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Abstract—Video rain/snow removal from surveillance videos
is an important task in the computer vision community since
rain/snow existed in videos can severely degenerate the per-
formance of many surveillance system. Various methods have
been investigated extensively, but most only consider consistent
rain/snow under stable background scenes. Rain/snow captured
from practical surveillance camera, however, is always highly
dynamic in time, and those videos also include occasionally
transformed background scenes and background motions caused
by waving leaves or water surfaces. To this issue, this paper
proposes a novel rain/snow removal approach, which fully
considers dynamic statistics of both rain/snow and background
scenes taken from a video sequence. Specifically, the rain/snow
is encoded as an online multi-scale convolutional sparse coding
(OMS-CSC) model, which not only finely delivers the sparse
scattering and multi-scale shapes of real rain/snow, but also
well distinguish the components of background motion from
rain/snow layer. The real-time ameliorated parameters in the
model well encodes their temporally dynamic configurations.
Furthermore, a transformation operator imposed on the back-
ground scenes is further embedded into the proposed model,
which finely conveys the background transformations, such as
rotations, scalings and distortions, inevitably existed in a real
video sequence. The approach so constructed can naturally better
adapt to the dynamic rain/snow as well as background changes,
and also suitable to deal with the streaming video attributed
its online learning mode. The proposed model is formulated
in a concise maximum a posterior (MAP) framework and is
readily solved by the alternating direction method of multipliers
(ADMM) algorithm. Compared with the state-of-the-art online
and offline video rain/snow removal methods, the proposed
method achieves best performance on synthetic and real videos
datasets both visually and quantitatively. Specifically, our method
can be implemented in relatively high efficiency, showing its
potential to real-time video rain/snow removal. The code page
is at: https://github.com/MinghanLi/OTMSCSC matlab 2020.
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I. INTRODUCTION

V IDEOS captured from outdoor surveillance system are
often contaminated by rain or snow, which has a negative

effect on the perceptual quality and tends to degrade the
performance of subsequent video processing tasks, such as
human detection [1], person re-identification [2], object track-
ing [3] and scene analysis [4]. Thus, removing rain and snow
from surveillance videos is an important video pre-processing
step and has attracted much attention in the computer vision
community.

In recent decades, various methods have been proposed for
removing rain from a video. The earliest video rain removal
approach was proposed based on the photometry property
of rain [5]. After that, more methods taking advantage of
the essential physical characteristics of rain, such as photo-
metric appearance [6], chromatic consistency [7], shape and
brightness [8], and spatial-temporal configurations [9], were
introduced to better separate rain streaks from the background
of videos. However, these methods do not utilize the prior
knowledge of video structure, such as spatial smoothness
of foreground objects and temporal similarity of background
scenes, and thus cannot always obtain satisfactory performance
especially in complex scenes. In recent years, low-rank mod-
els [10] show a great potential for this task and always achieve
state-of-the-art performance due to their better consideration
of video structure prior knowledge both in foreground and
background. Specifically, these methods not only use the low-
rank structure for the background, but also fully facilitate
the prior knowledge of the rain, such as sparsity and spatial
smoothness [11], [12]. Very recently, deep learning based
methods have also been proposed for this task. These methods
address the problem of video rain removal by constructing
deep recurrent convolutional networks [13][14] or deep con-
volutional network [15] and implement the task in a popular
end-to-end learning manner.

Albeit achieving good progress, most of current methods are
implemented on a pre-fixed length of videos and assume con-
sistent rain/snow shapes under static background scenes. This,
however, is evidently deviated from the real scenarios. On one
hand, the rain/snow contained in a video sequence is generally
with configurations changed constantly along time. On the
other hand, the background scene in the video is also always
dynamic, inevitably containing background motion, such as
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Fig. 1. The diagram of the proposed OTMS-CSC model implemented on a video with dynamic background. As shown in the left figure, the background
alignment based on its adjacent frames produces an initial stationary background. The online MS-CSC model shown on the right decomposes (a) the input video
frame into four parts: (b) stationary background, (c) rain layer, (d) moving objects and the background noise. The rain layer (b) can be further decomposed as
four sub-layers with various filters, which encode the repetitive local patterns of both rain/snow and background motions, displayed in the top-left corner of
the second row. For the video with dynamic background, the final dynamic background (e) is the combination of the stationary background and the sub-layers
with background motions, and the rectified rain layer only combines those sub-layers with relatively vertical filters representing rains.

swing leaves and water waves as typically shown in Fig. 1, and
timely transformations such as translation, rotation, scaling
and distortion, due to camera jitters. Lacking considerations
to such dynamic characteristics inclines to degenerate the
performance of current methods in such real cases. Besides,
as the dramatically increasing surveillance cameras installed
all over the world, the real video is always coming online
as a streaming format. Most current methods, however, are
implemented/trained on a pre-fixed video sequence, and thus
cannot finely and efficiently adapt to such kinds of streaming
videos continually and endlessly coming in time. These issues
have hampered the availability of existing methods in real
applications and thus is worthy to be specifically investigated.

Against the aforementioned issues, this paper proposes
a new online rain/snow removal method from surveillance
videos by fully encoding the dynamic statistics of both
rain/snow and background scenes in a video along time into
the model, and realizing it with an online mode to make
it potentially available to handle constantly coming stream-
ing video sequence. Specifically, inspired by the multi-scale
convolutional sparse coding (MS-CSC) model designed for
video rain removal (still for static rain) previously proposed in
[16], which finely delivers the sparse scattering and multi-scale
shapes of real rain, this work encodes the dynamic temporal
changing tendency of rain/snow and background motions as
a dynamic MS-CSC framework by timely parameter ame-
lioration for the model in an online implementation manner.
Besides, a transformation operator capable of being adaptively

updated along time is imposed on the background scenes to
finely fit the background transformations existed in a video
sequence. All these knowledge are formulated into a concise
maximum a posterior (MAP) framework, which can be easily
solved by alternative optimization technique.

In all, the contributions of this work can be mainly summa-
rized as follows:

1) An online multi-scale convolutional sparse coding model
is specifically designed for encoding dynamic rain/snow and
background motions with temporal variations. The model is
formulated as a concise probabilistic framework, where the
feature maps are gradually ameliorated under regularization
of a penalty for enforcing them close to those calculated from
the previous frames, and the filters encode the repetitive local
patterns of dynamic rain/snow and background motions in
each frame of a video. In this manner, the insightful dynamic
rain/snow properties and the background motions can be finely
delivered.

2) An affine transformation operator is further embedded
into the proposed model, and can be automatically adjusted
to fit a wide range of video background transformations. This
makes the method more robust to general camera movements,
like rotation, translation, scaling or distortion.

3) To handle the challenging task of rain removal from
videos with dynamic background, based on the sequences in
the dynamic background category of the changedetection.net
[17] (CDNet) dataset, we build the first new synthetic dynamic
dataset whose video contains both rain streaks and background
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motions such as waving leaves and water waves, called
CDNet-Rain dataset. The superiority of the proposed method
in robustness and efficiency are comprehensively substantiated
by experiments implemented on the proposed dynamic dataset
both visually and quantitatively, as compared with other state-
of-the-art methods.

4) We take the video instance segmentation (VIS) task as
the example to further verify whether removing rain and snow
from a video can bring a positive impact on the sub-sequence
video processing task. Specifically, based on the large-scale
video instance segmentation valid dataset YouTube-VIS[18],
we construct a video rain removal benchmark for the video
instance segmentation task called YouTube-VIS-Rain dataset.
The visual and quantitative experimental results on the bench-
mark also demonstrate that, compared with directly employing
the video instance segmentation algorithm on the contaminated
videos, the video rain removal pre-processing via our proposed
model is evidently benefical to the final performance of the
handled video processing task.

The rest of paper is organized as follows. Section 2 intro-
duces the related works. Section 3 reviews the offline multi-
scale convolutional sparse coding (offline MS-CSC) model[16]
suitable for removing static rain and proposes the online trans-
formed multi-scale convolutional sparse coding (OTMS-CSC)
model as well as its solving algorithm. Section 4 demonstrates
experimental results on synthetic and real rainy/snowy videos
with/without dynamic background to substantiate the superi-
ority of the proposed method and further verifies that the pre-
processing of video rain removal can bring a positive impact
on the video instance segmentation task. Finally, conclusions
are drawn in Section 5.

