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Abstract—Tumor clustering is becoming a powerful method in
cancer class discovery. Nonnegative matrix factorization (NMF)
has shown advantages over other conventional clustering tech-
niques. Nonetheless, there is still considerable room for improving
the performance of NMF. To this end, in this paper, gene selection
and explicitly enforcing sparseness are introduced into the factor-
ization process. Particularly, independent component analysis is
employed to select a subset of genes so that the effect of irrele-
vant or noisy genes can be reduced. The NMF and its extensions,
sparse NMF and NMF with sparseness constraint, are then used
for tumor clustering on the selected genes. A series of elaborate
experiments are performed by varying the number of clusters and
the number of selected genes to evaluate the cooperation between
different gene selection settings and NMF-based clustering. Finally,
the experiments on three representative gene expression datasets
demonstrated that the proposed scheme can achieve better cluster-
ing results.

Index Terms—Clustering, gene expression data, independent
component analysis (ICA), nonnegative matrix factorization
(NMF), tumor.

I. INTRODUCTION

THE Rapid development of microarray technologies, which
can simultaneously assess the expression level of thou-

sands of genes, makes the precise, objective, and systematic
analyses, and diagnoses of human cancers possible. A reliable
and precise identification of the type of tumors is essential for
effective treatment of cancer. Until now, many techniques have
been proposed and used to analyze gene expression data, which
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have demonstrated the potential power for tumor-type identifi-
cation [1]–[6]. The microarray data typically contain thousands
of genes on each chip, and the number of the collected tumor
samples is much smaller than that of genes. So it is a typical
“large p, small n” problem [7], i.e., the number of predictor
variables p is much greater than that of available samples n. The
particular condition p � n makes most of the standard statisti-
cal methods difficult to use from both analytical and interpreta-
tive points of view. For example, including too many variables
may decrease the accuracy in clustering the samples, and make
the cluster rules difficult to set. The inclusion of irrelevant or
noisy variables may also degrade the overall performances of
the estimated cluster rules.

Despite these difficulties, the clustering and classification
methods from the areas of statistical machine learning have
been applied to cancer identification using molecular gene ex-
pression data [2]–[4], [8], [9]. In this paper, we are interested
in unsupervised clustering-based cancer class discovery, instead
of supervised classification. Clustering does not require know-
ing a priori the classes of training datasets, which are required
by the supervised learning methods. To date, many well-known
unsupervised methods, such as hierarchical clustering (HC),
self-organizing maps (SOMs), nonnegative matrix factorization
(NMF), and its extensions have been used successfully for can-
cer clustering [2], [4], [5], [10]–[12]. Brunet et al. [4] demon-
strated that NMF is more accurate than HC and more stable than
SOM. Gao and George [12] showed that the results can be im-
proved by using the sparse NMF (SNMF). Kong et al. [5] applied
the NMF with sparseness constraint (NMFSC) to a microarray
dataset, and they concluded that NMFSC performs better than
NMF by choosing appropriate degree of sparseness but it does
not perform better than SNMF.

Though the aforementioned NMF-based clustering algo-
rithms are useful, one disadvantage of them is that they cluster
the microarray dataset with thousands of genes directly, which
makes the clustering result not very satisfying. To overcome
this problem, in this paper, we propose to perform gene selec-
tion before clustering to reduce the effect of irrelevant or noisy
variables, so as to achieve a better clustering result.

Gene selection has been used for cell classification [13]–[16].
A comparative study of discrimination methods in the context
of cancer classification with filtered sets of genes can be found
in [16] and [17]. Feature (gene) selection in such context has
the following biological explanation: most of the abnormalities
in cell behavior are due to irregular gene activities, and thus, it
is critical to highlight these particular genes. Daniela et al. [13]
employed independent component (IC) analysis (ICA) [18] to
select subsets of genes that might be relevant to different tumors.
Afterwards, they applied the supervised method to the selected
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gene expression data for cell classification, and showed that the
gene selection strategy is efficient and feasible.

