) foralla,beG.

If, in addition, ¢ is a bijective function (one to one and
onto) and the inverse mapping ¢! is smooth, then we
say that ¢ is a Lie group isomorphism or G is isomorphic to
G'. For isomorphic Lie groups, the operation in one Lie
group is smoothly carried over to the operation in another.
Since having the same algebraic and topological properties,
isomorphic Lie groups are equivalent.

The most interesting examples of Lie groups in computer
vision are those formed by square matrices. The set of all
n x n real (resp. complex) invertible matrices under matrix
multiplication forms a Lie group called real (resp. complex)
general linear group. The matrix groups are Lie subgroups
of the general linear groups. The Lie algebra of a matrix
group G, denoted by g, is the set of all matrices X such
that the one-parameter group exp(zX) is in G for any real
number z [37, Section 2.5]. In this paper we restrict our-
selves to square matrices over the field R of real numbers,
unless otherwise stated, since they are of our most interest.
The following notations will be used: GL*(n)—the group
of n x m matrices with positive determinant; SO(n)—the
special orthogonal group, i.e., the group of n x n orthogonal
matrices of determinant one; PDUT (n)—the group of n xn
upper triangular matrices with positive diagonal entries;
Sym™(n)—the group of n x n SPD matrices. The set of all
n X n upper triangular matrices, denoted by Ut(n), and the
set of all n x n symmetric matrices, denoted by Sym(n), are
Lie algebras of PDUT(n) and Sym™ (n), respectively.

The matrix exponential and logarithm play a crucial role
in the matrix group theory. Let X be a square matrix. The
matrix exponential of X, denoted by exp(X), generalizes
the scalar exponential and is defined by the power series

exp(X) = R
k=0 '

M

The series converge for any X and exp(X) is smooth [14].
The logarithm of a matrix A, denoted by log(A), is a
matrix X such that exp(X) = A. In the field C of complex
numbers, the logarithm of any invertible matrix exists but
may not be unique [37, Theorem 2.9]. For a real invertible
matrix A, there exists a real logarithm if and only if the
number of elementary divisors belonging to each negative
eigenvalue is even, while A has a unique real logarithm if it
has no negative eigenvalues [39, Theorems 3.4 and 3.11].

3.3 Log-Euclidean on GL"(1)

It is well known that GL™ (1) is a Lie group, and it is indeed
equivalent to the Lie group R* formed by all positive real
numbers under multiplication. The Lie algebra of R™ is the
set R of all real numbers. Here we formulate this fact in
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the Log-Euclidean notation' by means of the following two
Propositions. We underline that this notation is fundamental
and can be extended to a more general scenario.

Proposition 1. The exponential of real numbers
exp: R — RT, 2 — exp(x)

is a smooth bijection and its inverse log is also smooth.

Proposition 2 (Log-Euclidean on R™). We define

®:RT xRt — R, a; ® ag = exp(log(a;) + log(az))
and ® : R x RT = RT, A\®a = exp(Alog(a)) =a*. (2)

Under operation ®, R is a commutative Lie group, and log :
Rt — R is a Lie group isomorphism, ie., log(a; ® ag) =
log(a1) + log(az). R is a linear space under  and .

Proposition 1 is well-known and the exponential func-
tion exp and its inverse log are both diffeomorphisms. The
proof of Proposition 2 can be readily completed by the
standard definition of Lie group.

Proposition 2 states that through the logarithm, the
multiplications in the Lie group R are transformed to the
additions in the logarithm domain (linear space R). In this
sense, we call this methodology “Log-Euclidean”. The Log-
Euclidean method on Sym™(n) proposed by Arsigny et al.
[14] can be viewed as an extension of Proposition 2 from R
to Sym™ (n). In Section 4.2.1 we will extend this proposition
to handle the space of Gaussians.

4 STRUCTURE OF SPACE OF GAUSSIANS AND EM-
BEDDING

In this section, we first show that the space of Gaussians can
be provided with a Lie group structure and then describe
two methods to embed Gaussians in linear spaces.

4.1 Lie Group Structure of Gaussians

Let X be any n x n SPD matrix and 3! be its inverse. We
know that 37! is also an SPD matrix and it has a unique
Cholesky decomposition X' = LL”, where L is upper
triangular with positive diagonal entries. Hence, it follows
that ¥ = L~7TL™!, where L7 € PDUT(n) denotes the
transpose of the inverse of L. That is, any SPD matrix can be
uniquely decomposed as the product of an upper triangular
matrix with positive diagonal entries and its transpose.

Based on the decomposition above, we define a multipli-
cation operation on N (n).

Definition 1. Let N(p;,%;) € N(n),i = 1,2, be two
arbitrary Gaussians and ¥; = L;TL; !, where L; is the

Cholesky factor of X;!. We define an operation x between
two Gaussians as

*:N(n) x N(n) = N(n), (©)]
N(py, 21) * N(py, X2)
= N(L7 gy + py, (Li L) T (L L) ).
We may interpret (3) in the following manner. Suppose that

random vector x has the Gaussian distribution N (4, 32),

1. Note that the notation “Log-Euclidean” was first used in [14] and
our formulation is highly inspired by this work.
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ie, x ~ N(puy, X2). The operation x can be viewed as
an affine transformation (Ly%, ;) acting on x and the
resulting random vector y = Ly "x 4 p, follows Gaussian
distribution N'(L; " ey + 1, (L1Lo) =7 (L1 L) 1).

Upon Definition 1, we have the following theorem:

Theorem 1. N(n) is a Lie group under multiplication oper-
ation x as defined in (3).

Proof Let N(p;,%;) € N(n),i = 1,2,3, be three ar-
bitrary Gaussians and ¥; = L; TL; ! where L; is the
Cholesky factor of X;'. The operation * is associative
since the multiplication of the three Gaussians with either

groupings are equal, i.e.,

(N (11, 1) x N (12, 22)) x N (13, X3)
=N, B1) x (N (g, Ba) * N (3, 33))

=N((L1Lo) Tps + Ly gy + py, (L LoLg) T (LyLoLs) 7).

The standard Gaussian distribution A(0,I), where 0 and I
denote the zero vector and identity matrix, respectively, is
the unique identity element in N(n), i.e.,

NO,T) % N (1 ) = N, £) + N(0,T) = N (11, 5).
Any Gaussian M (u, ) € N(n) has an inverse given by
N7Hw, 2) = N(-L"p, L'L) )

where ¥ = L~TL~! and L=7 € PDUT(n). In light of
the uniqueness of both the Cholesky decomposition and the
inversion of SPD matrix, we know that the inverse function
N1 is unique. Hence, N (n) is a group.

