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Abstract—This correspondence proposes a wavelet-based fractional
Brownian motion (fBm) signal estimation scheme. Despite the fact that
wavelet transform approximately whitens the fBm processes, it is observed
that statistical dependencies still exist across adjacent wavelet scales and
between neighboring wavelet coefficients. These dependencies can be
exploited to improve the estimation of fBm signals embedded into noise.
The idea is to reorganize the wavelet coefficients into a scale–time mixture
model and then carry out the minimum mean-square-error estimation
(MMSE) using the model. Experiments show that the proposed scheme
obtains better estimates than Wornell and Oppenheim’s algorithm, in
which the wavelet dependencies are not utilized.

Index Terms—Fractional Brownian motion(fBm), intra- and inter-scale
dependency, signal estimation, wavelet transform.

I. INTRODUCTION

Fractional Brownian motion (fBm) was introduced to model the pro-
cesses with long-term dependencies and statistical self-similarity [1],
[3]. Since the fBm processes are nonstationary while having stationary
increments, the time–frequency techniques, especially wavelet trans-
form (WT) [14]–[16], are suitable tools in analyzing the behaviors of
the fBm processes. The self-similarity property of fBm implies that any
portion of a continuous fBm process can be viewed as a scaled version
of itself. Thus, WT, with its innate multiresolution structure, naturally
endows a good description of fBm.

Orthogonal wavelet transform (OWT) is almost a Karhunen–
Loève-like transform that well decorrelates a rich class of random
processes [12]. As for fBm signals, several papers [4], [5], [7], [10],
[11] have discussed their correlation structures in wavelet domain.
They showed that due to the 1=f -type spectral behavior of fBm, the
auto- and cross-correlation functions of its OWT coefficients decay
exponentially along scales. With this property, some wavelet-based
approaches have been proposed to efficiently estimate the parameters
of fBm processes from noise-free or noisy measurements [5], [6],
[8], [9], [13]. Wornell and Oppenheim [6] and Kaplan and Kuo [9]
developed two approximate maximum-likelihood estimators that,
respectively, applied to fBm signals and discrete fractional Gaussian
noise (DFGN). The estimator of Fieguth and Willsky [8] models
an fBm signal as a multiscale tree by Haar wavelet. Wornell and
Oppenheim [6] also recovered the fBm signals by the minimum
mean-squared-error estimation (MMSE) technique with the corre-
sponding estimated parameters. In [13], Hwang gave a Wiener filter
of noisy fBm signals with nonorthognal wavelet transforms. Wornell
and Oppenheim’s method is a specific case of the Wiener filter when
OWT is used.

Although an fBm signal is significantly whitened by OWT, its
wavelet coefficients still have some dependencies inter-scale and
intra-scale. This correspondence aims at developing a noisy fBm
signal estimation scheme, in which the wavelet intra- and inter-scale
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dependencies are exploited to improve the signal estimates. The main
idea is to form a random vector by combining wavelet coefficients
at two adjacent scales which are associated to each other by descen-
dant–ancestor relationship. By computing the statistics of the vector
variable, the MMSE technique is then applied to the multiscale model
to recover the fBm signals.
The rest of the correspondence is organized as follows. Section II

introduces the wavelet decorrelation of fBm processes. Section III de-
velops the proposed multiscale MMSE-based scheme of fBm signal
estimation. In order to demonstrate the efficacy and advantages of the
new estimation scheme, simulation results are presented in Section IV.
Section V is the conclusion.

II. REPRESENTATION OF FRACTIONAL BROWNIAN MOTION BY

WAVELET TRANSFORM

Fractional Brownian motion (fBm) is a generalization of ordinary
Brownianmotion [1]. It is a zero-mean nonstationary stochastic process
BH(t), whose covariance function is

rB (t; s) =
�2

2
jtj2H + jsj2H � jt � sj2H (1)

where parameter 0 < H < 1 controls the roughness of the process.
The ordinary Brownian motion is the case when H = 1=2. In [3],
Flandrin stated that the average spectrum of fBm could be written as

SB (!) =
�2

j!j2H+1
: (2)