II. RELATED WORKS

In this section, we give a brief review on the methods of
video rain and snow removal. The related developments on
single image rain and snow removal, multi-scale modeling and
video alignment are also introduced for literature comprehen-
siveness. It should be indicated that albeit different in physical
generation mechanisms, in visual imaging perspectives, both
rainfall and snowfall on a digital image or a video frame have
very similar geometric characteristics, which makes multiple
methods, as well as ours, proposed to treat both scenarios
simultaneously.

A. Video Rain and Snow Removal Methods

Garg and Nayar [5] made the earliest study on the photo-
metric appearance of rain drops and developed a rain detection
method by utilizing a linear space-time correlation model.
To better reduce the effects of rain before camera shots in
images/videos, Garg and Nayar [6], [19] further proposed a
method by adjusting the camera parameters such as field depth
and exposure time.

In the past years, more physical intrinsic properties of rain
streaks have been explored and formulated in algorithm de-
signing. For example, Zhang et al. [7] incorporated both chro-
matic and temporal properties and utilized K-means clustering
for distinguishing background and rain streaks from videos.

Later, Barnum et al. [8] first considered the impact of snow
on videos. They derived a physical model for representing
raindrops and snowflakes and used them to determine the
general shape and brightness of a single streak. The streak
model combined with the statistical properties of rain and
snow can then conduct how they affect the spatial-temporal
frequencies of an image sequence. To enhance the robustness
of rain removal, Barnum et al. [20] employed the regular
visual effects of rain and snow in global frequency information
to approximate rain streaks as a motion-blurred Gaussian.
Afterwards, to integrate more prior knowledge of the task,
Jiang et al. [21] proposed a tensor-based video rain streak
removal approach by considering the sparsity of rain streaks,
smoothness along the raindrops and the rain-perpendicular
direction, and global and local correlation along time direction.

In recent years, low-rank based models have drawn more
research attention for the task of video rain/snow removal.
Chen et al. [10] first investigated spatial-temporal correlation
among local patches with rain streaks and used low-rank term
to extract rain streaks from a video. Later, Kim et al. [22]
proposed a rain and snow removal method based on temporal
correlation and low-rank matrix completion. To further exclude
false candidates, Santhaseelan et al. [23] used local phase
congruency to detect rain and applied chromatic constrain. To
deal with heavy rain and snow in dynamic scenes, Ren et
al. [11] divided rain into sparse and dense ones based on the
low-rank hypothesis of the background. Based on the low-rank
background assumption, Wei et al. [12] further encoded rain
streaks as a patch-based mixture of Gaussians. Such stochastic
manner for encoding rain streaks could make the method
deliver a wider range of rain information.

Very recently, motivated by the booming of deep learning
(DL) techniques, several DL methods also appeared for the
task. Liu et al. [13], [24] addressed the problem by construct-
ing deep recurrent convolutional networks, which builds a joint
recurrent rain removal and reconstruction network that seam-
lessly integrates rain degradation classification, spatial texture
appearances based rain removal, and temporal coherence based
background detail reconstruction. Meanwhile, Chen et al. [15]
proposed a deep derain framework which applies superpixel
segmentation to decompose the scene into depth consistent
units. Alignment of scene contents are done at the super-
pixel level to handle the videos with highly complex and
dynamic scenes. Yang et al. [14] not only proposed a two-
stage recurrent network with dual-level flow regularizations
to perform the inverse recovery process of the rain synthesis
model for video deraining, but also developed a novel rain
synthesis model to produce more visually authentic paired
training and evaluation videos.

B. Single Image Rain and Snow Removal Methods

For literature comprehensiveness, we also briefly review the
rain/snow removal methods for a single image. Kang et al. [25]
firstly formulated the problem as an image decomposition
problem based on morphological component analysis, which
achieves rain component from the high frequency part of an
image by using dictionary learning and sparse coding. Later,
Luo et al. [26] built a nonlinear screen blend model based on
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discriminative sparse codes. Besides, Ding et al. [27] designed
a guided L0 smoothing filter to obtain a coarse rain-free
or snow-free image, and Li et al. [28] utilized patch-based
Gaussian mixture model (GMM) priors to distinguish and
remove rain from background in a single image. Wang et
al. [29] designed a 3-layer hierarchical scheme to classify the
high-frequency part into rain/snow and non-rain/snow compo-
nents. Gu et al. [30] jointly analyzed sparse representation and
synthesis sparse representation to encode background scene
and rain streaks. Meanwhile, Zhang et al. [31] learned a set
of generic sparsity-based and low-rank representation-based
convolutional filters for efficiently representing background
and rain streaks in an image.

Recently, DL-based methods represent the new trend for
this task. Fu et al. [32] firstly developed a deep convolutional
neural network (CNN) model to extract discriminative features
of rain in high frequency layer of an image. The training
pairs are constructed based on the whole image. Later, Fu et
al. [33] constructed the training pairs by using image patches
and utilized the res-net as the classifier. Zhang et al. [34] first
proposed a derain network based on generative adversarial net-
work for single image derain. Yang et al. [35] designed a multi-
task DL architecture that learns the binary rain streak map, the
appearance of rain streaks and the clean background. Liu et
al. [36] proposed a multistage and multi-scale network to deal
with the removal of translucent and opaque snow particles.
Very recently, Yang et al. [37] constructed a contextualized
deep network, which incorporates a binary rain map indicating
rain-streak regions, and accommodates various shapes, direc-
tions, and sizes of overlapping rain streaks as well as rain
accumulation to model heavy rain. For dealing with heavy rain,
Li et al. [38] proposed a two-stage network: a physics-based
backbone followed by a depth-guided generative adversarial
networks (GAN) refinement, which aims to estimate the rain
streaks, the transmission, and the atmospheric light, and to
recover the background details failed to be retrieved by the
first stage. Wang et al. [39] proposed a model-driven deep
neural network for the task, with fully interpretable network
structures.

Although these image-based methods can also deal with
rain/snow removal in a video via a rough frame-by-frame
manner, the missing use of the important temporal information
for such a specific task inclines to make the video-based
methods perform significantly better than image-based ones.

C. Online Learning Approaches

Online learning is a method of machine learning in which
data becomes available in a sequential order and is used
to update the best predictor for future data at each step,
as opposed to batch learning techniques which generate the
best predictor by learning on the entire training data set at
once. Online learning is a common technique used in areas
of machine learning where it is computationally infeasible
to train over the entire dataset, requiring the need of out-
of-core algorithms. Online learning algorithms may be prone
to catastrophic interference, a problem that can be addressed
by incremental learning approaches. Recently, online learning
methods have attracted increasing attention in many computer

science tasks, such as background subtraction [40], [41], [42].
In video rain/snow removal task, online learning is used to
calculate only one frame at a time, and gradually ameliorate
rain/snow based on the real-time video variations.

D. Alignment Approaches for Videos

Since camera jitter tends to damage the low-rank back-
ground structure of a video, we always need to align the
transformed videos to accurately extract the low-rank back-
ground. Many alignment methods have been attempted to this
issue. For example, Zhang et al. [43] proposed an approach to
directly extract certain 3D invariant structures through their 2D
images by undoing the (affine or projective) domain transfor-
mations. Zhang et al. [44] further proposed a general method
for recovering low-rank 3-order tensors, which introduced
auxiliary variables and relaxed the hard equality constraints by
the alternating direction method of multipliers (ADMM) [45].
Yong et al. [40] proposed an alignment method for aligning the
video background based on optimizing a supplemental affine
transformation operator, and applied it to the task of dynamic
background subtraction.

III. ONLINE TRANSFORMED MS-CSC MODEL FOR
DYNAMIC VIDEO RAIN/SNOW REMOVAL

This work is inspired by our previous conference work [16],
proposing an offline multi-scale convolutional sparse coding
(MS-CSC) model, specifically designed for rain removal issue
(with consistent rain temporarily) in a fixed length of video
sequence. We thus first introduce the formulation of this offline
model.