According to the Cholesky decomposition algorithm [40,
Section 4.2], each entry of L can be written as the com-
posite of arithmetic operations of addition (subtraction),
multiplication (division) or the square root on the entries
of ™!, We thus conclude that the Cholesky decomposition
is smooth [38, Proposition 1.13]. The smooth properties of
matrix multiplication and matrix inversion can be found in
[38, Section 1.2]. Hence, the multiplication operation (3) and
inverse mapping (4) defined on the manifold of Gaussians
are both smooth. Therefore, N (n) is a Lie group. O

Let
AT — 2 |Z p n

(n+1) = {A”,Z = [OT 1} |Z € PDUT(n),p € R } .
Obviously AT (n + 1) is a closed subgroup of GL*(n + 1),
and so it is a Lie group. The following theorem establishes
the equivalence between N(n) and A" (n + 1).

Theorem 2. The function
b AF(n+1) > N(), d(Aupr) =NwS), ©)

where ¥ = L~TL~! and LT € PDUT(n), is a Lie group
isomorphism.

Proof Obviously ¢ is a smooth function as the matrix
multiplication and exponential function are smooth, and
the smoothness of its inverse follows from the fact that
the decomposition ¥ = L~TL~! is smooth. Through ¢,
A, -7 is uniquely mapped to Gaussian N (p, L=7L™1).
For any N(p,X) € N(n), as ¥ has a unique decom-
position ¥ = L-TLY L= € PDUT(n), the inverse
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function ¢! uniquely exists. Consider two arbitrary Guas-
sians N'(p;,3;) € N(n),i = 1,2 and their decompositions
2 =L 'L;7Y, L;T € PDUT(n). 1t is straightforward to
show that ¢ is compatible with the law of composition, i.e.,
d)(.APleI_‘;T AHz-,Ig;T) = (é(Apth;T) * ¢(AM27L2—T). Hence,
¢ is a Lie group isomorphism. O

Through ¢~!, N'(u, X) is identified as an upper triangu-
lar matrix A, 1,-r, whose diagonal entries are positive with
the last being one. In contrast, the embedding matrix in [26]
does not have such a desirable form.

4.2 Embedding Gaussians in Linear Space
4.2.1 Direct Embedding (DE-LogE)

Let us consider the set
A +1) = {Ahx 2 [X ¢

oF O] X € Ut(n), t € ]R”} . ®)

In terms of the definitions of matrix exponential (1) and its
property [37, Proposition 2.4], as well as the properties of
triangular matrix, one can show that A(n + 1) is the Lie
algebra of the matrix group A*(n + 1).

The following theorem states that exp is a diffeomorphis-
m from AT (n + 1) to its Lie algebra A(n + 1).

Theorem 3. The function
exp: Aln+1) - AT(n+1), As x — exp(A¢.x)
is a smooth bijection and its inverse is smooth as well.

Proof It is not difficult to know that any A¢ x in A(n +
1) is uniquely mapped through the exponential function to
At (n +1); conversely, any A, 7z € A*(n + 1) has positive
eigenvalues and thus log(A, z) uniquely exists in A(n + 1)
[39], [41]. So exp : A(n+ 1) — At (n + 1) is one to one and
onto, while the smoothness of exp and that of its inverse are
guaranteed by [39, Theorem 3.11]. O

Now we can extend the Log-Euclidean framework to
AT (n+ 1) by the following theorem.

Theorem 4 (Log-Euclidean on A" (n + 1)). We define

@:AT(n+1) x AT (n+1) = AT (n+1), 7)
A; ® Ay = exp(log(Aq) + log(As)), and
O:Rx AT(n+1) = AT (n+1),
MO A =exp(Alog(A)) = AN,
Under operation ®, A" (n + 1) is a commutative Lie group,
log: AT(n+1) = A(n+1), A — log(A) 8)

is a Lie group isomorphism. In addition, under ® and ©,
AT (n+1) is a linear space.

Proof of this theorem is straightforward and is therefore
omitted [note that A(n + 1) is a Lie group under matrix
addition]. By far A*(n + 1) is equipped with a novel Lie
group structure. The isomorphism establishes the equiva-
lence between A" (n+1) and A(n+ 1), which indicates that
the operations on A" (n + 1) can be transformed, via matrix
logarithm, to the linear space A(n + 1) while respecting
the algebraic and topological structure of A™(n + 1). It is
worth mentioning that, according to [39, Theorem 3.11],
we can draw a more general conclusion as follows. Let

6

IN(n) be the set of all n x n real invertible matrices
with nonnegative eigenvalues. Since any S € IN(n) has
a unique real logarithm, and exp : log(IN(n)) — IN(n) is
a diffeomorphsim, where log(IN(n)) denotes the image of
IN(n) under logarithm, we can establish the Log-Euclidean
on IN(n).

We finally illustrate the complete embedding process of
DE-LogE as follows:

NE) = A, v =2 log(A, 1), )

where ¥ = L™TL7! and L= € PDUT(n). Recall that L
is the Cholesky factor of X',

4.2.2 Indirect Embedding (IE-LogE)

This embedding method consists of three consecutive func-
tions. Let us consider the left coset of SO(n + 1) in
GLT(n+1)

pSO = {PO|O € SO(n + 1)}, (10)

where P € Sym™(n + 1) is an (n + 1) x (n + 1) SPD
matrix. As |PO| = |P||O| = |P| > 0, where | - | denotes
the matrix determinant, pSO is a subset of GLT(n + 1).
Conversely, any matrix G € GL™ (n + 1) has a unique left
polar decomposition [42] G = PR, where P € Sym™(n+1)
and R € SO(n + 1), and thus G belongs to one and
only one coset pSO. Hence, the set of cosets {pSO,P €
Sym™*(n + 1)} partitions GL™(n + 1) and we denote the
set by the quotient GL™ (n + 1)/SO(n + 1) which is well-
known to be a Lie group [14]. Note that A*(n + 1) is a
Lie subgroup of GLT(n + 1), and there exists an injective
function for which

7: At (n+1) - GLT(n+1)/SO(n+1), (11)
ﬂ_(A) =p SO,
where A = PR is the left polar decomposition of A.
Next, we map, through the bijective function
v: GLT(n+1)/SO(n+1) = Sym™(n+1), (12

7(pSO) =P

the coset pSO to the space of SPD matrices Sym™(n + 1).
Below we show that « is a Lie group isomorphism by
defining an operation

x: GLT(n+1)/SO(n+1) x GLT(n+1)/SO(n + 1)
— GLT(n+1)/SO(n +1)
PSO *QSO =PoQ SO, (13)

where P © Q = exp(log(P) + log(Q)) is the logarithmic
multiplication defined on Sym™(n + 1) [14]. The function
v is a Lie group homomorphism since v(pSO %q@S0O) =
Y(PegS0O) = P © Q = v(pSO) ©® v(@SO). The smooth-
ness of 7 and that of its inverse are obvious and thus
it is a Lie group isomorphism, which guarantees that
GL*(n+1)/SO(n + 1) be equivalent to Sym™ (n + 1).