The successful use of ICA and NMF in processing gene ex-
pression data [4], [12], [13], [19], [20] inspires us to combine
them for improving the clustering performance. In this paper,
we first employed ICA to select a subset of genes, and then
used NMF and its extensions to cluster the tumors on the subset
of genes selected by ICA. During gene selection, since gene
expression profiles are typically super-Gaussian, we should ex-
ploit not only the second-order statistics of the data structure
but also the higher order statistics. Therefore, ICA is employed
to extract the statistically independent features. By a series of
elaborate experiments, the suitable number of ICs and the num-
ber of selected genes are analyzed, and the number of genes that
yields the best clustering stability can be determined. To find
out the result of which clustering algorithm cooperating with
the proposed gene selection method is the best, we compared
the results by using NMF, SNMF, and NMFSC, respectively, on
three different gene expression datasets.

The rest of the paper is organized as follows. Section II de-
scribes the ICA model of gene expression data and the ICA
based gene selection method. Section III presents the NMF al-
gorithm and the principles of clustering using NMF. The tumor
clustering experiments are performed in Section IV. Section V
concludes the paper and outlines directions of future work.

II. GENE SELECTION BY ICA

ICA can be regarded as a dimension reduction technique,
which decomposes the input multivariate dataset into statisti-
cally independent components (ICs). ICA can reduce the effects
of noise or artifacts on the signal and is efficient for separating
mixed signals [18], [21]. Recently, more and more successful
applications of ICA into microarray data analysis were reported
to extract expression modes of genes [19], [20], [22], [23]. This
section will present the ICA model of gene expression data and
the gene selection method based on ICA.

A. Independent Component Analysis

ICA is a useful extension to principal component analysis
(PCA), which was originally developed for blind separation of
independent sources from their linear mixtures [18]. It has been
used in various applications of auditory signal separation, med-
ical signal processing, and so on. Unlike PCA, where the aim
is to decorrelate the dataset, ICA aims to make the transformed
coefficients mutually independent (or as independent as possi-
ble). This implies that the higher order dependencies will be
removed by the ICA expansion.

Considering a p × n data matrix X , whose columns cj (j =
1, . . . , n) represent the observational variables, the ICA model
of X can be written as (in some ICA literature, the problem is
formulated by using the transposed matrix XT )

X = SA (1)

where S is a p × n source matrix and A an n × n mixing ma-
trix. Vectors sq , the columns of S, are assumed to be statistically
independent and are called as the ICs of S. Model (1) implies

Fig. 1. ICA model of gene expression data. Each gene profile in the data matrix
is considered to be a linear combination of underlying basis expression profiles
(eigengenes) in the matrix A (the rows in A). Each of the basis expression
profiles is associated with a set of independent “causes (coefficients),” given by
a vector of coefficients in S . The basis profiles are estimated by A = W −1 ,
where W is the learned ICA weight matrix.

that the columns of X are linear mixtures of the ICs. The sta-
tistical independence between sq can be measured by using
mutual information I =

∑
qH(sq ) − H(S), where H(sq ) is

the marginal entropy of the variable sq and H(S) the joint en-
tropy of S. Estimating the ICs can be accomplished by finding
the right linear combinations of the observational variables. We
can invert the mixing matrix such that

S = XA−1 = XW. (2)

Then, an ICA algorithm is used to find a projection matrix
W such that the columns of S are as statistically independent
as possible.

Several algorithms have been proposed to implement ICA,
such as FastICA [24] and JADE [25], etc. In this paper, we
employ the FastICA algorithm to model the gene expression
data, considering its efficiency in processing large-scale dataset.
The FastICA has been widely used to process gene expression
data [13], [19], [22], [26]. In FastICA, the mutual information
is approximated by

J(sq ) = (E{G(sq )} − E{G(ς)})2 (3)

where G is an arbitrary nonquadratic function and ς a Gaussian
distributed variable. The interested readers can refer to literature
[24] for details. ICA can remove linear correlations as well
as higher order dependencies in the data. It also allows some
flexibility in scaling and sorting by convention. The ICs are
generally scaled to unit deviation, while their signs and orders
can be chosen arbitrarily.