The above equation implies that fBm is competitive to model those sto-
chastic processes with long-term dependencies such as 1=f -like pro-
cesses.
Although fBm is nonstationary, its increments are stationary and sta-

tistically self-similar. That is, the statistic properties of processBH(t+
s)� BH(t) depend only on S and there is [1]

BH(t+ s)�BH(t) �= b�H [BH(t+ s � b)�BH(t)] (3)

where symbol “�=” means identical in distribution and b is a constant.
In discrete computation, a continuous fBm process is sampled as
BH [k] = BH (k ��t), where �t is the sampling period. The
increment, defined as

XH [k] = BH [k + 1]�BH [k] (4)

is called the discrete fractional Gaussian noise (DFGN) [2]. DFGN is a
zero-mean stationaryGaussian process whose autocorrelation function
is

rX [k] =
�2X
2

jk + 1j2H � 2 jkj2H + jk � 1j2H (5)

where �2X is the variance of sequence XH [k].
Since fBm characterizes the nonstationary and self-similar features,

theWT [14]–[16], as an inherent multiscale (multiresolution) represen-
tation, is naturally an appropriate and powerful tool in analyzing fBm
signals. Suppose function  is a mother wavelet basis, WT represents
a function f as the linear combination of a series of dilations and trans-
lations of  : f = dj;n j;n, where  j;n(t) = 2�j=2 (2�jt� n),
j; n 2 Z. Suppose aB0;n is the initial fBm sequence given at the finest
scale j = 0, i.e., aB0;n = �(t� n)BH(t)dt, where function � is the
associated scale function of wavelet function  . Then wavelet coeffi-
cients dBj;n can be computed recursively as

aBj;n =
l

h[2n� l]aBj�1;l dBj;n =
l

g[2n � l]aBj�1;l (6)
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where h and g are the quadrature mirror filters (QMF) associated with
the wavelet  [14].

It has been shown by many authors [4], [7], [10], [11] that OWT
well whitens the fBm processes, and the correlation function of wavelet
coefficients dBj;n is [4]

E d
B
j;nd

B
k;m

=
�2

2
(2k)2H+1

� A 2j�k; � � (2j�kn�m) j� j2Hd�
(7)

where A (�; � ) =
p
�  (t) (�t� � )dt is called the reproducing

kernel of wavelet  . Wavelet coefficients dBj;n are weakly correlated in
scale and time, and there is [11]

E d
B
j;nd

B
k;m � O 2jn� 2km

2(H�R)

(8)

for all j; k such that

2jn� 2km > max 2jK1 � 2kK2; 2
j
K2 � 2kK1

where R is the number of vanishing moments of wavelet  and
[�K1; K2] is the support of  , K1;K2 > 0.

It is easily derived from (7) that the variance of dBj;n is

rj = V ar d
B
j;n = Cd(2

2H+1)j (9)

where Cd = ��

2
A (1; � ) j� j2H d� is a constant. Obviously, the

variance rj decays exponentially along scales j.

III. THE SIGNAL ESTIMATION ALGORITHM

A. Problem Description

Suppose we have a sequence of observations of fBm signal BH [K]

Y [k] = BH [k] + "[k] (10)

where " is additive Gaussian white noise with zero-mean and variance
�2" . Since OWT is a linear transform, we have

d
Y
j;n = d

B
j;n + d

"
j;n (11)

where dYj;n, d
B
j;n, and d

"
j;n are the OWTs of Y [k], BH [k], and "[k],

respectively. Suppose the wavelet is orthonormal, d"j;n is then white
noise with zero mean and variance �2" , and d

"
j;n is also Gaussian due

to the linearity of OWT.
An interesting problem is to estimate the parameterH and the signal

BH [k] from noisy measurement. Abry et al. gave a survey of the fBm
estimation problem in [5]. In [6], Wornell and Oppenheim developed
a maximum-likelihood estimator of H and other parameters by as-
suming that dBj;n is totally uncorrelated by OWT. They also recovered
the fBm process BH [k] by the MMSE method with the estimated pa-
rameters. This signal estimation approach was extended to nonorthog-
onal wavelet transforms and generalized as a Wiener filter by Hwang
[13]. Kaplan and Kuo [9] implemented OWT on the associated DFGN
signal of an fBm process with Haar wavelet, and they reported better
estimation results of H with a similar maximum-likelihood estimator
to that in [6]. Fieguth andWillsky [8] proposed another maximum-like-
lihood estimator of H with a multiscale framework technique, which
models the fBm as a multiscale tree by Haar wavelet.