The third function aims to map the SPD matrices into
a linear space. To this end, we adopt the Log-Euclidean
framework proposed by Arsigny et al. [14]. Their idea is to
transform, via matrix logarithm, the Riemannian operations
on Sym™(n + 1) to the Euclidean ones in the vector space
Sym(n + 1); we refer the readers to [14] for details.
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Theorem 5 (Log-Euclidean on Sym™(n + 1)). Under oper-
ation ®, Sym™ (n + 1) is a commutative Lie group, and

log: Sym™(n+1) — Sym(n +1), P+ log(P) (14)
is a Lie group isomorphism. In addition, under ® and ©,
Sym™(n + 1) is a linear space.

Thus far, we summarize the complete embedding pro-
cess of IE-LogE as follows:

NwE) & A,pr = pSO(n+1)
U~
P

(15)

log

log(P) <=

Here ¥ = L~TL~! and L is the Cholesky factor of £7*;
A,, .- has left polar decomposition A, ;-7 = PR.

Properties of P in (15) This matrix has two properties.
1) It is the square root matrix of AunyTAZ;L_T, ie.,
b)) T %
_|Ztpp p

P= [ uT 1} . (16)
The eigenvalues of P are identical to the singular values
of A, 1-7. In addition, their /3-norm condition num-
bers are identical.

2) The matrix R that accompanies P is the closest possible
orthogonal matrix to A, 1,-r [43]. That is

R = argmingeo(ni1)[ApuL-r — Ollr,  (17)

where || - || denotes the Frobenius norm and O(n + 1)
is the orthogonal group of dimension n + 1.

Embedding by right coset In previous development we
have accomplished the embedding of Gaussians based on
the left coset of SO(n + 1). In a very similar manner, we
can consider the right coset SOp = {OP|O € SO(n +
1)} to obtain the second embedding scheme. The space of
cosets {SOp, P € Sym™ (n+1)} partitions GLT (n+1), and
we denote this space by GL™ (n + 1)\SO(n + 1). Note that
any invertible matrix has a unique right polar decomposition
[43]. We map a matrix A € AT (n + 1) to an SPD matrix
through the following two functions:

7:AT(n+1) - GLT(n+1)\SO(n +1),7(A) = SOp,
7 :GLY(n+1\SO(n+1) = Sym™ (n+1),7(SOp/) = P.

Here A = R'P' R’ € SO(n+1),P’ € Sym™(n + 1) is the
right polar decomposition of A. In this case, the embedding
matrix P’ is the square root of AZ L-tA, -7, ie,

L—lL—T | 7 %
pTL T uTp+1
Based on the left coset and right coset, we obtain the
SPD matrices (16) and (18), respectively. Interestingly, Eq.
(16) shares a similar form to those in [35], [36]. However,
our embedding mechanisms are different from theirs; most
importantly, we further map SPD matrices into the linear
space to handle Gaussians with Euclidean operations.

P = (18)

5 COMPUTATION OF L2EMG DESCRIPTOR

In this section, we describe the process of computing
L2EMG descriptors and analyze its complexity.

5.1

Let I be an input image and f(z) be the n-dimensional
vector of raw features computed at the spatial coordinate
z = (z,y). We compute a function-valued image in which
each pixel z is represented by a multivariate Gaussian
N(u(z), 3(z)). The Gaussian can be estimated via the max-
imum likelihood method in a local image region. Let G, (z)
be a 7 X r image patch centered at z. The estimated Gaussian
can be written as

N(z) 2 N (p(z), £(2)) (19)
— [275(2)| " exp(— (£ - p(2)" S(2) " (£ — u(2))),

where | - | denotes the matrix determinant, and

Estimation of Local Gaussians

wz) == > f(z) (20)
z'€G,(z)
S = 5y Y ()~ () (E() — p(a)”

z' €G- (z)

are the empirical mean vector and sample covariance ma-
trix, respectively. In practice, some X(z) may be rank-
deficient and so we add a small positive number to the
diagonal entries of each covariance matrix. A small 7 is
helpful in capturing fine scale local structure, while with
a big r the local statistics at larger scales will be captured.

The function-valued image can be obtained by construct-
ing the integral images for mean vectors and covariance
matrices [7]. Given a raw feature map, we build respectively
an integral image for each component of the raw feature
vector, and an integral image for the cross product of any
pair of components. As each integral image can be com-
puted via one pass of the original one, the computational
cost to build all integral images is O(n(n + 3)|I|), where
|| denotes the area of the image. Through these integral
images, the empirical mean vector and covariance matrix
of a rectangular patch of any size can be obtained using
2n(n + 3) additions and two divisions.

5.2 Computation of Embedding Matrix

In what follows, we describe how to compute the em-
bedding matrices. We omit the spatial coordinate z in the
mean vector and covariance matrix for the convenience of
expression. To facilitate operations, we vectorize the final
embedding matrices.

DE-LogE For the decomposition ¥ = LTL-!, it is s-
traightforward to develop a procedure, analogous to the
Cholesky decomposition algorithm [40, Section 4.2], to di-
rectly compute L~7 rather than through the inverse of L.
The embedding matrix log(A, 1,-7) can be written as

log o1 7“;11051"1
-T
log [IE)T ’ﬂ or . (21)
n 10g On
logo, e otrn
X is full

¥ is diagonal

Note that for the diagonal covariance ¥ = diag(c?), the
embedding matrix has a simple, analytic expression. For
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the full-covariance, performing decomposition of ¥ costs
O(n?/3). Though being upper triangular, A, -~ may not
be diagonalizable. We use MATLAB function "logm" to com-
pute the matrix logarithm, which implements the algorithm
in [44] with a cost of O(28(n+1)3). For diagonal-covariance
Gaussians, computation of the matrix logarithm is very
efficient since it only requires the logarithms, multiplications
and divisions of real numbers, each n times.