B. ICA Models of Gene Expression Data

The gene expression dataset can be represented by a p × n
matrix X (p � n), whose element xij is the expression level
of the ith gene in the jth assay (1 ≤ i ≤ p, 1 ≤ j ≤ n). The
n-dimensional vector ri , i.e., the ith row of X , denotes the ex-
pression profile of the ith gene. Alternatively, the p-dimensional
vector cj , i.e., the jth column of X , is the snapshot of the jth
assay (cell sample). We suppose that the dataset has been pre-
processed and normalized, i.e., every cell sample has zero mean
and unit standard deviation.

In the ICA model for gene expression data, the linear ICA
model X = SA represents the gene expression profiles by a new
set of basis vectors (the rows of A, as shown in Fig. 1). This
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idea comes from the following assumptions. First, the gene ex-
pression profiles are determined by a combination of hidden
variables, which are called “expression modes (eigengenes).”
Second, the genes’ responses to these variables can be approx-
imated by linear functions [16], [27]. Expression profile q (the
qth row of X) is characterized by all of the eigengenes (all
the rows of A) and by its linear independent influences on the
eigengenes (the qth row of S). In this paper, we use this idea
to find a good set of basis profiles to represent gene expression
data so that the subsets of genes relevant to cell classification
can be selected.

C. Gene Selection: An ICA-based Solution

One of the objectives of this paper is to propose a method to
select subsets of genes that could be relevant for cell clustering.
The selection is performed by projecting the genes onto the
desired directions obtained by ICA. In particular, the distribution
of gene expression levels on a cell is “approximately sparse,”
with heavy tails and a pronounced peak in the middle. Due to
this, the projections obtained by ICA should emphasize this
sparseness. Highly induced or repressed genes, which may be
useful in cell clustering, should lie in the tails of the distributions
of sj (j = 1,K, z), where z is the actual number of ICs we
estimated from the gene expression data. Since these directions
are independent, they may catch different aspects of the data
structure that could be useful for classification tasks [13]. The
proposed gene selection method is based on a ranking of the p
genes. This ranking process is introduced as follows.

Step 1: z-ICs s1 , . . . , sz with zero mean and unit variance
are extracted from the gene expression dataset using
ICA.

Step 2: For gene l(l = 1, . . . , p), the absolute score on each
component |slj | is computed. These z scores are syn-
thesized by retaining the maximum one, denoted by
gl = maxj |slj |.

Step 3: The p genes are sorted in increasing order according
to the maximum absolute scores {g1 , . . . , gp}, and for
each gene, the rank r(l) is computed.

In our experiments, we found that ICA is not always re-
producible when used to analyze gene expression data. This
problem has also been reported in [19]. It is because that the
ICA algorithm may converge to local optima [20]. To solve this
problem, we run the independent source estimation process for
100 times with different random initializations. In each time, we
chose the subset of the last m genes (with m ≤ p). The rationale
behind this is that these m genes show, with respect to at least
one of the components, a behavior across the cells that differs
most from that of the bulk of the genes [13]. After running the al-
gorithm 100 times, we obtained 100 × m genes, of which most
of them are reduplicate. The selected genes were then sorted in
descending order according to the selected frequency of each
gene. Finally, we selected the first m genes for the next step of
clustering.

Obviously, the proposed strategy has two key parameters, i.e.,
the number of ICs z and the number of selected genes m. We
will describe how to determine them in Section IV-A.