Although the Haar wavelet is not a good candidate in many signal
processing applications for that it has the least vanishing moments,
interestingly it is rather a good choice in fBm estimation. The main
reason is that the Haar wavelet has the shortest support among all
wavelets, making it be advantageous in describing the self-similarity

Fig. 1. The experimental covariance matrix of fBm processes (H = 0:65).
The correlation information is mainly existed across scales and between
neighboring coefficients.

property (refer to (3)) of fBm. Furthermore, Haar wavelet does not
need a periodic extension of fBm data, which is a common problem
to other wavelets of longer supports. With Haar wavelet, there exists
greater inter-scale correlation than with the other wavelets. This would
have been a shortcoming of Haar wavelet transform in other applica-
tions. But fortunately to our estimation approach, as we will see in the
next subsection that the additional information provided by the wavelet
inter-scale dependencies can be exploited to improve the performance
of fBm estimation in noisy environments. With these considerations,
the Haar wavelet is also employed in this correspondence.

B. Intra- and Inter-Scale Dependencies Exploited Model

Although the OWT is an approximate whitening filter bank, there
still exist some dependencies inter- and intra- wavelet scales. The
dependency information could be employed to improve the signal
processing performance [18]. In Fig. 1 we illustrate an experimental
covariance matrix of the wavelet coefficients of fBm (H = 0:65)with
Haar basis. It is observed that the wavelet dependencies distribute
mainly across scales and among neighboring coefficients within each
band. (This is implied by the auxiliary diagonals in Fig. 1.) In this
correspondence, the inter-scale dependencies between adjacent two
scales and the intra-scale dependencies between nearby two wavelet
coefficients are exploited for improving noise reduction results of
fBm.
Using Haar basis, whose vanishing moments number is R = 1, it

can be seen from (8) that E dBj;nd
B
j;m � O 2j(n�m)

2(H�1)
,

and E dBj;nd
B
j;m decays quickly for increasing jn � mj at scale j.

Considering the covariance of dBj;n with dBj;m such that jn �mj = 1,
one can derive from (7) that

rj;0 = E d
B
j;nd

B
j;m jn�mj=1 = C0(2

2H+1)j (12)

where

C0 = ��
2

2
A (1; � � n+m) j� j2H d�

is a constant.
Suppose k < j, from (7) it follows that dBj;n is almost uncorre-

lated with dBk;m, except for its descendants, i.e., those coefficients with
2j�kn � m � 2j�k(n+ 1)� 1 [4]. Let k = j � 1, the covariances
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of parent dBj;n with its two descendants dBj�1;2n and dBj�1;2n+1 can be
derived from (7) as

rj;1 =E dBj;nd
B
j�1;2n = C1(2

2H+1)j

rj;2 =E dBj;nd
B
j�1;2n+1 = C2(2

2H+1)j (13)

where C1 and C2 are constants. Similar to the variance rj in (9), the
covariances rj;0, rj;1, and rj;2 also decay exponentially along scales.

Combining the ancestor–descendant-associated coefficients dYj;n,
dYj�1;2n, and d

Y
j�1;2n+1, we have

~dYj;n = ~dBj;n + ~d"j;n (14)

with

~d�j;n = col d�j;n; d
�

j�1;2n; d
�

j�1;2n+1 ;� 2 fY;B; "g (15)

where col means column vector. Since ~dBj;n and ~d"j;n are uncorrelated
and jointly Gaussian distributed with zero means, the MMSE of ~dBj;n is

~̂dBj;n = PB
j (PB

j + P ")�1~dYj;n (16)

with PB
j and P " being the covariance matrices of vector variables ~dBj;n

and ~d"j;n, respectively. Because d
"
j;n is white Gaussian, it follows that

P " = diag �2" ; �
2
" ; �

2
" is a diagonal matrix. The noise level �" can

be estimated by the maximum-likelihood method of Wornell and Op-
penheim [6] or the one of Kaplan and Kuo [9]. In this development, we
employed the median estimator of Donoho and Johnstone [17]. �" is
estimated from the median absolute value of the wavelet coefficients at
the finest scale, i.e., �̂" = Median( dY1;n )=0:6745.