IE-LogE For indirect embedding based on the left coset,

. s S+pp”
we compute the eigen-decomposition 'L‘;“ ﬂ =

Odiag(A;)O, where \;,;i = 1,...,n + 1, are eigenvalues
and O is an orthogonal matrix consisting of eigenvectors
corresponding to A;. The embedding matrix has the form

!
log(P,1-7) = ochag(5 log(\;))O™. (22)

Hence, the complete embedding procedure will cost
O(4(n + 1)3) for matrix eigen-decomposition and O((n +
1)3) for matrix multiplications.

For indirect embedding based on the right coset, we first
perform matrix factorization ¥ = L~7L~! whose complex-
ity is O(n3/3). Then we compute the eigen-decomposition

1’;;11:_; ”LT;J’:J = O’diag(\;)O’". The embedding matrix
can thus be written as

.1 /
log(P, 1) = O'diag(; log(}))0 ™. (23)
The eigen-decompoistion costs O(4(n + 1)3) and the matrix
multiplications that follow in Eq. (23) costs O((n + 1)3).

6 EXPERIMENTAL EVALUATION

In this section, we apply the proposed L2EMG to image
classification. After introducing the experimental setup, we
will make a thorough analysis of parameters on the chal-
lenging Pascal VOC 2007 database [45], aiming to achieve
an in-depth insight into L’EMG while obtaining a set of
suitable parameters before moving to other scenarios. Then,
we make comparisons with state-of-the-art local descriptors
on Pascal VOC 2007 [45], Caltech-256 [46], Scene-15 [3], Sun-
397 [47], and Flickr Material Database (FMD) [48].

6.1 Experimental Setup

We employ the well-known bag-of-visual-words (BoW)
pipeline for classification [49], and follow the setting of
BoW as described in [50]. Three kinds of encoding methods
are considered to model images: (1) hard coding (Vector
Quantization, VQ) with sum (average) pooling [49]; (2)
Locality-constrained Linear Coding (LLC) with max pooling
[51]; and (3) Fisher vector (FV) with average pooling [4].
As suggested in [50], [52], VQ coding vectors are fed to
X2 kernel-based SVM while LLC and FV are fed to linear
SVM. We exploit the VLFeat package [53] wherever possible,
e.g., extraction of SIFT, LBP or HoG and SVM implementa-
tion. We perform power normalization (PN) followed by
Iz normalization [4] for L2EMG and L?ECM descriptors
[15]. The spatial information is incorporated via the spatial
pyramid matching (SPM) mechanism [3]. Three levels of
SPM [1 x 1,2 x 2,3 x 1] are used for Pascal VOC 2007, and
two levels of SPM [1 x 1,3 x 1] are used for Caltech-256,
Scene-15, and Sun-397. We do not use SPM on FMD.

6.2 Parameter Analysis of L2ZEMG on VOC 2007

We conduct experiments on VOC 2007 benchmark to make
an analysis of parameters involved in L2EMG. VOC 2007
contains 20 classes and 9,963 images in total. We select
this dataset for parameter analysis because it is challenging
and is well designed [45] so that the conclusions drawn on
this dataset can extrapolate to other challenging ones, as
argued in [4]. We follow the standard protocol: using "train"
and "val" sets for training, "test” set for testing, and mean
average precision (mAP) over 20 categories as the accuracy
measure. We employ the baseline VQ coding method with
4K dictionary for evaluation, unless otherwise stated.

00 0 ooy 1 -1 -1 ] 35 5
10 -1 L /o N 3 1 -2 -1 = -3 0 5
2442 11 3 3 3
000/ l00 0 (10 71J
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Fig. 2. Image derivative operators or filters [54] used in our paper

TABLE 3
Classification accuracy (mAP, %) of LZEMG versus varying
combination of raw features on VOC 2007

i
No. Raw features # Dim. h S]i:CM L2EMG
#1 Delta+Loca.+SePD1 gt 2nd 7 51.25 47.85
#2 OHE (8 Bins) 8 52.11 51.13
#3 Delta+#2 9 52.83 51.83
#4 Delta+Loca.+#2 11 52.97 50.44
45 i%;)—gCG+K1rs.+NBG+FDO(J+BCO 16 50.86 5028
#6 (FC+PCG+Kirs.) st +2na+Lapl. 16 50.38 51.32
+Cheb.
#7 Delta+#5 17 52.30 53.72
#8 Delta+#6 17 51.87 54.13
49 Delta+(FC+PCG+Kirs.)1s¢+2nd 17 51.07 53.93
BL?pl'%%t54f>]éG Kits *NBG
elta+(FC+ +Kirs.+
#10 +FDOG) 21 4 2na+Lapl. 23 52.09 54.32
Delta+(FC+PCG+Kirs.)1St+2nd+3rd
#11 +(Lapl.+Cheb.)os+4en 25 51.43 54.29
#12 | Delta+Gabor 25 51.40 51.97
#13 RGB+#7 19 51.55 52.28
#14 | Lab+Loca.+Harr.+#7 24 50.36 50.04

Raw Features The intention of L2EMG is to leverage local
statistics of multiple image cues, what we call raw features.
As suggested in [7], the commonly used raw features in-
clude intensity, color, location (Loca.), 1st- and 2nd-order
derivatives computed by separated pixel difference (SePD)
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operators (cf. Table 3). Moreover, we study a variety of
operators [54], as shown in Fig. 2, which extract image
derivatives in varying directions and at different scales. We
further consider the orientation histogram of edges, 3rd- and
4th- derivatives, Gabor filters and Harris features. We thus
cover most of the commonly used cues in image processing.