III. CLUSTERING WITH NMF

NMF can reduce the dimensionality of expression data from
thousands of gene to metagenes. Coupled with a model selec-
tion mechanism, NMF can be an efficient method to identify
distinct molecular patterns and a powerful tool for class discov-
ery. Brunet et al. [4] demonstrated the ability of NMF to recover
meaningful biological information from cancer-related microar-
ray data. NMF also appears to have advantages over other meth-
ods, such as HC and SOMs, because HC imposes a stringent tree
structure on the data, and is highly sensitive to the metric used
to assess similarity, and SOM can be unstable, yielding differ-
ent decompositions of the data with different initial conditions.
However, standard NMF cannot control the sparseness of the
decomposition, and thus, does not always yield a parts-based
representation. Some research groups have proposed to impose
sparseness constraints on NMF [27]–[30]. It has been shown
that the extensions of NMF, e.g., SNMF [12] and NMFSC [5],
coupled with the model selection mechanism [4], could improve
cancer class discovery on the microarray datasets [7], [12].

A. NMF Algorithm

We now represent the selected gene expression data as a ma-
trix Y of size m × n, whose rows contain the expression levels
of the m selected genes in the n cell samples, and each column
represents the expression level of all genes in one sample. All
the entries in the gene expression matrix are nonnegative. The
NMF methods resort to factor the gene expression matrix Y into
the product of two matrices of nonnegative entries

Y ≈ VH (4)

where matrix V is of size m × k with each of the k columns
defining a metagene, matrix H is of size k × n with each of the
n columns representing the metagene expression pattern of the
corresponding sample, and k is a desired rank. The method starts
by randomly initializing matrices V and H , which are iteratively
updated to minimize a divergence function. The function is
related to the Poisson likelihood of generating Y from V and H

D =
∑
ij

Yij log
(

Yij

(VH)ij

)
− Yij + (VH)ij . (5)

At each step, V and H are updated by using the coupled
divergence equations [31]

Hau ← Hau

∑
i ViaYiu/(VH)iu∑

k Vka
(6)

Via ← Via

∑
u HauYiu/(VH)iu∑

v Hav
. (7)

B. Clustering Using NMF

In NMF model, each entry vij in V is the coefficient of gene i
in metagene j and each entry hij in H represents the expression
level of metagene i in sample j. In such a factorization, matrix
H can be used to group the n samples into k clusters [4]. Each
cell sample is placed into a cluster corresponding to the most
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highly expressed metagene in the sample in [4], i.e., sample j
is placed in cluster i if hij is the largest entry in column j.

Although NMF has been successfully used in several appli-
cations, it does not always result in parts-based representations.
To solve this problem, Hoyer [29] extended the NMF frame-
work by including an adjustable sparseness parameter. SNMF
and NMFSC are extensions to those ideas [27], [29], [30]. The
main improvement in them is that the sparseness can be adjusted
explicitly, rather than implicitly. These algorithms were used for
tumor class clustering in [5] and [12]. The detailed algorithm
of SNMF and NMFSC can be found in [12] and [27]. In this
paper, except for selecting genes using ICA, we will also study
the influence of the sparseness of the factors V and H .

On the other hand, when using NMF to group the samples
into clusters, there are several problems that need to be resolved.
Among them, one key issue is which k can decompose the
samples into “meaningful” clusters. Another problem is that the
NMF algorithm may or may not converge to the same solution in
each run with the random initial conditions. So, how to evaluate
the stability of clustering associated with a given rank k? This
is still an open problem.

The authors in [4] developed a nice model selection method
based on consensus clustering [32]. The basic idea is that if a
clustering to k classes is strong, the cluster assignment of sam-
ples should not vary much from random starting points. After
running with many different random initial points, a consensus
matrix C̄ is computed to evaluate the stability of clustering as-
sociated with the given k. The entries of C̄ range from 0 to 1 and
reflect the probability that each pair of samples cluster together.
If a clustering is stable, the entries of C̄ will be close to 0 or 1.
The dispersion between 0 and 1 thus measures the reproducibil-
ity of the class assignments with respect to the random initial
conditions. A reordered matrix of C̄ can be used for visual in-
spection, which can serve as similarity measure among samples
(refer to Fig. 2(a) for the details). Quantitatively, the stability
for each value of k can be measured through the cophenetic
correlation coefficient ρk (C̄), which indicates the dispersion of
the consensus matrix C̄ [4].