A. Offline MS-CSC Model

Let X ∈ Rh×w×n denotes the input video, where h,w,
and n represent its height, width and the number of frames,
respectively. We assume that the video X can be decomposed
as:

X = B + F +R+ E , (1)

where B,F ,R, E ∈ Rh×w×n represent background scene,
moving objects, rain layer, and background noise of the video,
respectively. These parts can then be modeled separately as
follows [16].

Background Modeling: For a fixed length of video sequence
captured from a surveillance camera, its background tends to
keep steady over the frames, and thus can be rationally as-
sumed to be resided on a low-dimensional subspace [46], [47],
[48], [49], [50], leading to its low-rank matrix factorization
representation as:

B = Fold(UV T ), (2)

where U ∈ Rd×r, V ∈ Rn×r, d = hw, r < min(d, n). The
operation ‘Fold’ refers to fold up each matrix column into the
corresponding frame matrix, and thus the background B is a
tensor with the same size as input X .

Rain Layer Modeling: Since rain in a video contain repet-
itive local patterns sparsely scattering over different areas,
and also exhibits multi-scale property due to its occurrence
positions with different distances to the cameras, multi-scale



IEEE TRANSACTIONS ON IMAGE PROCESSING 5

convolutional sparse coding (MS-CSC) [51] is thus utilized to
model rain as follows:

R =

K∑
k=1

sk∑
s=1

Dks ⊗Mks, (3)

where ⊗ denotes convolutional operation, and M =

{Mks}K,sk
k,s=1 ⊂ Rh×w×n is a set of feature maps that approxi-

mate the rain streak positions, and D = {Dks}K,sk
k,s=1 ⊂ R

pk×pk

denotes the filters representing the repetitive local patterns of
rain streaks. K and sk denote the numbers of entire filters and
filters at the k-th scale, respectively. Considering the sparsity
of feature maps, the L1-penalty [52] is utilized to regularize
them.

Moving objects Modeling: Motivated by the work [12],
Markov random field (MRF) is used to explicitly detect the
moving objects. Let H ∈ Rh×w×n be a binary tensor denoting
the moving object support:

Hijn =

{
1, location (i, j, n) is moving objects,
0, location (i, j, n) is background,

(4)

and H⊥ is the complementary of H (i.e., H+H⊥ = 1, 1 is a
tensor with all elements as 1). Eq.(1) can be then reformulated
as:

X = H⊥ ◦ B +H ◦ F +R+ E , (5)

where operation ◦ denotes the element-wise multiplication.
Since moving objects always exhibit smooth property, total
variation (TV) penalty [53] is adopted to regularize them.
Additionally, considering the sparse feature and continuous
shapes along both space and time of moving object, L1-penalty
and weighted 3-dimensional total variation (3DTV) penalty
are both employed to regularize the moving objects support
H simultaneously.

By assuming that the background noise E follows an i.i.d.
Gaussian, we can then integrate the aforementioned three mod-
els imposed on background, rain streak and moving objects
to get the MS-CSC model for offline video rain removal as
follows [16]:

min
Θ
L(Θ) =‖ X −H⊥ ◦ B −H ◦ F −R ‖2F +λ ‖ F ‖TV

+ α ‖ H ‖3DTV +β ‖ H ‖1 +b

K∑
k=1

nk∑
s=1

‖ Mks ‖1

s.t. B = Fold(UV T )

R =

K∑
k=1

sk∑
s=1

Dks ⊗Mks, ‖ Dks ‖2F≤ 1,

where Θ = {D,M,H,F , U, V,R} are the variables involved
in the problem to be optimized.

B. Online Transformed MS-CSC Model

The previous MS-CSC model is specifically designed for
rain removal in a pre-fixed length of video under the assump-
tion that the rain is of consistent configuration along time.
Specifically, the rain feature maps M (as defined in Eq. (3))
of all video frames attained under fixed filters are assumed
to follow a unique independent and identically distributed
Laplacian. The real rain shapes, however, are always both

correlated and distinctive along time, and varying from frame
to frame across the entire video. The simple encoding manner
of MS-CSC is thus inappropriate to real scenarios. We thus
present the online MS-CSC model, which not only provides
a more proper way to describe temporally dynamic rain/snow
and background motions, but also makes the method more
efficient and potentially applicable to streaming videos with
continuously increasing frames in real time.

For symbol unification, we denote the newly coming single
frame as Xt ∈ Rh×w, where h and w represent the height
and width of this frame, respectively, and d = h ∗ w denotes
the total number of pixels in this single frame. Similar to (1),
we then decompose newly coming single frame Xt as the
following three parts:

Xt = Bt + F t +Rt + Et, (6)

where Bt, F t, Rt, Et ∈ Rh×w represent the background
scene, moving objects, rain layer and background noise of the
current frame, respectively. We then put forward the schemes
to model these parts based on the dynamic characteristics of
rain/snow.

1) Modeling Dynamic Rain/Snow Layer: Albeit different
in physical generation mechanisms, in visual imaging per-
spectives, both rainfall and snowfall on a digital image or a
video frame have very similar geometric characteristics, i.e.,
with repetitive local patterns sparsely scattered over different
positions of the image, and of multi-scale configurations due
to their occurrence on positions with different distances to the
cameras. Such two intrinsic characteristics are thus encoded
into a concise probabilistic framework by the multi-scale
convolutional sparse coding (MS-CSC) model [16], namely:

Rt =

K∑
k=1

sk∑
s=1

Dt
ks ⊗M t

ks, (7)

where M t = {M t
ks}

K,sk
k,s=1 ⊂ Rh×w is a set of feature

maps that approximate the rain streak positions, and Dt =
{Dt

ks}
K,sk
k,s=1 ⊂ Rpk×pk denotes the filters representing the

repetitive local patterns of rain streaks. K and sk denote the
total scale number of filters and the total number of filters with
k-th scale, respectively.

Similar to the MS-CSC model, the sparsity of feature map
M t
ks is also regularized by the Laplacian distribution:

M t
ks ∼ Laplacian(M t

ks|0, btks), (8)

where the scale parameter btks > 0 is specified for the current
frame reflecting the specific rain degreen in this frame. Fur-
thermore, the correlation of rain between current and previous
frames is represented by the following prior term imposed on
btks:

btks ∼ Inv-Gam(btks|N t−1 − 1, N t−1bt−1
ks ), (9)

where N t−1 = (t−1)d and bt−1
ks are both the scale parameter

learned from the previous frames. Here Inv-Gam(·) denotes
the Inverse-Gamma distribution, a conjugate prior to btks,
whose mode is exactly the one of previously learned (i.e.,
bt−1
ks ). It is then naturally delivered that the correlation of rain
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degreen between current frame and the learned knowledge
from previous ones.

In the way as aforementioned, the dynamic characteristic of
rain/snow across a video can then be rationally represented.
In specific, the scale parameter in each frame is specifically
learned and different from one another, finely representing
the distinctiveness (i.e. ’non-identical’) of rain/snow among
different frames. Furthermore, the scale parameter of feature
map distribution for the current frame is regularized by that
of previously learned ones, well encoding the correlation
(i.e., ’non-independent’) across especially adjacent frames.
The model is thus expected to better adapt to the variations of
the dynamic rain/snow.

2) Modeling Moving Objects and Background Noise:
Following the MS-CSC model, we also adopt Markov random
field [54], [55] to detect the moving objects. Let H ∈ Rh×w
is a binary matrix denoting the moving object support, which
is defined as

Hij =

{
1, location (i, j) is moving objects,
0, location (i, j) is background.

(10)

Let H⊥ be complementary of H satisfying H+H⊥ = 1, 1 is
a matrix with all elements as 1. Eq.(6) can then be equivalently
expressed as:

Xt = Ht⊥ ◦Bt +Ht ◦ F t +Rt + Et. (11)

Like the offline MS-CSC optimization problem, by assuming
all elements of the background noise Et follow a Gaussian
distribution with zero mean and variance (σt)

2, we can then
get the probabilistic model for the component xtij of Xt as
follows:

xtij ∼ N(xtij |(Ht
ij
⊥ ◦Btij +Ht

ij ◦ F tij +Rtij), (σ
t)

2
). (12)

Similar to the dynamic shapes of rain in practical video, the
background noise embedded in the video is also with dynamic
forms, and also both distinctive and correlated among video
frames. We can then also represent this dynamic knowledge.
Specifically, for video noise in the current frame with vari-
ance (σt)

2, we model it in the similar modeling manner as
aforementioned, i.e., imposing conjugate prior to (σt)

2 as:

(σt)
2 ∼ Inv-Gam((σt)

2|N
t−1

2
− 1,

N t−1(σt−1)
2

2
), (13)

where N t−1 = (t− 1)d, and (σt−1)
2 denotes the variance of

Gaussian noise learned from the previous frames. The mode
of this prior is also the knowledge previously learned (i.e.,
(σt−1)

2). This encoding manner is thus also able to deliver
the dynamic property of noises along the video.