We empirically divide the combinations of these cues
into four categories containing 14 kinds of raw feature
combinations, as presented in Table 3. 1) The first class
of raw features (#1 in Table 3) is often used in covari-
ance descriptors [7], which contains intensity, location, and
derivatives computed by SePD operators. 2) The orientation
histogram of edges (OHE) [55] collects the zero-order statis-
tics of gradients which provides a complementary cue to
the aforementioned ones. We combine OHE with intensity
or location to form a family of OHE-based raw features
(#2 ~#4 in Table 3). 3) A family of derivative-related image
operators are listed as #4~#11 in Table 3. The operators we
considered are 3 x3 1st-order derivative operators including
Frei-Chen (FC), Prewitt compass gradient (PCG) and Kirsch,
5x5 1st-order Nevatia-Babu gradient (NBG) operators, first-
order Derivative operator of Gaussian (FDOG), 7x7 1st-
order operators such as Box Car Operator (BCO), Truncated
Pyramid Operator (TPO), and 2nd-order operators of Lapla-
cian and Chebyshev. The #5 and #7 raw features focus on
combination of the 1st-order operators. The #6, #8 and #10
raw features combine 1st- and 2nd-order operators, while #9
and #11 combine 1st-, 2nd- and 4th-order ones. Note that #5,
#7 and #10 raw features integrate multi-scale operators and
that the intensity by Delta operator is joined as a basic cue
from #7~#11. 4) Finally, we evaluate additional color, Gabor
filters, Harris features and location in #12~#14.

L?EMG and L2ECM [15] descriptors are both extracted
with 16 x16 patch size and sampling step 2. Table 3 presents
the classification results (mAP, %), from which we can see
that their performances against various combinations of
raw features are very different. L2ECM achieves the best
performance by combining OHE, intensity and location (#4
in Table 3), while L2EMG obtains the highest accuracy by
using a combination of multiscale, 1st-, 2nd-order derivative
operators and intensity (#10 in Table 3). Generally speaking,
L?ECM performs better than L2EMG by using the family of
OHI-based features, while L’EMG outperforms L2ECM by
using the family of derivative-related image operators.

The choice of raw features in L’EMG or L?ECM influ-
ences substantially the classification performance. From the
detailed comparison, we have the following conclusions.

1) The family of OHE-based raw features are more appro-
priate for L2ECM rather than L’EMG. The reason may
be that the mean of discrete probability distributions
(OHEs) brings a negative effect in embedding Gaus-
sians with full covariances.

2) Comparison of combinations #8, #10 and #11 indicates
that the 3rd-order and multi-scale operators slightly im-
prove performance. These three combinations achieve
comparable results and hence we do not consider
higher-order or larger size operators.

3) From the comparisons of #2 against #3, #5 against #7,
and #6 against #8, we can see that intensity is an
important cue for both L2ECM and L?EMG descriptors.
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By integrating it into the descriptor we can achieve 0.8%
~ 3% performance gains.

4) The Gabor filters are of relatively high dimension but
fail to bring better performance. This may be because
texture information of small patches extracted by Ga-
bor filters is not distinct enough and is thus not very
competing for classification tasks. Color, location and
Harris features are not suitable for L’EMG or L2ECM.

5) From combinations #5 to #11, we observe that the
inclusion of more raw features improves performance.
But when the dimension of feature vector is higher than
25, the performance decreases. Much higher dimen-
sionality may bring difficulties in estimating the full-
covariance matrix of a Gaussian, due to small sample
size and unaffordable, computational burden 2.

To balance accuracy and efficiency, in all the following
experiments, we adopt the combinations of raw features
given by #4 and #8 in Table 3 for L’ECM and L?EMG, re-
spectively. The work above should not be simply interpreted
as a process of raw features selection, and the raw features
are not limited to the ones used here. However, we make the
first attempt in analyzing what raw features help to improve
the performance of L2EMG; our analysis also underscores
that the raw features and their combinations are important,
and thus sophisticated feature selection algorithms may
further benefit the proposed descriptor.

DE-LogE

|E-LogE (L)

IE-LogE (R)

Lovric-LogE

Lovric et al.

Gong et al.

Skovgaard et al.

Amari et al.

T T T T T 1
46 48 50 52 54 56

mAP (%)

S

Fig. 3. Comparison of different embedding methods on VOC 2007

Embedding Methods The space of Gaussians is a Rie-
mannian manifold and here we carry out experiments to
testify whether our embedding can effectively leverage the
geometrical structure of this space. We evaluate the perfor-
mance of our embedding methods: direct embedding (DE-
LogE) as in Eq. (21), indirect embedding based on the left
coset (IE-LogE(L)) and based on the right coset (IE-LogE(R))
as in Eq. (22) and Eq. (23), respectively. In the methods
of Skovgaard et al. [34], Gong et al. [26], Lovri¢ et al
[36], Gaussians with the geodesic distance or dissimilarity
measure are entangled and thus they are computationally
prohibitive in our methodology. Hence, these embedding
matrices or vectors are viewed as in the Euclidean space
and they are compared with ours as baseline Euclidean

2. The L2EMG with diagonal-covariance Gaussians are special cases
of that with full-covariance Gaussians. Such Gaussians indicate uncor-
relations of various raw features which are often violated in practice.
Nevertheless, for feature vectors of much higher dimensions, it may
be the only feasible solution. In Section 6.3, we will introduce such a
competitive LZEMG descriptor with 128-dim SIFT as raw features.
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methods. As an exception, the embedding matrices of Lovri¢
et al. share similar forms to IE-LogE(L), and as in [32], the
Log-Euclidean methodology can be applied to them (Lovri¢-
LogE). We set patch size and sampling step to 16 x 16 and
2, respectively.

Fig. 3 shows the comparison results. We can see that IE-
LogE(L) achieves the highest recognition accuracy, while
IE-LogE(R) and DE-LogE outperform all the Euclidean
baselines [26], [34], [36]. Finally, we note that Lovri¢-LogE
[32] is also competitive, and it is a little inferior to IE-
LogE(L). We believe that these comparison results validate
that our embedding methods respect the geometry of the
space of Gaussians. We owe this to that our embedding
processes strictly conforms to the Lie group isomorphisms
which establish the equivalence between the embedded and
embedding spaces.

Patch size & Sampling step The patch size and sampling
step have influence on capturing local structure and local
descriptor density, respectively. We fix the sampling step to
2 to test the effect of patch size, and the results are presented
in Table 4(a). The performance increases consistently as
patch size gradually reduces from 24x24 to 12x12. This
indicates that local characteristics at finer scales are more
distinctive and discriminative. But a too small patch size
(8 %8 or smaller) leads to insufficient number of samples for
Gaussian estimation so that performance deteriorates. By
combination of four scales of patches (i.e, 12~24), L2EMG
achieves mAP 54.92% and L2ECM 53.78%. In all the remain-
ing experiments, we set patch size to 16 x 16 whenever single
scale L’EMG or L2ECM is used, for ensuring enough sam-
pling points to estimate Gaussians or covariance descriptors.