In (16), the intra- and inter-scale dependency between wavelet coef-
ficients offers additional information to estimate dBj;n, which is advan-
tageous over estimating dBj;n solely by its observation dYj;n. Next we
discuss the calculation of matrix PB

j that is required by the implemen-
tation of (16).

C. Estimation of Covariance Matrix PB
j

Covariance matrix PB
j should be estimated to compute the MMSE

of ~dBj;n, the elements of PB
j are

PB
j = E ~dBj;n � (~d

B
j;n)

T =

rj rj;1 rj;2
rj;1 rj�1 rj�1;0
rj;2 rj�1;0 rj�1

: (17)

With the measurements dYj;n and the fact that d"j;n is white noise un-
correlated with dBj;n, there are

rj �
1

Nj

N �1

n=0

(dYj;n)
2 � �2"

rj�1;0 �
1

Nj

N �1

n=0

dYj�1;2n � d
Y
j�1;2n+1

rj;1 �
1

Nj

N �1

n=0

dYj;n � d
Y
j�1;2n

rj;2 �
1

Nj

N �1

n=0

dYj;n � d
Y
j�1;2n+1 (18)

where Nj is the number of wavelet coefficients at scale j.
The estimated values of rj , rj;0, rj;1, and rj;2 should be further pro-

cessed because we have the prior information (9), (12), and (13) of
them. Denote

� = 22H+1: (19)

In this work, we estimate parameter � by the approximate maximum-
likelihood method in [6] or [9]. Denote the estimation of � by �̂, with
(9) we have

r1
...
rJ

�

�̂1

...
�̂J

Cd (20)

where J is the total number of wavelet decomposition scale. The least-
squares estimation of Cd is then

Ĉd =

�̂1

...
�̂J

T �̂1

...
�̂J

�1

�̂1

...
�̂J

T
r1
...
rJ

: (21)

Finally, the estimates of rj , j = 1; . . . ; J , are as follows:

r̂1
...
r̂J

=

�̂1

...
�̂J

Ĉd: (22)

Similarly, the least-squares estimates Ĉ0, Ĉ1 and Ĉ2 of C0, C1 and
C2, can be calculated, and the estimates of rj;0, rj;1, and rj;2 are then
obtained as in (22). Substituting them into (17) would bring forth P̂B

j ,
the estimate of PB

j . The MMSE of �dBj;n is then implemented as

�̂dBj;n = P̂B
j (P̂B

j + P ")�1 �dYj;n: (23)

Since the noise component of dYj;n is relatively stronger at finer
scales than at coarser scales, we only use the measurements at coarser
scales to improve the estimations at finer scales. Once estimation
�̂dBj;n is computed, the elements d̂Bj�1;2n and d̂Bj�1;2n+1 inside it are
extracted as the final estimation results of finer scale j � 1. Similarly,
the estimate d̂Bj;n at scale j is extracted from the estimation vector
�̂dBj+1;n. At the coarsest scale J , both d̂BJ;n and d̂BJ�1;n are obtained

from �̂dBj;n.

IV. SIMULATION

We compare the proposed fBm denoising method that exploits
wavelet intra- and inter-scale dependencies of fBm signals with the
algorithm of Wornell and Oppenheim (WO) [6]. In the WO scheme,
the parameters rj , �2" , and � are estimated simultaneously by a
maximum-likelihood-based algorithm, and then the MMSE process
is carried out independently at each scale. The WO method assumes
that the fBm wavelet coefficients are totally whitened and it does not
exploit the wavelet dependencies.
In this section, both the WO algorithm and the proposed scheme