In a perfect consensus matrix (all entries = 0 or 1), the cophe-
netic correlation coefficient ρk = 1. When the entries are scat-
tered between 0 and 1, the cophenetic correlation coefficient is
less than 1. Roughly speaking, the more stable the cluster assign-
ment is, the greater the coefficient ρk is. Therefore, by observing
how ρk evolves as k increases, we can select the value of k when
the magnitude of the coefficient starts to fall. Interested readers
may refer to [33] and [34] for more details about how the co-
efficient ρk is calculated. For example, in Fig. 2(b), we can see
that ρk drops when k increases from 2 to 5. This implies that a
two-cluster split of the samples is more stable than others.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method, we ap-
ply it to three publicly available datasets, i.e., leukemia dataset
[2], central nervous system embryonal tumors dataset [9], and
medulloblastoma dataset [9]. We first employed ICA to select
m genes, and then applied NMF and its extensions, i.e., SNMF

Fig. 2. (a) Reordered consensus matrices for ranks 2–5 of NMF using the
leukemia dataset of 38 bone marrow samples with 5000 most highly varying
genes. Deep blue color corresponds to a numerical value of 0 and means that the
samples are never assigned to the same cluster. Dark red color corresponds to 1
and means that the samples always appear in the same cluster. The 0–1 pattern
indicates highly robust classification. (b) Corresponding cophenetic correlation
coefficients for hierarchically clustered matrices in (a). ρ drops when k increases
from 2 to 5, indicating a two-cluster split of the samples is more stable than
others.

and NMFSC, to cluster the tumors using the selected genes. To
demonstrate the efficiency of the proposed strategy, we applied
NMF, SNMF, and NMFSC, respectively, to the subsets of se-
lected genes for cancer class discovery. The clustering accuracy
is measured by the following formula [35]:

AC =
∑n

i=1 I(ji)
n

(8)

where I(ji) is 1 if the cluster assignment is correct for sample
ji and 0 if the cluster assignment is incorrect. The clustering ac-
curacy is computed according to the well-known classification
label of the tumor dataset [2], [9]. Another criterion for demon-
strating the efficiency of the proposed strategy is the cophenetic
correlation coefficient ρk (C̄), which can measure the clustering
stability.

A. Leukemia Dataset

The leukemia dataset has become a benchmark in cancer clas-
sification. In this dataset, the distinction between acute myel-
ogenous leukemia (AML) and acute lymphoblastic leukemia
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Fig. 3. Clustering accuracy rate for leukemia dataset, where z = 6 for ICA,
and k = 2 for NMF and its extensions, and the values at the top of the figure
indicate the number of genes retained at each step.

Fig. 4. Clustering accuracy rate for leukemia dataset, where z = 6 for ICA,
and k = 3 for NMF and its extensions, and the values at the top of the figure
indicate the number of genes retained at each step.

(ALL), as well as the division of ALL into T and B cell sub-
types, is known. The dataset contains p = 5000 genes in 38
cells, and consists of 19 cases of B cell ALL (ALL_B), 8 cases
of T cell ALL (ALL_T), and 11 cases of AML.

In our method, three parameters, i.e., k, z, and m, need to be
determined. We first computed the cophenetic correlation coef-
ficient ρk (C̄) using the original data, through which the stability
for each value of rank k can be measured. In the experiment,
we found that ρ drops when the rank increases from 2 to 5
(as shown in Fig. 2(b) for NMF), which indicates that a two-
cluster and three-cluster splits of the samples should be more
stable than others, i.e., k = 2 or k = 3.