3) Modeling Background Transformations: To tackle trans-
formations of background scenes in a video due to camera
jitter, like translation, rotation and scaling, a flexible affine
transformation operation is imposed on the background. In
the decomposition form (6) for the current frame Xt, the
background component Bt is expressed to be transformed
from the previous one Bt as

Bt = Bt−1 � τ, (14)

where τ denotes the transformed operator implemented on the
initial background Bt−1, and can be formulated as an affine
or projective transformation [40]. Then, Eq.(11) and (12) can
be reformulated as:

Xt = Ht⊥ ◦ (Bt−1 � τ) +Ht ◦ F t +Rt + Et., (15)

xtij∼ N(xtij |((Ht
ij)
⊥◦(Bt−1

ij � τ)+Ht
ij◦F tij+Rtij), (σt)

2
).

(16)

4) Online Transformed MS-CSC Model: For conve-
nience, we denote all involved parameters as Θ =
{H, τ,D,M,F, σ2, b} and the parameters in the current and
last frames as Θt and Θt−1, respectively. Based on the models
provided in the last sections, given the previous parameters
Θt−1 and newly coming frame Xt, we can then obtain the
posterior distribution of Θ as follows:

p(Ht, τ,Dt,M t, F t, (σt)
2
, bt|Xt,Θt−1)

∝ p(Xt|Ht, τ, F t, Dt,M t, (σt)
2
)p((σt)

2|Θt−1)

p(M t|bt)p(bt|Θt−1)p(Ht)p(Dt)p(F t)p(τ). (17)

Through maximizing this posterior, the updated parameters
Θt for the current frame can then be attained. This MAP
problem can then be equivalently expressed as the following
minimization problem:

L(Θt) =−ln p(Xt|Ht, Bt−1, τ, F t, Dt,M t, (σt)
2
)+QE((σt)

2
)

−
∑
k,s

ln p(M t
k,s|btk,s) +QR(bt) +QF (F t, Ht),

s.t. Rt =
∑
k,s

Dt
ks ⊗M t

ks, ‖ Dt
ks ‖2F≤ 1, (18)

where

QE((σt)
2
) = N t−1(lnσt + (σt−1)

2
/2(σt)

2
), (19)

QR(bt) = N t−1
∑
k,s

(ln btks + bt−1
ks /b

t
ks), (20)

QF (F t, Ht) = λ‖F t ‖TV +α‖Ht ‖3DTV +β ‖Ht ‖1 . (21)

Specifically, QR((σt)
2
) and QE(bt) correspond to the reg-

ularization terms for the distributions of feature map M t
ks

and noises embedded in Xt, respectively, which can be more
intuitively understood by the following equivalent forms:

QE((σt)
2
) = N t−1DKL(N(x|0, (σt−1)

2
)‖N(x|0, (σt)2

)),
(22)

QR(bt) = N t−1
∑
k,s

DKL(L(M t
ks|0, bt−1

ks )‖L(M t
ks|0, btks))

(23)

where DKL(· ‖ ·) denotes the KL divergence between two dis-
tributions. Particularly, it can be easily observed that QR(bt)
functions to rectify the rain streaks on the current frame
with parameter btks to approximate the previously learned rain
streaks with parameter bt−1

ks , so as to make the rain shapes
in the adjacent frames correlated. Similarly, the regularization
term QE((σt)

2
) inclines to enforce the background noise in

the current frame close to that embedded in the previous ones.
This easily explains why our method can fit dynamic rain, as
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well as varying background noises, in a video with evidently
non-i.i.d. configurations.

The corresponding augmented Lagrangian function of Eq.
(18) can be written as follows:

L(Θt)=
1

2(σt)2
‖Xt−(Ht)

⊥◦(Bt−1�τ)−Ht◦F t−Rt ‖2F

+ dlnσ+N t−1(lnσt+
σt−12

2σt2
)+α‖Ht ‖3DTV +β ‖Ht ‖1

+
∑
k,s

(d ln btks+
1

btks
‖M t

ks ‖1)+
∑
k,s

N t−1(ln btks+
bt−1
ks

btks
)

+ λ ‖F t ‖TV +
ρ

2
‖
∑
k,s

Dt
ks ⊗M t

ks−Rt+T t ‖2F , (24)

where T t and ρ are the Lagrange variable and the penalty
parameter, respectively.

C. ADMM Algorithm

We can then readily adopt the alternating direction method
of multipliers (ADMM) [45], a variant of the augmented La-
grangian scheme, to iteratively optimize each variable involved
in Eq. (24). To simplify the relevant subproblems, we will
utilize the following equation:

‖Xt−((Ht)⊥◦ (Bt−1 � τ)+Ht◦F t+Rt) ‖2F =

‖(Ht)⊥◦(Xt−(Bt−1 � τ)−Rt)‖2F +‖Ht◦(Xt−F t−Rt)‖2F .

Next, we discuss how to solve each subproblem separately.
Update Ht: The subproblem with respect to Ht is

min
Ht

1

2(σt)2
‖ Xt − (Ht)⊥ ◦ (Bt−1 � τ)−Ht ◦ F t −Rt ‖2F

+ α ‖ Ht ‖3DTV +β ‖ Ht ‖1 . (25)

This subproblem is a standard energy minimization problem,
which can be efficiently solved by graph cut algorithm [56],
[57].

Update F t: The subproblem with respect to F t is

min
F t
‖ Ht ◦ (Xt − F t −Rt) ‖2F +2(σt)2λ ‖ F t ‖TV , (26)

which is easily solved by the TV regularization algorithm [53].
Update τ and Bt: Since Bt−1� τ is a nonlinear geometric

transform, it’s hard to directly optimize it and we resort to the
following linear approximation:

Bt = Bt−1 � τ + J4τ, (27)

where J is the Jacobian of Xt with respect to τ . We can
iteratively approximate the original nonlinear transformation
with a locally linear approximation, as τ = τ+4τ . Therefore,
the subproblem with respect to τ can be reformulated as:

min
4τ
‖(Ht)⊥ ◦ (Xt−Bt−1 � τ − J4τ −Rt)‖2 . (28)

It can be solved in closed-form. The solution is:

4τ = (J ′J)−1J ′(Xt −Rt −Bt−1 � τ). (29)

Fixing 4τ , we can use Eq. (27) to update the background.

Update M t: The subproblem with respect M t is

min
Mt

ks

1

2
‖
K∑
k=1

sk∑
s=1

Dt
ks⊗M t

ks−Rt+T t ‖2
F +

K∑
k=1

sk∑
s=1

btks
ρ
‖M t

ks ‖1.

(30)
This subproblem is a standard convolutional sparse coding
(CSC) problem and can be readily solved by [58], which
adopts the ADMM scheme and FFT to improve computation
efficiency.

Update Dt: The subproblem with respect to Dt is

min
Dt

1

2
‖
K∑
k=1

sk∑
s=1

Dt
ks⊗M t

ks−Rt+T t ‖2F, s.t.‖Dt
ks ‖2F≤1. (31)

We use online learning algorithm for sparse coding [59] to up-
date the filters Dt={Dt

ks}
K,nk

k,s=1. The algorithm utilizes block-
coordinate descent with warm restarts Dt−1 = {Dt−1

ks }
K,nk

k,s=1.