were implemented with Haar wavelet. By our experiments, using other
wavelets with higher vanishing momentR to implement the WO algo-
rithm does not offer better results. (The reason may be that the shortest
support of Haar wavelet makes it posses more advantages in describing
the self-similarity property of fBm processes.) And higher vanishing
moment R will make the interscale correlation very weak (referring to
(8)), so for the proposed scheme that exploits the interscale dependen-
cies in denoising, higher R does not improve the performance either.
Actually, our experiments show that the denoising performance of the
proposed scheme is deteriorated by more regular wavelets.
In our experiments, the fBm signals were simulated by the Cholesky

decomposition approach [2], which is a very accurate realization of
fBm process. The sample length of the realized fBm signal is 512.
We ran simulations for different levels of signal roughness (different
fractal dimensions), with the Hurst parameter H being 0:3; 0:5; 0:7;
and 0:9; respectively. And for each value of H , we imposed different
levels of additive Gaussian white noise on the generated fBm signals.
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Fig. 2. The average SNRG results of the proposed method and the WO method with parameterH being 0:3. For each noise level, we ran simulations for 1000
times and calculated the average SNRG.

Fig. 3. The average SNRG results of the proposed method and the WO method with parameterH being 0:5. For each noise level, we ran simulations for 1000
times and calculated the average SNRG.

The proposed method and the WO method were then used to recover
the true fBm signals from the noisy environments. For a fixed value of
H and for a given noise level, the simulation was run for 1000 times
to calculate the average signal-to-noise ratio gain (SNRG). Here, the
signal-to-noise ratio (SNR) and SNRG are defined as follows. Refer-
ring to (10), the SNR of Y , the observation of BH , is

SNR = 10 log
10

E[B2

H ]

E["2]
: (24)

Denote by B̂H the estimation of BH from Y , we define the SNRG of
B̂H as

SNRG = 10 log
10

E["2]

E[(BH � B̂H)2]
: (25)

In Figs. 2–5, we illustrate the SNRG results of the estimated fBm
signal versus the SNR of the noisy fBm signal. It can be seen that the
proposed scheme performs better than the WO algorithm. And as the
parameter valueH increases, the improvement of the proposed scheme
over the WO scheme becomes more significant. When H = 0:3, the
proposed method achieves about 0.3-dB improvements over the WO
algorithm. The gap in estimation performance increases to about 0.6,
0.9, and 1.2 dB, respectively, for H = 0:5, H = 0:7, and H = 0:9.
This should be well anticipated, because a larger value ofH makes the
fBm signal smoother, and creates greater dependencies inter- and intra-
wavelet scales. These dependencies are well exploited by our scheme
to the benefit of noise reduction.
Fig. 6 plots an fBm signal (H = 0:7)with 512 samples and its noisy

versionwith SNR being�3.01 dB. The estimated signals are illustrated
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Fig. 4. The average SNRG results of the proposed method and the WO method with parameterH being 0:7. For each noise level, we ran simulations for 1000
times and calculated the average SNRG.

Fig. 5. The average SNRG results of the proposed method and the WO method with parameterH being 0:9. For each noise level, we ran simulations for 1000
times and calculated the average SNRG.

in Fig. 7, where the SNRG by the WO algorithm is 14.05 dB and that
by our scheme is 15.03 dB. As anticipated, our model efficiently uti-
lizes the scale–time dependency information to improve the estimation
performance.

V. CONCLUSION

A new wavelet-based method for estimating fBm signals embedded
into noises was developed in this correspondence. Although wavelets

are approximate whitening filters for fBm processes, significant corre-
lations are still prevalent across adjacent wavelet scales and between
neighboring coefficients of a given scale. To exploit these intra- and
inter-scale dependencies, we form a random vector of ancestor–descen-
dant-associated wavelet coefficients, to which the MMSE technique
is applied to estimate the fBm signals. Our simulations showed that
the exploitation of the additional wavelet scale–time dependencies im-
proves the estimation performance. It is also illustrated that the pro-
posed estimation scheme works better for larger values of H , because
the wavelet inter- and intra-scale dependencies of fBm signals increase
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Fig. 6. (a) A simulated original fBm signal withH = 0:7. (b) The noisy version of the fBm signal (SNR= �3.01 dB).