TABLE 4
Effect (in terms of mAP, %) of patch size and sampling step on LZEMG
and L2ECM on VOC2007

(a) Patch size

Patch size 8x8 12x12 | 16x16 | 20x20 | 24x24
L?ECM [15] | 52.68 53.12 52.97 51.91 51.57
L7EMG 53.87 54.24 54.13 53.35 52.80
(b) Sampling step
Sampl. step 1 2 3 4 5 6
LZECM [15] 53.16 | 5297 | 5236 | 51.43 | 50.25 | 49.10
L’EMG 54.26 | 54.13 | 53.49 | 53.02 | 5247 | 51.58

Next we conduct experiment to test the influence of
the sampling step by fixing the patch size to 16x16. It is
evident that a smaller step results in denser patches and
thus more information is extracted. We vary the sampling
step from 1 pixel to 6 pixels. As presented in Table 4(b),
with the increase of step size, the classification performances
of both descriptors consistently drop. Note that a smaller
sampling step means a larger number of image patches
and accordingly, higher computational cost for descriptor
extraction, coding and pooling. To tradeoff accuracy and
efficiency, we set the sampling step to 2 throughout the
following experiments.

6.3 Comparison on VOC 2007

Finally, we compare our descriptors with three well-known
descriptors, Local Binary Pattern(LBP), HoG and SIFT ex-
tracted using VLFeat [53]. The descriptors are compared at
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single(S) scale and at multiple(M) scales (7 scales for LBP
and HoG, and 4 scales for SIFT, L2ECM and L?EMG). To
avoid possible comparison bias, we employ three coding
methods, i.e., VQ (hard-assignment), LLC (soft-assignment)
and FV (super vector).

The parameters of our descriptor, L2EMG (Full), are
tuned as described previously. Specifically, we employ 17-
dim raw features #8 (cf. Tab. (3)) for estimation of full-
covariance Gaussians, which are then embedded by IE-
LogE(L). The L?ECM are computed with 11-dim raw fea-
tures #4. Note that the embedding method of DE-LogE is
suitable for high-dimensional features. We propose L2EMG
(Diag.) to exploit high-dimensional raw features, i.e., the
widely used 128-dim SIFT. We compute pixel-wise SIFT de-
scriptors at four scales, reduce their dimensions to 64 using
PCA, and then estimate the diagonal-covariance Gaussians
at a single scale on 16x16 patches with sampling step 2 °.
The diagonal-covariance Gaussians are embedded by DE-
LogE (cf. Eq. (21)) to obtain 128-dim L?EMG (Diag.).
Comparison of descriptors using VQ and LLC The com-
parison of descriptors using VQ and LLC are presented in
Table 5. It can be seen that LBP and HoG are much inferior to
the other three descriptors in terms of classification accuracy.
We observe that in most cases L2ECM has very similar ac-
curacy to SIFT, both of which are, on average, outperformed
by L2EMG (Full) (over 1.5% for the case of single scale and
over 1.2% for multiple scales). It is worthy to mention that
even single scale L’EMG (Full) is superior to multiple scale
SIFT with LLC. It can also be observed that, when using VQ
and LLC, L?’EMG (Diag.) is less competitive than L2EMG
(Full).

TABLE 5
Classification accuracy (mAP, %) of competing descriptors using
various coding methods on VOC 2007

Methods VQ LLC FV
Dictionary size 4K | 25K | 4K | 25K || 256
oo S [ 4332 | 4417 | 4154 | 4255 || 48.70
M | 4427 | 45.83 | 4243 | 43.95 || 49.63
oG S [ 4387 | 4614 | 4217 | 3.2 || 5034
M | 45.84 | 48.06 | 43.25 | 44.68 || 52.85
p— S [ 5239 | 53.72 | 5342 | 5654 || 59.98
M [ 53.82 | 5542 | 53.66 | 57.66 || 6171
S [ 5207 | 5367 | 5344 | 5623 || 5752

2
LECM [15] M | 5378 | 5536 | 53.68 | 56.89 || 58.59
S [ 5413 | 5467 | 5544 | 58.16 || 59.66

2
LPEMG (Full) 5197 T 55.88 | 55.87 | 5867 || 60.60

[ LZEMG (Diag.) | - | 52.78 | 54.46 | 53.42 | 55.31 ][ 64.65 ]

Comparison of descriptors using FV Unlike VQ and LLC
which are both based on K-means clustering (or dictionary
learning), FV trains a Gaussian mixture model (GMM) as a
dictionary. To handle high-dimensional descriptors, the FV
method performs dimension reduction by PCA and exploits
Gaussian with diagonal covariance for estimating GMM and
deriving the coding vectors. Hence, to begin with, we study
the impact of dimension reduction on our descriptors with
FV on VOC 2007. The results of L’EMG (Full), L2EMG
(Diag.), and L?ECM at single scale are shown in Fig. 4.

3. Diagonal-covariance Gaussians at multiple scales bring trivial
gains which are hence not reported.
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It can be seen that they achieve the highest accuracies
when dimensions are 96, 80 and 56, respectively. When the
dimension > 48, L?’EMG (Diag.) has distinct advantages
over the other two while L2EMG (Full) outperforms L2ECM.
Subsequently, we compare L2EMG (Full), L2EMG (Di-
ag.), L2ECM, SIFT with reduced dimension, LBP and HoG.
For each method, the dimensionality is determined by its
highest classification accuracy. The results are presented in
the last column of Table 5. The LBP and HoG using the FV
coding are still much inferior to other descriptors. For the
case of single scale, L’EMG (Full) is comparable to SIFT and
is superior to L2ECM (over 2% accuracy); for multi-scale
case, SIFT is better than L2EMG (Full) with a margin of
1% accuracy. Finally, it can be observed that L2EMG (Diag.)
outperforms all the other descriptors and it is almost 3%
higher than the second-best method, SIFT, in accuracy.

Discussion on L’EMG (Full), L’EMG (Diag.) It can be
observed that L2EMG (Full) outperforms L?EMG (Diag.)
using VQ or LLC by a non-trivial margin but is much
inferior to L?’EMG (Diag.) using FV. From the perspective
of image descriptor, one of the major differences between
VQ or LLC and FV is whether PCA is performed or not.
In the FV method, the dictionary and coding vector are
based on GMM with diagonal covariance matrices; it has
been shown [4] that PCA makes the SIFT descriptors better
fit the diagonal assumption (the performance is raised over
7% by using PCA). In what follows, we make experiments
to investigate whether PCA is suitable for or harms L2EMG
(Full).

mMAP (%)

-e-1%ECM
—=— 2EMG (Full)
R ——L%EMG (Diag.)