How to determine the IC number z is still an open problem in
ICA. In this paper, we selected z experimentally. Particularly,
we run the gene selection procedure with z increasing from 1
to 10. For each value of z, the gene ranking is computed and
a sequence of gene subset is selected for five different values
of m ranging from 1 to p, e.g., m = 300, 500, 800, 1200,
and 1500. Then, we cluster the tumors using the selected genes
and calculated the cophenetic correlation coefficient ρk (C̄). The
value of z is determined such that it can achieve relatively high
ρk (C̄) values for all the experiments.

In this experiment, we selected z = 6 by the aforementioned
process. Fig. 3 shows the results obtained with z = 6, k = 2,
and 40 different values of m. Fig. 4 is the result for k= 3. For
comparison, we also list the results of [4] and [12] in Figs. 3

and 4, i.e., the accuracies of NMF and SNMF with m = 5000.
From the two figures, we can see that no matter the rank k
is 2 or 3, gene selection by suitable projections can achieve
commensurate or better performance than the methods without
gene selection, i.e., m = 5000.

With the rank k = 2, SNMF achieves 100% accuracy rate
when the number of retained genes is 86; for NMF, it can also
achieve100% accuracy rate with the number of key genes being
183; for NMFSC (sv = 0.1, sh = 0), it could achieve the ac-
curacy rate by 97.37% with 198 genes (misclassified AML_13
to ALL). With rank k = 3, the accuracy rates are not improved
when compared with those in [4] and [12], yet the proposed
algorithm could also achieve 97.37% accuracy rate (AML_13
sample was misclassified to ALL_B) with less key genes. On this
dataset, the ICA-based genes selection can make the class struc-
ture more evident, i.e., the use of suitable subsets of genes in-
stead of the whole set could yield better clustering performance.

However, since clustering is a type of unsupervised learning,
the accuracy rates could not be used as the criterion for selecting
the gene number m. We experimentally found that the clustering
result is stable when the number of selected genes is changing
in a wide range. In practice, the criterion for determining m is
as follows. Once k and z are determined, we choose a small
number of genes, e.g., m = 500, that corresponds to the biggest
value of ρk (C̄) for clustering.

Fig. 5 demonstrates the reordered consensus matrices for k =
2 and k = 3 when using the leukemia dataset of 38 bone marrow
samples with the original 5000 genes as well as the selected
genes that have the best stability. The corresponding accuracy
rates can be found in Figs. 3 and 4. From Fig. 5, we can see that
for NMF and its extensions, when the rank k = 2 [see Fig. 5(a)],
we can obtain the same clustering stability with the selected
genes, yet when k = 3 [see Fig. 5(b)], the clustering stability
is obviously improved by using the proposed gene selection
strategy, especially for NMF and SNMF. In summary, from
Figs. 3–5, we can conclude that our method can improve either
the accuracy rates or the clustering stability.

To better demonstrate the advantage of the proposed ICA-
based gene selection, we also used the genes with high variances
for clustering. The experimental results are shown in Figs. 6–8.
Comparing these three figures with Figs. 3–5, respectively, we
can clearly see that ICA-based gene selection is more effective
than the variance-based gene selection method.

B. Central Nervous System Tumors

This dataset is composed of four types of central nervous sys-
tem embryonal tumors [9]. The dataset used in our experiment
contains p = 5560 genes in 34 samples representing four dis-
tinct morphologies: ten classic medulloblasomas, ten malignant
gliomas, ten rhabdoids, and four normals. The previous stud-
ies [4] without gene selection, i.e., NMF and SNMF, suggest
a four-cluster split with high cophenetic coefficient. The NMF
method has two misclassifications. One is assigning a glioma
(Brain_MGlio_8) to rhabdoid and the other one is more serious:
it incorrectly assigns a rhabdoid sample (Brain_Rhab-10) to
normal. Such an assignment will definitely delay the treatment
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Fig. 5. Reordered consensus matrices and the corresponding cophenetic cor-
relation coefficients for ranks 2–3 of NMF and its extensions, using the leukemia
dataset of 38 bone marrow samples (left) with 5000 most highly varying genes
and (right) with the selected genes that have the best stability (z = 6 for ICA).