Fig. 7. (a) Estimated fBm signal by the WO algorithm (SNRG =14.05 dB). (b) Estimated fBm signal by the proposed intra- and inter-scale dependencies
exploited scheme (SNR =15.03 dB).

in H , which are efficiently exploited by our scheme to improve the
signal estimates.
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Estimating Entropy on Bins Given Fewer
Than Samples

Liam Paninski

Abstract—Consider a sequence of discrete probability measures,
supported on points, and assume that we observe independent and
identically distributed (i.i.d.) samples from each . We demonstrate the
existence of an estimator of the entropy, ( ), which is consistent even
if the ratio is bounded (and, as a corollary, even if this ratio tends
to zero, albeit at a sufficiently slow rate).

Index Terms—Approximation theory, bias, consistency, distribution-free
bounds, entropy, estimation.

Earlier work has examined the problem of estimating the entropy of
a discrete distribution p, with support onm < 1 “bins,” given N in-
dependent and identically distributed (i.i.d.) samples from p. It has long
been recognized [1] that the crucial quantity in this estimation problem
is the ratio N=m: if the number of samples is much greater than the
number of bins, the estimation problem is easy, and vice versa. This
correspondence concentrates on the hard part of this problem: how do
we estimate the entropywhenN=mN is bounded? (To allow the precise
statement of asymptotic results, it is convenient here to let m = mN

depend onN ; see [2] for motivation, a brief review, and some recent re-
sults.) We show that a consistent estimator of the entropy exists in this
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regime (thus proving the main conjecture of [2]); the most surprising
implication of this result is that it is possible to accurately estimate the
entropy on m bins, given N samples, even when N=m is small (pro-
vided that both N andm are sufficiently large). We give an existence
proof of this result here; see [2] for a more constructive demonstration
of an estimator which numerically appears to have this interesting and
useful consistency property.
The entropy of a discrete distribution p is defined, as usual, as

H(p) = �

m

i=1

pi log pi

where i indexes the support points of p, and the logarithm is taken to
be natural. Our main result is as follows.

Theorem 1: LetN=mN � c > 0, uniformly inN . Then there exists
an estimator ĤN for the entropy H which is uniformly consistent in
mean square; that is,

E(ĤN �H)2 < �(c;N)

with �(c; N) & 0 as N ! 1.

Note that the above statement is uniform over all distributions sup-
ported onmN bins; the main practical implication, therefore, is that we
can construct entropy estimators with surprisingly small “worst case”
risk, given justm and N . We have as an easy corollary.

Corollary 2: There exists an estimator which is uniformly consis-
tent even if N=mN ! 0, sufficiently slowly.

More colloquially, we can estimate the entropy on m bins given
fewer thanm samples, as advertised. This is interesting in that it shows,
in a sense, that the individual probabilities p need not be precisely es-
timated for the entropy estimate to be consistent.
On the other hand, in [2] we showed thatN=mN cannot decay faster

than N��, � > 0, for consistency to hold, so the result is somewhat
delicate. We present another partial converse here, indicating that not
all functionals of the form i f(pi) can be estimated so easily, even
for f smooth and vanishing at p = 0.

Proposition 3: Define the power sum

F (p) �

m

i=1

p�i ; 0 < � < 1:

If lim supN�=(1��)=mN < 1, then

lim inf
N

inf
F̂

max
p

E(F̂N � F )2 > 0

where the second infimum is taken over all possible estimators for F ,
and the maximum over all probability measures onmN bins.

In particular, we need many more than m samples to estimate the
power sum on m bins, whenever the exponent � � 1=2. This result
also quantifies the intuition that F (p) becomes harder to estimate as
� decreases (and, in fact, is impossible to estimate—in a “worst case”
sense, at least—as � ! 0, where we interpret F (p) as counting the
number of bins i for which pi > 0).
The proof of the main theorem is built on ideas from [2]. Our esti-

mator will be of the linear form

Ĥa;N �

N

j=0

aj;Nhj

where the count statistics hj are defined as

hj �

m

i=1

1(ni = j)
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