Update Rt: The subproblem with respect to Rt is

min
Rt

1

2(σt)2
‖ Xt − (Ht)⊥ ◦ (Bt−1 � τ)−Ht ◦ F t −Rt ‖2F

+
ρ

2
‖

K∑
k=1

sk∑
s=1

Dt
ks ⊗M t

ks −Rt + T t ‖2F . (32)

The closed-form solution is

Rt = (Xt− Γt)/(1 + ρ(σt)2) (33)

where Γt = (Ht)⊥ ◦ (Bt−1� τ)+Ht ◦F t−ρ(σt)2(
K,sk∑
k,s

Dt
ks⊗

M t
ks+T t).

Update T t: Following the general ADMM setting, T t can
be updated as:

T t = T t−1 +
∑
k,s

Dt
ks ⊗M t

ks −Rt. (34)

Update (σt)2: The subproblem with respect (σt)2 is

min
(σt)2

1

2(σt)2
‖ Xt − ((Ht)⊥ ◦Bt +Ht ◦ F t +Rt) ‖2F

+ d lnσt +N t−1(lnσt +
σt−12

2(σt)2
). (35)

Its closed-form solution is:

(σt)2 =
1

t
(σt)2 +

t− 1

t
σt−12

, (36)

where (σt)2 = 1
d ‖ X

t − ((Ht)⊥ ◦Bt +Ht ◦ F t +Rt) ‖2F .

Update btks: The subproblem with respect to btks is

min
btks

(d+N t−1)lnbtks+(btks)
−1(‖M t

ks ‖1 +N t−1bt−1
ks ). (37)

Its closed-form solution is:

btks =
1

t
b
t

ks +
t− 1

t
bt−1
ks , (38)

where b
t

ks = 1
d ‖M

t
ks ‖1.

The algorithm for solving this online transformed MS-CSC
(OTMS-CSC) model can then be summarized as Algorithm 1.
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Algorithm 1 Algorithm for OTMS-CSC Model
Input: The newly coming frame: Xt ∈ Rh×w; model variables

of last frame: Θt−1 = {Ht−1, Bt−1, Dt−1}; the parameters
of last frame: {(σt−1)

2
, bt−1}.

Initialization: {Ht, Dt} = {Ht−1, Dt−1}, τ = 0.
1: if t/l == 0 then
2: update Bt−1 = B̂t−1 by using the strategy suggested in

Sec. 3.4.2.
3: end if
4: while not converge do
5: Update 4τ by Eq. (29) and update τ = τ +4τ .
6: Update aligned background Bt by Eq. (27).
7: Update Ht, F t by Eq.(25), (26), respectively.
8: Update M t, Dt by Eq.(30), (31), respectively.
9: Update Rt, T t by Eq.(33), (34), respectively.

10: Update (σt)2, bt by Eq.(36), (38), respectively.
11: end while
Output: Θt = {Ht, Dt, Bt, F t, σt2, bt};

Recovered frame = Ht⊥ ◦Bt +Ht ◦ F t.

D. Some Remarks

1) Explanation for Function of DKL Regularizations: It
should be noted that the DKL regularization in Eq. (22) and
Eq. (23) intrinsically conduct the superiority of the proposed
OTMS-CSC model for removing dynamic rain/snow. Specif-
ically, the offline MS-CSC model [16] intrinsically specifies
one unique value for the parameter σ2 as well as b to represent
the background noise variance and scale parameter in feature
map representing rain/snow, respectively, for all the frames of
the video. The offline model is thus only suitable to be used
in the video with static background and consistent rain/snow
shapes. The OTMS-CSC model, however, can finely handle
dynamic rain with videos with dynamic rain and varying
background noises. This advantage is naturally conducted by
the fact that the model assumes that each frame has its own
specific noise parameter (σt)2 and scale parameter bt, by
simultaneously fitting the knowledge of the current frame and
being regularized by those ((σt−1)2 and bt−1) obtained from
the previous frames. This makes this model, implemented for
each new frame in an online mode, better adapt the specific
structures of rain/snow or background for the current frame,
generally varied from those for previous ones.

To more intuitively clarify this point, we illustrate in Fig. 2
the changing tendencies of parameters (σt)2 and bt for a
sequence of video frames, containing snow varying from heavy
to light. It can be seen that both (σt)2 and bt are gradually
decreasing along time, finely reflecting the dynamic changes
of snow along time.

2) The Case for Videos with Rain/Snow and Dynamic
Background: Given a sequence of surveillance video, if we
stack the video frames as columns of a matrix, then the
low-rank component naturally corresponds to the stationary
background and the remaining component captures the moving
objects and rain layers. Obviously, for videos with rain/snow
and dynamic background, the background motions like swing
leaves or water waves should also be removed from the

Fig. 2. The changing tendency of the noise variance (σt)2 and the scale
parameter bt along a video containing dynamic snow varying from heavy to
light. Since there are three different scales of filters (used for 13× 13, 9× 9,
3× 3 patch sizes , respectively) are utilized, there are three scale parameter
changing curves.

stationary background, as shown in Fig. 1 (b), thus mixed
with the moving objects and rain layers.

Actually, the filters Dt
ks of Eq. (7) can always help distin-

guish background dynamics and rain layers. Specifically, the
patterns of rain streaks are relatively vertical or oblique in
most cases, and the dynamic backgrounds, like water waves
or swing leaves, are more often figured by relatively more
horizontal filters. To make an intuitive understanding, the
complete decomposition process of the OTMS-CSC model
on a video with generated rain and water waves is displayed
in Fig. 1. As shown in the second row of Fig. 1, the entire
rain mixed with water waves can be divided into four sub-
layers, the corresponding size of filters shown in the top-left
corner are 5*5, 5*5, 9*9, 13*13, respectively. The first sep-
arated layer with the relatively horizontal filter appropriately
extract the water waves, while the other three separated layers
encode various rain layers with multiple scales and shapes.
Thus, for videos with dynamic background, the final dynamic
background (as shown in Fig. 1 (e)) should be a combination
between stationary background and those separated sub-layers
representing background motions, and the rain layer (as shown
in Fig. 1 (f)) should be a combination among those other sub-
layers.

3) Background Amelioration: Our method gradually up-
dates the background Bt of the current frame from the affine
transformation on that of the last frame Bt−1 by Eq. (27). Due
to constantly temporal scene shifting of the videos (especially
brought by the camera moving along a certain direction in
a short time) and incremental accumulation of computing
errors, the recovered video background tends to be gradually
deviated from the real one, which always makes the rain-
removed videos look more or less blurry after a period of
algorithm computing. To alleviate this issue, our algorithm
needs to specifically ameliorate the background knowledge Bt

after implementing certain frames by our algorithm.
Our strategy is as follows: When our algorithm is run l

iterations (the current frame is denoted as the tth one), we
then pick up two frames before and after current frame to get
a subgroup as:

X̂ t = [Xt−2, Xt−1, Xt, Xt+1, Xt+2]. (39)

We then easily align all other frames under the reference of the
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current frame by using the similar manner as we introduced
in Eq. (27), to obtain the aligned subgroup as (a h × w × 5
tensor):

T X̂ = [TXt−2, TXt−1, Xt, TXt+1, TXt+2], (40)

where TXj = Xt � τ j (j = t − 2, t − 1, t + 1, t + 2), and
τ j is calculated readily by Eq. (27)-(29). Then we can easily
calculate the optimal rank-one approximation B̂t−1 of the
unfolded matrix TX̂ ∈ Rhw×5 of T X̂ efficiently by SVD, and
replace Bt−1 as B̂t−1 to get the new ameliorated background
initialization.

4) Potential to be Used for Streaming Videos: It is evident
that the proposed OTMS-CSC algorithm is implemented in
an online mode, i.e., each time run on a unique newly
coming frame. This learning manner makes our method po-
tentially applicable to practical streaming videos. In specific,
in each implementation stage for a frame Xt, the algorithm
only requires a fixed memory to restore related parameters
Ht, Bt, Dt, (σt)

2
, bt. Besides, since the implementation is

similar to each new frame, its time complexity is also fixed in
each learning stage. This makes our method potentially feasi-
ble to the practical videos continuously coming with streaming
format beyond current offline methods, which not only need
increasingly more space complexity for larger length of videos,
but also require increasingly larger time complexity for larger
video sequence (even need to pre-implement the algorithms
on the entire video again). This makes them hardly useable to
this typical real video format in practice. Comparatively, our
method makes the real-time execution of rain removal possible
to be realized for practical streaming video. What we need to
do is to improve the efficiency of our algorithm on one frame
to make it gradually meet the real-time requirements. Possible
regimes include further improvement on hardware power,
further speed-up on algorithm implementation (like modify
it distributed/parallel or transform it in faster implementation
platform), or replace some of its stages with faster algorithms.
This is a meaningful issue worthy of making further endeavors
in future research.