48 64 80 96 12 128
Feature dimensionality

Fig. 4. Impact of dimensionality reduction on L?EMG and L?ECM with
FV on VOC 2007

For each of L2EMG (Full) and L?EMG (Diag.), we ran-
domly select 5 million descriptors from training images
and estimate per-dimension distribution (histogram). We
found that the distributions of all dimensions of L2EMG
(Diag.) are unimodal, but over 70 percent of dimensions of
L?EMG(Full) are essentially bimodal in distributions. As an
example, Fig. 5 shows the distributions of some dimensions
of each descriptor. Obviously, L2EMG (Diag.) is more ap-
propriate for diagonal covariance matrix assumption, even
without using PCA (indeed L?’EMG (Diag.) obtains 63.38%
accuracy without PCA as opposed to 64.14% with PCA).
In contrast, the distribution of L°EMG (Full) is strongly
multi-modal (please refer to the supplementary material
for examples). This will degrade much the distinctness of
L2EMG(Full).

Comparison with state-of-the-art The proposed L?’EMG
(Full) and L2EMG (Diag.) are complementary as they em-
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Fig. 5. Comparison of the distributions of dimension #30, #60 and #90
(from left to right) of L2EMG (Diag.) and LZEMG (Full) on VOC 2007

ploy different raw features. Hence, we also consider the
score level fusion of them, in which the fusion weight
is determined by using cross-validation. We present the
comparison results in Table 6(a). Under the FV framework,
L?EMG (Diag.) is much better than SIFT and is even s-
lightly better than the fusion of SIFT and color; fusion of
L?EMG (Full) and L2EMG (Diag.) outperforms SIFT+color
by 1.2%. Peng et al. [58] improved the VLAD method [13] by
leveraging high-order statistics (HOS-VLAD), achieving an
accuracy of 61.2%; they further resorted to the supervised
dictionary learning and achieved 65.2%, while our fusion
method yields 65.7%, still outperforming them. Li et al. [56]
combined FV with visual concepts (VC) learned from a large
quantity of internet images collected by using text-based
queries. Kobayashi [57] transformed the histogram-based
features using the Dirichlet-derived GMM Fisher kernel.
Our L2EMG (Diag.) and the fusion method both perform
better than them.

6.4 Results on Other Benchmark Datasets

In what follows, we carry out experiments on other popular
benchmark datasets under the FV framework but focus
on descriptor comparison. Our experiments involve object
classification on Caltech-256 [46], scene categorization on
Scene-15 [3] and Sun-397 [47], and material recognition on
FMD [48].

Caltech-256 [46] has about 30K images distributed in
256 categories, containing diverse object sizes, poses, and
lighting conditions. According to the standard experimental
setting, we increase gradually per-category training set size
from 15 to 60 with a step of 15 and test with the rest
of images. We present the average classification accuracy
over five trials in Table 6(d). We compare with the meth-
ods in [57], [64], [65], all of which involve mapping or
transforming of the local features (e.g., SIFT) and achieve
improved performance over SIFT with FV [4]. We also
compare with Multipath Hierarchical Matching Pursuit (M-
HMP) [66] which learns features in a deep architecture,
and yields better performance than fusing SIFT and color
with FV. The superiority of L2EMG (Full) over L*ECM
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TABLE 6
Comparison with state-of-the-art methods on a variety of benchmark datasets

(a) VOC 2007 (b) Scene-15 (c) FMD

Methods mAP Methods Acc. Methods Acc.

Challenge winners 59.4 GIST [22] 73.3+0.7 Sharan et al. [61] 57.1

FV+VC [56] 62.9 CENTRIST [22] 83.94 0.8 Kobayashi2014 [57] 57.3

Kobayashi2014 [57] 63.8 VQ+VC [56] 85.4 DeCAF [62] 60.742.0

HOS-VLAD [58] 61.2 Hybrid-Parts + GIST + SP [59] 86.3 DTD [63] 61.1+1.4

FV+SIFT [4] 61.8 CENTRIST + LLC + Boosting [60] 87.8 FV+SIFT [63] 58.2E1.7

FV+(SIFT+Color) [4] 63.9 FV+SIFT [53] 88.1 FV-+(SIFT+Color) [63] 63.3+1.9

FV+LZECM [15] 58.6 FV+L?ECM [15] 85.6 + 0.3 FV+LZECM [15] 58.2+1.9

FV+L2EMG(Full) 60.8 FV+L2EMG(Full) 88.1+ 1.1 FV+L2EMG (Full) 65.44+1.0

FV+L2EMG(Diag.) 64.7 FV+L?EMG(Diag.) 89.5+ 0.5 FV+L2EMG (Diag.) 64.2+1.7

FV+L2EMG(Full + Diag.) | 65.7 FV+L2EMG(Full + Diag.) 90.24+0.3 FV+L2EMG (Full + Diag) | 67.240.3

(d) Caltech-256 (e) Sun-397

# training 15 30 45 60 # training 5 10 20 50
Kernel Map [64] 403E0.1 | 485102 | 52.9+03 | 559104 Features Fusion [47] 145 209 28.1 38.0
Arandjelovic etal [65] 41.2+0.3 49.5+0.2 | 539404 | 56.8+0.3 Kobayashi2014 [57] - - - 46.1£0.1
Kobayashi2014 [57] 418402 | 49.840.1 | 54.4403 | 57.4+0.4 DeCAF [62] - - - 40.940.3
M-HMP [66] 427 50.7 54.8 58.0 FV+SIFT [4] 192404 | 266204 | 342+03 | 43.3%£02
FV+SIFT [4] 385+02 | 474101 | 521104 | 548104 FV+(SIFT+Color) [4] 211403 | 29.140.3 | 37.4+03 | 47.240.2
FV+(SIFT+Color) [4] 41.0£03 | 494402 | 543£03 | 57.34+0.2 FV+L?ECM [15] 162401 | 23.84£0.3 | 31.1+02 | 39.9+0.2
FV+LZECM [15] 394403 | 472404 | 51.6+0.3 | 55.0+0.3 FV+L2EMG(Full) 17.0+0.4 | 247402 | 325402 | 423403
FV+L2EMG(Full) 39.6+0.4 | 476404 | 52.64+0.2 | 56.24+0.4 FV+L2EMG(Diag.) 205405 | 28.6+0.2 | 36.84+02 | 46.440.3
FV+L2EMG(Diag.) 424 403 | 509402 | 55.140.2 | 59.040.6 FV+L2EMG(Full + Diag.) | 22240.5 | 30.840.1 | 39.6+0.1 | 49.840.2
FV+L2EMG(Full + Diag.) | 450402 | 53.6403 | 58.240.3 | 61.840.4

is not significant, and both are comparable to SIFT. Our
L?EMG(Diag.) outperforms all the aforementioned compet-
ing methods, even FV combined with SIFT and color; by
combining L2EMG(Full) with L2EMG(Diag.), we further
achieve an accuracy improvement of 2.8% on average.