Fig. 6. Clustering accuracy rate for leukemia dataset, where rank k = 2 for
NMF and its extensions. The genes are ordered based on variance, and the values
at the top of the figure indicate the number of genes retained at each step.

Fig. 7. Clustering accuracy rate for leukemia dataset, where rank k = 3 for
NMF and its extensions. The genes are ordered based on variance, and the values
at the top of the figure indicate the number of genes retained at each step.

Fig. 8. Reordered consensus matrices and the corresponding cophenetic cor-
relation coefficients for ranks 2–3 of NMF and its extensions, using the ordered
genes based on variance for the leukemia dataset.

of the patient, and is thus highly undesired. The SNMF method
correctly split the samples into four clusters with high cophe-
netic coefficient [12]. It has only one misclassification: the same
glioma (Brain_MGlio_8) is assigned to rhabdoid. Moreover, it
can correctly cluster the four normal samples into a distinct
group.

In our study, we adopted the four-cluster suggestion as in [12],
i.e., rank k = 4 for the NMF and its extensions. We applied
NMF and its extensions to the appropriately selected key genes
(m = 1000) as in the first experiment. The misclassification is
the same as that in [12], i.e., the glioma (Brian_MGlio_8) is
assigned to rhabdoid. Fig. 9 shows the results for z = 7 and 40
different values of m. We also compared the clustering stability
with and without gene selection in Fig. 10. One can see that
through gene selection, the stability is improved for NMF and
SNMF. For NMFSC, the stability is the same as that without
gene selection. It can be concluded that for this dataset, both
sparseness and gene selection could improve the clustering re-
sult. Similar to that in Section IV-A, in this experiment, we
also found that ICA-based gene selection is much better than
variance-based gene selection.
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Fig. 9. Clustering accuracy rate for central nervous system tumors dataset,
where z = 7 for ICA, and k = 3 for NMF and its extensions, and the values at
the top of the figure indicate the number of genes retained at each step.

Fig. 10. Reordered consensus matrices and the corresponding cophenetic cor-
relation coefficient for rank 4 of NMF and its extensions using the central
nervous system tumors dataset of 34 samples with (left) 5560 genes and (right)
the selected genes using ICA (z = 7).

C. Medulloblastoma Dataset

We also applied the proposed method to the medulloblastoma
dataset [9], which is about childhood brain tumors. The patho-
genesis of these tumors is not well understood, but it is generally
accepted that there are two known histological subclasses: clas-
sic and desmoplastic, whose differences can be clearly seen un-
der the microscope [4]. In our experiment, the dataset contains
p = 5893 genes, 34 samples. The samples can be divided into
25 classic and nine desmoplasitic medulloblastomas. However,
such diagnosis is highly subjective [9], [12].

It has been shown that the straightforward use of basic NMF
is better in this case for k = 2, 3 and 5 [4], [12]. In our ex-
periment, we set the number of ICs as z = 8. Given the fact
that the pathogenesis of these tumors is not well understood and
desmoplastic medulloblastoma diagnosis is highly subjective, it
may raise doubt about the sample labeling [12], i.e., the labels of
the samples may be incorrect. Therefore, in this experiment, we

Fig. 11. Reordered consensus matrices and the corresponding cophenetic cor-
relation coefficient for ranks 2, 3, and 5 of NMF and its extensions using the
medulloblastoma dataset of 34 samples with 5893 most highly varying genes
and the selected genes (z = 8 for ICA and Sv = 0.6 and Sh = 0 for NMFSC).