IV. EXPERIMENTAL RESULTS

To make a sufficiently comprehensive and diverse compari-
son, this section contains experiments on videos with synthetic
and real rain/snow, experiments on videos with dynamic
background, further vertification of video rain removal on
the video instance segmentation task, and failure cases. All
experiments were implemented on a PC with i7 CPU and 32G
RAM.

Some state-of-the-art video rain/snow removal methods
have also been implemented for comparison, including Garg
et al. [5]1, Jiang et al. [21]2, Ren et al. [11]3, Wei et al. [12]4,

1http://www.cs.columbia.edu/CAVE/projects/camera rain/
2Code is provided by the authors
3http://vision.sia.cn/our%20team/RenWeihong-homepage/vision-

renweihong%28English%29.html
4http://vision.sia.cn/our%20team/RenWeihong-homepage/vision-

renweihong%28English%29.html

Liu et al. [13]5, Li et al. [16]6, Chen et al. [15]7 and Yang et
al. [24]8. Note that these methods contain both model-driven
MAP-based and data-driven deep learning representative state-
of-the-art technologies for a comprehensive comparison. And
some derain methods for surveillance system, like Wei et
al. [12] and Li et al. [16], are only able to handle the
videos with definitely static background, thus automatically
disappeared in visual and quantitative comparison for videos
with background transformations, such as Tab. II and Fig. 5.

A. Experiments on Videos with Synthetic and Real Rain/Snow

In this section, to make a sufficiently comprehensive and
diverse comparison, we not only includes almost all typical
data in this domain, like NTURain[15]9, but also collects
some real rainy and snowy videos from real-world monitoring
systems and social media platforms. Considering the limitation
of paper length and inconvenience for the result exhibition
in video tasks, only twelve videos including five synthetic
videos and seven real videos can be displayed on the paper
in both quantitative and qualitative perspectives. More video
demonstrations on the obtained results by all completing video
rain removal methods have been reported in our specifically
constructed website10 for easy and better observation.

All experiments were implemented on a PC with i7 CPU
and 32G RAM. Three different scales of filters (13 ∗ 13, 9 ∗
9, 5 ∗ 5) are implemented on all videos in this subsection.

1) Experiments on Videos with Synthetic Rain/Snow: The
synthehtic rainy videos are generated by adding clean video
and generated rain directly by pixel, where the rain/snow with
various types used were synthetically generated by Photoshop
on a black background. We first introduce experiments exe-
cuted on videos with synthetic rain/snow, including two with
static backgrounds, one of them is shown in Fig. 3, and one
with evidently dynamic background with evident translations
among adjacent frames, as depicted in Fig. 4 and four synthetic
videos in the group a of the NTURain [15] testing dataset
Fig. 5. The clean videos as shown in Fig. 3 and Fig.4 are
downloaded from CDNET database[17]11 and surveillance
system of Xi’an Jiaotong University respectively, and those of
Fig. 5 are the synthetic testing data of the NTU-Rain dataset
[15].

The video with static background as shown in Fig. 3
contains snow. From Fig. 3, we can easily observe that the
compared methods proposed by (c) Garg et al., (d) Jiang et al.
and (g) Liu et al. fail to completely remove the snow, and that
proposed by (e) Ren et al., (f) Wei et al. and (h) Li et al. have
not finely kept the shape of the moving objects when removing
the rain streaks. Comparatively, our proposed OTMS-CSC
method has a better visual performance in both snow removing
and background/foreground detail preservation. Quantitative
comparisons on two videos are also presented in Tab. I, which

5https://github.com/flyywh/J4RNet-Deep-Video-Deraining-CVPR-2018
6https://github.com/MinghanLi/MS-CSC-Rain-Streak-Removal
7https://github.com/hotndy/SPAC-SupplementaryMaterials
8https://github.com/flyywh/CVPR-2020-Self-Rain-Removal
9https://github.com/hotndy/SPAC-SupplementaryMaterials
10https://sites.google.com/view/onlinetmscsc/
11http://www.changedetection.net
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TABLE I
QUANTITATIVE PERFORMANCE COMPARISON OF ALL COMPETING

METHODS ON STATIC VIDEOS WITH SYNTHETIC RAIN AND SNOW. NOTE
THAT ALL QUANTITATIVE RESULTS ARE THE MEAN OF ALL FRAMES IN

THE VIDEO.

Types Static videos
Dataset Highway Playground (Fig. 3)
Metrics PSNR VIF SSIM PSNR VIF SSIM
Input 23.82 0.766 0.929 27.93 0.595 0.831

Garg et al. [5] 24.64 0.750 0.920 35.87 0.819 0.950
Jiang et al.[21] 24.32 0.713 0.929 35.80 0.779 0.977
Ren et al. [11] 23.52 0.681 0.927 30.34 0.921 0.995
Wei et al. [12] 24.43 0.761 0.943 34.58 0.945 0.993
Liu et al. [13] 22.19 0.555 0.895 31.56 0.616 0.946
Li et al. [16] 25.37 0.790 0.957 42.95 0.980 0.997
OTMS-CSC 25.91 0.796 0.957 46.29 0.988 0.999

(a) Input (b) GT (c) Garg et al. [5]

(d) Jiang et al. [21] (e) Ren et al. [11] (f) Wei et al. [12]

(g) Liu et al. [13] (h) Li et al. [16] (i) OTMS-CSC
Fig. 3. Visual comparison on a static video with synthetic snow.

fully complies with the aforementioned visual observations.
Specifically, we adopt three image quality assessment (IQA)
metrics, called PSNR, VIF [60] and SSIM [61], to evaluate the
performance of all competing methods on entire videos. Note
that the all quantitative results in the table are the mean of
all frames in the video. The table indicates that our proposed
OTMS-CSC model can perform best in all cases in terms of
all IQAs, as compared with other competing methods.

For slow panning videos as shown in Fig. 4 - 5, there
are obvious rain streaks remaining on the recovered frames
obtained by (c) Garg et al., (e) Ren et al. and (f) Liu et
al. The method of (d) Jiang et al. has not done well in
preservation of background details (like the texture of wall).
Our proposed OTMS-CSC method attains a relatively better
performance in both aspects. For the synthetic testing data of
NTURain dataset introduced by Chen et al. [15] displayed

(a) Input (b) GT (c) Jiang et al. [21]

(d) Ren et al. [11] (e) Liu et al. [13] (f) OTMS-CSC
Fig. 4. Visual comparison on a slow panning video with synthetic rain.

(a) Input (b) GT (c) Garg et al. [5]

(d) Jiang et al. [21] (e) Ren et al. [11] (f) Chen et al. [15]

(g) Yang et al. [24] (h) OTMSCSC (i) PSNR Comparison
Fig. 5. Visual comparison on the panning unstable video with synthetic rain
(a2 in the NTURain dataset) and the PSNR evolution curves on all frames in
the videos.

in Fig. 5, all aforementioned methods still keep its own
limitations in rain removal or texture information retention.
Besides, the new added method proposed by (f) Chen et al.
can hardly remove the heavy rain bars with suddenly bright
forming serious occlusions to background scene as shown in
red boxes. Comparatively, our proposed method still remains
stable and gets expected performance on videos with heavy
rain and complex background texture. The average quantitative
comparisons in the entire video presented in Tab. II further
verify that our proposed model can stay the highest or the
second highest in all cases in terms of all IQAs, as compared
with other competing methods.

Based on the above tables and figures, proposed OTMS-
CSC model achieves stable and best performance on synthetic
videos datasets both visually and quantitatively. Considering
that all other methods are implemented on the entire video
(iteratively utilizing the video multiple times) or need ad-
ditionally pre-collected training data while our method is
sequentially implemented in the video sequence (i.e., each
frame is only iterated one time and then dropped out), it should
be rational to say our method is efficient.