Scene-15 [3] consists of 4,485 images, and the number of
images per category varies from 200 to 400. Following [3],
we randomly choose 100 training images per class, while
the remaining ones are reserved for testing. The average
accuracy over five trials is reported. We compare with GIST
[67] and CENTRIST [22] which are both designed for scene
categorization. From Table 6(b) we can see that L>’EMG(Full)
achieves the same accuracy as SIFT, and outperforms GIST,
CENTRIST and the learned visual context (VC) features [56].
L?EMG(Full) performs better than L2ECM by 2.5%, while
L?EMG(Diag.) is superior to L?EMG(Full). Combination
of L2EMG(Full) and L?EMG(Diag.) yields an accuracy of
90.2%.

Sun-397 [47] contains 108,754 images over 397 categories,
and each category has at least 100 images. Following the
experimental setting in [47], we use ten pre-defined subsets
of the dataset for evaluation, where each subset includes 50
training images and 50 testing images per class. In addition,
we use different numbers (5, 10, 20 and 50) of images for
training, but all the 50 testing images are used for testing
in each trial. The results on Sun-397 are reported in Table
6(e). We can see that L2EMG(Full) performs better than
L?ECM, the feature fusion method [47] and DeCAF [62], but
is inferior to SIFT. The reason may be that the current raw
features in LZEMG(Full) may not be very suitable for scene
images and dimensionality reduction. The potential raw
features appropriate to scene may help improve the perfor-
mance of L2EMG(Full). L2EMG(Diag) performs better than
SIFT by 2.25% on average. The fusion of L’EMG(Diag) and
L2EMG(full) achieves the best performance, outperforming

the second best method, SIFT+Color, 1.9% on average.
FMD [48] contains a diverse selection of surfaces in 10
material categories, each including 100 images. According
to the evaluation protocol in [63], we report, in Table 6(c),
the results averaged over 5 random splits of FMD (50%
for training and 50% for testing). We compare with the
perceptually inspired features [61] which are specifically
designed for material classifications, the deep convolution
activation features (DeCAF) [62] and high-level semantics
attributes (DTD) [63] learned upon the FV and DeCAF. One
can see that L2EMG(Full), achieving 65.4% in accuracy, is
superior to L2EMG (Diag.) and performs much better than
all the competing methods, including the fusion of SIFT
and color using FV. The performance is further boosted to
67.5+0.3% by our fusion method, which is slightly higher
than the currently best result, 67.1£1.5 %, obtained by a
sophisticated method that combines FV+SIFT, DeCAF, DTD
learned upon FV and DeCAF [63]. Furthermore, our method
has a much smaller standard deviation.

6.5 Experimental Summary and Discussion

This section summarizes and discusses our experimental
results based on different types of classification tasks.

1) L?EMG is a very general image descriptor, suitable for
a variety of image classification problems, including
object classification, scene categorization and materi-
al recognition. It even outperforms some descriptors
specifically designed for particular classification tasks.

2) When combined with FV, LZEMG(Diag) is consistently
superior to SIFT, one of the most effective hand-crafted
descriptors, and L2EMG(Full) fits material classification
very well. We attribute the efficacy of L>EMG to the
leveraging of local, higher-order statistics, and to the ef-
fective embedding methods which respect the algebraic
and topological structure of the space of Gaussians.
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By using VQ and LLC, L2EMG(Full) is superior to
L?EMG(Diag.), but is inferior to L2EMG(Diag.) by us-
ing FV. The reason may be that PCA degrades its
distinctness, as described in Section 6.3. Interestingly,
L?EMG(Full) and L2EMG(Diag.) are complementary
descriptors, and their combination leads to, in almost
every case, state-of-the-art performance.

Compared to L2ECM, L?EMG(Full) has better perfor-
mance on all benchmarks, particularly on VOC 2007,
Scene-15 and FMD. This clearly shows that the first-
order statistics (mean vector) is by no means trivial.

CONCLUSION

This paper presented a function-valued descriptor called
L?EMG to characterize local, high-order statistics by ex-
tracting Gaussian distributions from a local neighborhood.
We developed Log-Euclidean methods to handle Gaussians
with Euclidean operations instead of Riemannian ones. Our
main contributions are summarized as follows:

Unlike popular histogram-based descriptors, which,
based on feature space quantization, collect zero-order
(occurrence) information, the proposed L?EMG de-
scriptor is continuous and models higher-order statis-
tics. It can naturally leverage multiple cues or other
descriptors (e.g, SIFT) as raw features.

We showed that the space of Gaussians can be equipped
with a Lie group structure, and that it is equivalent to a
subgroup of the upper triangular matrix group. These
conclusions, not presented in previous literature as far
as we know, provide new insights into the algebraic
and geometrical structure of Gaussians.

We introduced two novel methods to embed Gaussians
in the linear spaces. One performs direct embedding by
matrix logarithm while the other performs embedding
via the space of SPD matrices as an intermediate pro-
cess. Both methods depend on Lie group isomorphisms
and thus respect the geometry of spaces involved.

We evaluated thoroughly the L2EMG descriptors, clari-
fying the influence of raw features, embedding methods
and so on. In the BoW pipelines, we compared with
a variety of descriptors on popular benchmarks and
demonstrated that L2EMG descriptors are very com-
petitive.

Compared to histogram-based descriptors (e.g. SIFT),

our L2EMG descriptors are computationally more demand-

ing.

In the future, we will develop parallel algorithms run-

ning on off-the-shelf, multi-core CPUs or many-core Graphic
Processing Units (GPU), to accelerate computation of the
descriptors. In light of the success of covariance descriptors,
we are also interested to apply L’EMG descriptors to other
vision tasks such as visual tracking and image retrieval.
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