TABLE I
CLASS ASSIGNMENT FOR MEDULLOBLASTOMA DISCOVERED BY THE

CLUSTERING ALGORITHM WITH GENES SELECTION

did not calculate the accuracy for this dataset. We only showed
the reordered consensus matrices m in Fig. 11. The class as-
signment for medulloblastoma discovered by the clustering with
genes selection is listed in Table I. Refer to literatures [4], [5],
and [12] for the details of the clustering results without gene
selection.
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D. Software and Discussions

The codes for NMF and its extensions can be ob-
tained from http://www.cs.helsinki.fi/u/phoyer/software.html;
the codes for FastICA can be obtained from: http://www.cis.hut.
fi/projects/ica/fastica/. The MATLAB codes for this paper
are available on http://www.comp.polyu.edu.hk/∼cslzhang/
NMF_GS_ICA.htm.

It was reported in previous literatures [36], [37] that higher
classification accuracy can be achieved by using only a small
amount of genes (about 15). However, from our experiments, it
can be found that such a small amount of genes cannot achieve
high cluster accuracy (see Figs. 3, 4, 6, and 7). In addition, we
found that an amount of about 200 genes may achieve higher
accuracy but the clustering result is not stable. Nonetheless,
from a viewpoint of pathology, cancer may involve a certain
amount of genes, e.g., 500 genes, as in our experiments.

So far, many gene selection methods have been proposed
[13]– [15], [17], [22]. The reason that we used ICA for gene
selection can be explained as follows. First, there is a sound
biological interpretation of ICA model for gene expression data
[19], [23]. Second, ICA-based gene selection does not need the
labels of samples, so it is very suitable for clustering and can be
helpful to other clustering methods. Third, ICA has been proven
to be an effective gene selection method for tumor classification
[13].

Apart from the NMF clustering algorithm, the proposed ICA-
based gene selection method can also be coupled with other
clustering algorithms such as HC [4] and SOMs [11]. Our ex-
perimental results by coupling ICA-based gene selection with
HC and SOM clustering also validate its efficiency. Due to the
limitation of space, we have not arranged the results in this pa-
per. The reason that we used NMF for clustering is that NMF
is more accurate than HC and is more stable than SOM, as in-
dicated by Brunet et al. [4] and validated by our experimental
results.

V. CONCLUSION

In this paper, we employed ICA to model the gene expres-
sion data for gene selection, and then applied NMF and its
extensions, i.e., SNMF and NMFSC to cancer clustering us-
ing the selected genes. The proposed method was validated on
the leukemia dataset, embryonal tumors dataset from the cen-
tral nervous system, and the medulloblastoma dataset. It can be
found that improved clustering results were achieved by select-
ing the key genes using ICA. From the experimental results, we
can see that the ICA-based gene selection is useful to detect the
subsets of relevant genes for tumor clustering, especially when
coupled with the NMF clustering method. It should be noted
that although the three datasets used in our experiments have
similar number of genes, i.e., about 5000, our method has no
constraints on the number of genes contained in the data. In fact,
our proposed method can be applied to the datasets that have
much more genes.

In future, systematic studies on larger datasets will be con-
ducted for more convincing arguments. First, the definition of
ICA implies that there is no order of the ICs. In other words,

all the z-estimated ICs are assumed to be equally important in
the proposed scheme. It is possible, however, to sort these ICs.
Hyvärinen et al. [38] suggested an ordering criterion using the
norm of the columns of the mixing matrix or the value of suitable
non-Gaussianity measures on the estimated ICs. This criterion
might be adopted to weigh each IC during the construction of
gene ranking (for example, by increasing the importance of the
most non-Gaussian ones). Second, the issues concerning the
selection of number z and number m should be further exam-
ined. Finally, in our study, the clustering results may be different
when the proposed gene selection method is coupled with dif-
ferent clustering algorithms. In addition, the better results may
be achieved by other gene selection methods. Therefore, the
interaction between different gene selection methods and other
clustering algorithms should be further explored.
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