2) Experiments on Videos with Real Rain/Snow: We further
evaluate the performance of the proposed method on videos
with real rainy or snowy scenarios. Due to the limitation of
paper length, only five real videos have been shown in our ex-
periments, including a video captured under static background
and four videos under backgrounds with typical transforma-
tions like random jitter, translation, and scale transformation.
More video visual results by all completing methods have been
reported in our specifically constructed website10 for easy and
better observation. Fig. 6 and Fig. 8 include three public rain
videos used in [5] or downloaded from Youtube12 respectively.

12https://www.youtube.com/watch?v=kNTYEKjXqzs, HbgoKKj7TNA
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TABLE II
QUANTITATIVE PERFORMANCE COMPARISON OF ALL COMPETING METHODS ON VIDEOS WITH SYNTHETIC RAIN AND BACKGROUND

TRANSFORMATIONS. ALL QUANTITATIVE RESULTS ARE AVERAGED OVER ALL FRAMES IN THE VIDEOS.

Types Dynamic video NTURain
Dataset Human (Fig. 4) a1 a2 (Fig. 5) a3 a4 Average
Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Input 29.32 0.909 28.25 0.9350 27.88 0.9436 27.61 0.9193 31.24 0.9440 28.75 0.9355

Garg et al. [5] 36.11 0.969 23.65 0.8422 27.37 0.9096 24.14 0.8572 32.62 0.9522 26.95 0.8903
Jiang et al. [21] 32.51 0.960 22.05 0.8829 25.99 0.7458 24.13 0.6701 29.70 0.9535 25.47 0.8156
Ren et al. [11] 31.33 0.956 28.93 0.9335 29.06 0.9440 28.46 0.9243 30.43 0.9582 29.22 0.9400
Liu et al. [13] 34.69 0.965 - - - - - - - - - -

Chen et al. [15] - - 29.15 0.9505 29.73 0.9533 29.13 0.9440 33.86 0.9673 30.47 0.9463
Yang et al. [24] - - 32.17 0.9616 32.22 0.9659 31.57 0.9534 35.76 0.9736 32.93 0.9636

OTMS-CSC 37.65 0.966 30.88 0.9679 32.60 0.9708 31.82 0.9649 32.85 0.9620 32.04 0.9664

(a) Input (b) Garg et al. [5] (c) Jiang et al. [21]

(d) Ren et al. [11] (e) Wei et al. [12] (f) Liu et al. [13]

(g) Li et al. [16] (h) OTMS-CSC
Fig. 6. Visual comparison on a typical real video with dynamic rain and
static background.

Fig. 7 shows two real rainy videos from the real testing data
of NTURain dataset.

The video shown in Fig. 6 is captured by a surveillance
equipment in street, containing dynamically varying rain along
time. From the figures, we can easily observe that the derained
frames of all other compared methods still contain certain
rain streaks. By contrast, our proposed OTMS-CSC method
is capable of better removing all the rain and snow.

Fig. 7 and 8 show rain and snow removal results on real
videos with slow panning and scaling, respectively. It can be
seen from above two figures that the methods proposed by (b)
Garg et al. and (c) Jiang et al. cannot fully remove rain/snow
and fail to recover the texture information underlying the
frames, that proposed by (d) Ren et al. and (e) Liu et al.
fail to detect and remove the rain streaks or snowflakes since
they are not capable of dealing with video transformations.
The method of (e) Chen et al. sometimes misses some heavy
rain bars with obvious bright. The proposed OTMS-CSC
method can obtain better visualized performance since they
consider the background transformation and online multi-scale
convolutional sparse coding in the modeling. This verifies
that aligning video background can help to improve the final
performance of rain/snow removal especially for videos with
background transformation. Please refer to the website10 for
more comprehensive illustration of the video results.

3) Run Time Comparison: Although some earlier methods,
such as Garg et al. and Jiang et al., run very efficiently, their
performance is not comparable with recent video rain removal

methodologies. Therefore, considering the balance between
running time and performance, this paper only includes those
methods published in recent years, which usually are compa-
rable in performance. To show the efficiency of the proposed
online method, we list the average running time per frame
of each compared method in Tab. III in four representative
static and dynamic videos with synthetic and real rain/snow,
respectively. From the table, the speed advantage of the
OTMS-CSC method is evident attributed to its online learning
manner. Besides, in order to better intuitive time comparisons
between offline and online learning, corresponding to MS-
CSC[16] and OTMS-CSC model respectively, the time line
of MS-CSC model in dynamic videos shown in Fig. 9 (c-d)
also have been provided in this part. As we show in Fig. 9,
this online method has a good scalability, i.e., its time cost
is linearly increasing with more input video frames, naturally
due to its fixed training time on each video frame. Together
with its fixed space complexity along time as discussed in Sec.
3.4.4, the method is expected to be potentially useful for real
streaming videos.

TABLE III
AVERAGE RUNNING TIME COMPARISON OF ALL COMPETING METHODS ON

FOUR TYPICAL RAINY/SNOWY VIDEOS WITH STATIC OR DYNAMIC
BACKGROUND. (UINT: S/FRAME)

Type Dataset Size Ren [11] Wei [12] Liu [13] Li [16] Our

Static Fig. 3 270 ∗ 480 3.67 8.62 4.82 3.37 0.96
Light 360 ∗ 480 8.05 13.30 4.82 2.69 0.88

Dynamic Fig. 4 288 ∗ 352 50.3 - 4.03 - 0.87
Fig. 8 360 ∗ 640 80.4 - 8.55 - 1.36

B. Experiments on Videos with Dynamic Background

The rain removal experiments on videos with dynamic
background have been performed on the proposed synthetic
CDNet-Rain dataset. The rough process of generating the
dataset is to add rgenerated ain streaks by Adobe After Effects
13 to the frames clipped from the dynamic background se-
quences of the CDNet [17] dataset. There are seven sequences
in the CDNet-Rain dataset, two of which are based on the
same sequence with swing leaves, named Fall01 and Fall02
respectively. The difference between them is that the former
does not contain moving objects, while the latter does. The
detailed introduction of CDNet-Rain dataset is listed in Tab.

13https://www.adobe.com/products/aftereffects.html
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(a) Input (b) Garg et al. [5] (c) Jiang et al. [21] (d) Ren et al. [11] (e) Chen et al. [15] (f) Yang et al. [24] (g) OTMS-CSC
Fig. 7. Visual comparison on two real rainy videos extracted from panning unstable cameras (the NTURain testing dataset ra2 and ra3 respectively).

(a) Input (b) Garg et al. [5] (c) Jiang et al. [21] (d) Ren et al. [11] (e) Liu et al. [13] (f) OTMS-CSC
Fig. 8. Visual Comparison on two real snowy videos with obvious horizontal movement and scale transformation respectively.

(a) Playground (Fig. 3) (b) Light

(c) Human (Fig. 4) (d) Pine (Fig. 8)

Fig. 9. Run time comparison of comparable methods on four videos with
static ((a) and (b)) or transformed background ((c) and (d)) respectively. The
black point denotes the method over the current frames will report the error:
out of memory.

IV. Four different scales of filters (13 ∗ 13, 9 ∗ 9, 5 ∗ 5, 5 ∗ 5)
are adopted on all videos of CDNet-Rain dataset.

In order to test the stability and generalizable usefulness of
video rain removal algorithms more fairly, we execute all seven
testing video sequences on a fixed experimental setting for all
competing methods. The quantitative performance comparison

are listed in Tab. IV. It is seen that the proposed OTMS-CSC
model achieves the best results on five out of the seven video
sequences, and also stays the best average performance on
the average of whole dataset. For those two video sequences
Fall01 and Fall02, the performance of proposed OTMS-CSC
model is sligtly lower than the SLDNet model, because the
graph cut algorithm used in our algorithm for cutting moving
objects mask is not accurate enough in the segmentation of
the object edges. Furthermore, the higher SSIM index of
OTMS-CSC model over SLDNet validates the effectiveness
of multi-scale convolutional sparse coding model, which can
separate background motions from the mixed rain layer. Fig.
10 shows some visual comparison of video rain removal for
all competing models on synthetic CDNet-Rain dataset. As
compared with the SLDNet model [24], which can preserve
most of the details in the background but remain some streak
residuals, the proposed OTMS-CSC model estimates a cleaner
background with less rain streak residuals , which substantiates
the superiority of our proposed method in generalization on
dynamic videos.

C. Video Rain Removal Verification on Video Instance Seg-
mentation Task

In order to further verify whether removing rain and snow
from a video could bring positive impact on the sub-sequence
video processing tasks, we take the video instance segmen-
tation (VIS) task [18], which aims to simultaneously detect,
segment and track instances in videos, as an example for
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TABLE IV
QUANTITATIVE PERFORMANCE COMPARISON OF ALL COMPETING
METHODS ON SYNTHETIC CDNET-RAIN DATASET WITH DYNAMIC

BACKGROUND.

Methods Input SLDNet [24] OTMS-CSC
Videos Frames clip PSNR SSIM PSNR SSIM PSNR SSIM
Canoe 801-1100 21.52 0.6747 24.25 0.7594 24.95 0.7657
Boats 6901-7300 23.00 0.7873 28.05 0.8808 28.58 0.8853

Overpass 2201-2800 21.53 0.7594 25.29 0.8554 27.32 0.8741
Fountion01 1-400 19.29 0.7072 22.12 0.7733 24.13 0.8661
Fountaion02 1-400 22.65 0.8173 27.63 0.8988 29.99 0.9120

Fall01 1-200 22.53 0.8716 26.95 0.9261 25.04 0.9181
Fall02 3901-4000 22.52 0.8740 27.18 0.9279 25.87 0.9239

Ave. Perf. - 21.86 0.7845 25.92 0.8602 26.55 0.8779

(a) Overpass (b) Fountain01 (c) Fall02

Fig. 10. Visual comparison on synthetic CDNet-Rain dataset with dynamic
background. From upper to lower: input frame, groundtruth clean frame,
results produced by SLDNet and OTMS-CSC model respectively.

evaluation. Specifically, the video rain removal algorithms can
be served as a pre-processing step to ameliorate quality of
images/videos, so as to make the following processing task
capable of being normally handled by off-the-shelf techniques.

To facilitate such an evaluation, based on the large-scale
video instance segmentation valid dataset YouTube-VIS pro-
posed in [18], which consists of 301 high-resolution YouTube
videos, we propose a video rain removal benchmark for video
instance segmentation task called YouTube-VIS-Rain. Specif-
ically, we selected seventeen outdoor videos from YouTube-
VIS valid dataset and synthesized rain over these videos with
varying parameters. In the pre-processing step, the seventeen
synthetic videos were implemented by video rain removal
methods for removing rains. The obtained videos are then put
back into the YouTube-VIS valid dataset to perform video
instance segmentation task.

Quantitative performance metrics for both tasks are taken
into account, including PSNR and SSIM metrics for video rain
removal task, together with average precision (AP) and average
recall (AR) metrics [62] for video instance segmentation task.
For video rain removal task, the average quantitative perfor-

mance comparison on the seventeen videos from YouTube-
VIS-Rain dataset are shown in the second and third columns
of Tab. V, and the PSNR and SSIM comparison on each
video sequence are displayed in Fig. 11. Compared with the
SLDNet model, the proposed OTMS-CSC method achieves
better results on average PSNR and SSIM metrics. Visual
results shown in the first row of Fig. 12 indicate that the
SLDNet model fails to detect completely rain streaks and still
leaves obvious rain marks in the video, while the proposed
OTMS-CSC method can better remove rain streaks from the
background. But affected by total variation (TV) regularization
on the foreground, the OTMS-CSC model perform still not
sufficiently perfect in removing rain from the foreground
compared with the SLDNet model. This is why the quantitative
metrics of OTMS-CSC model are slightly lower than those of
the SLDNet model in some videos as shown in Fig. 11.

TABLE V
QUANTITATIVE PERFORMANCE COMPARISON FOR BOTH VIDEO RAIN

REMOVAL TASK AND VIDEO INSTANCE SEGMENTATION TASKS ON
YOUTUBE-VIS-RAIN DATASET.

Tasks Video Rain Removal Video Instance Segmentation
Metrics PSNR SSIM mAP AP50 AP75 AR1 AR10

GT - - 30.32 51.1 32.6 31.0 35.4
Rainy Input 23.06 0.8315 29.75 50.7 31.5 30.5 34.9

SLDNet [24] 28.30 0.8884 29.98 50.7 31.8 30.7 35.1
OTMS-CSC 28.44 0.8894 29.95 50.6 31.8 30.7 35.0

(a) PSNR Comparison (b) SSIM Comparison
Fig. 11. PSNR and SSIM evolution curves of video rain removal task on
all seventeen synthetic videos from the YouTube-VIS-Rain dataset.

We employ the video instance segmentation algorithm pro-
posed in [18] to further evaluate the impact of rain/snow on
the performance of video instance segmentation task. There
are four settings on those seventeen videos from YouTube-
VIS-Rain dataset for comparison: clean videos (GT), rainy
videos, rain-free videos removed by SLDNet and OTMS-CSC
model respectively. The corresponding quantitative metrics
are listed in the last five columns of Tab. V. It is seen
that compared with taking clean videos as input, introducing
seventeen dirty videos into YouTube-VIS dataset does cause
obvious performance degradation in all five metrics. The mAP
index decreased from 30.32 to 29.75, and the AP75 index fell
1.1. After rain removal pre-processing by SLDNet and OTMS-
CSC models, all metrics of VIS task have been moderately
improved. Since the VIS task pays more attention on the
moving objects, the performance of the proposed OTMS-CSC
method is sightly lower than those of the SLDNet model.
The second row of Fig. 12 exhibits instance segmentation
visualization results for four settings. As can be seen, in
those rainy/snowy videos, the actual features of objects (such
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(a) GT (b) Rainy Input (c) SLDNet[3] (d) OTMS-CSC
Fig. 12. Performance visual comparison for both video rain removal task and video instance segmentation task on a synthetic video of the YouTube-VIS-Rain
dataset.

as person) are very likely to be destroyed by rain or snow,
making it difficult for the network to classify and track the
instances accurately. The rain/snow removal pre-processing
does be beneficial to the final performance for this task.

D. Failure cases

The proposed method still has limitations on handling
general video rain removal tasks, especially for those captured
with non-surveillance cameras. Specifically, there are three
limitations of our proposed OTMS-CSC method. Firstly, when
camouflage effects occur (the photometric similarity of moving
objects and the background), the graph cut algorithm used
to obtain moving object mask in our algorithm tends to
confuse the moving objects with the background, resulting
in incomplete moving object mask, especially in videos with
extensive moving objects. Secondly, our proposed OTMS-
CSC model currently cannot handle those challenging videos
with fast illumination changes because it does not meet the
low-rank assumption of background extraction. Thirdly, the
proposed model is with limitation for videos captured by fast
moving cameras, like the videos in the Group b (with the speed
range between 20 to 30 km/h) of synthetic test data of the
NTURain dataset. For those videos, the affine transformation
operator used to align the background of the video frame may
lack sufficient overlap information between the frames to be
aligned. We’ll make further endeavor on these degenerated
cases for the video rain removal task in our future research.

V. CONCLUSION

In this paper, we have proposed a new rain/snow removal
method for surveillance videos containing dynamic rain/snow
captured with camera jitter. Both dynamic characteristics of
rain/snow variations and background scenes along time in-
evitably encountered in real cases, have been fully considered
in our method. Especially, the method is with a natural online
implementation manner, with fixed space and time complexity
for handling each frame of continuously coming videos, mak-
ing it potentially useful for dealing with practical streaming
video sequences. In the future, we will further ameliorate the
capability of the proposed method in more challenging video
cases, like those captured under fast moving cameras or those

under background with strong color contrast and rain/snow
with large streak shapes, and try to design rational techniques
or use some advanced computing equipments to further speed
up the method for each unique frame to make it meet with the
real-time requirements on practical streaming videos. Further-
more, we will consider the spatial heteroscedasticity property
[63] of noises in our future work. We will also try to consider
how to better express raindrop numbers in the rain removal
tasks to more faithfully encode the feature maps of our model
in our future investigations.
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