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Abstract—Albeit remarkable progress has been made to im-
prove the accuracy and completeness of multi-view stereo (MVS),
existing methods still suffer from either sparse reconstructions
of low-textured surfaces or heavy computational burden. In this
paper, we propose a Confidence-based Large-scale Dense Multi-
view Stereo (CLD-MVS) method for high resolution imagery.
Firstly, we formulate MVS as a multi-view depth estimation
problem, and employ a normal-aware efficient PatchMatch stereo
to estimate the initial depth and normal map for each reference
view. A self-supervised deep learning method is then developed to
predict the spatial confidence for multi-view depth maps, which
is combined with cross-view consistency to generate the ground
control points. Subsequently, a confidence-driven and boundary-
aware interpolation scheme using static and dynamic guidance
is adopted to synthesize dense depth and normal maps. Finally,
a refinement procedure which leverages synthesized depth and
normal as prior is conducted to estimate cross-view consistent
surface. Experiments show that the proposed CLD-MVS method
achieves high geometric completeness while preserving fine-scale
details. In particular, it has ranked No. 1 on the ETH3D high-
resolution MVS benchmark in terms of F-score.

Index Terms—Multi-view stereo, confidence, large-scale, inter-
polation, static and dynamic guidance, refinement.

I. INTRODUCTION

ULTI-view stereo (MVYS) is an important research topic

in computer vision, which aims at reconstructing 3D
geometric surface of scenes from multiple overlapped images.
MYVS allows user to capture images using consumer cameras
instead of specialized devices, and can be applied in both
indoor and outdoor scenes. Along with the prevalence of cell-
phones, digital cameras and unmanned aerial vehicles, there is
a steadily increasing demand for MVS in many applications,
such as large-scale urban reconstruction [1], [2] and image-
based rendering [3]. Driven by a series of MVS benchmarks
[4]-[6], the performance of MVS algorithms [1], [7]-[10] has
been consistently improved in terms of both reconstruction
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Fig. 1: Reconstruction results of pipes from ETH high-resolution
MVS benchmark. The scene consists of low-textured and non-
Lambertian man-made objects. Three of input images are shown in
the left, and 3D point-clouds by PMVS [8], COLMAP [10], LTVRE
[2] and our method are shown in upper middle, lower middle, upper
right and lower right, respectively. It clearly shows that our method
can achieve higher completeness while visually more pleasing.

completeness and accuracy. However, while the state-of-the-
art methods have achieved high reconstruction accuracy on
highly textured and Lambertian surface, they perform limited
for reliable reconstruction in real-world man-made scenes
containing low-textured and non-Lambertian surfaces. In par-
ticular, the unreliable multi-view matching on these scenes
gives rise to gross defects in the form of severe noise and
sparse reconstruction, inevitably restricting the deployment of
MYVS in many applications that visual quality matters [3].

To improve the completeness and accuracy for reconstruct-
ing complex scenes, prior terms have been introduced to
alleviate unreliable matching. The regularization terms [11]-
[13] have been integrated into a well-posed global labeling
problem to impose pairwise smoothness prior for estimating
per view depth maps [12] or directly recovering consistent
3D surface on 3D voxels [11], [13]. However, these meth-
ods generally require heavy computational efforts and costly
memory consumption even on low-resolution imagery, and
thus they cannot be applied to large-scale and high resolution
imagery. On the other hand, rapid growth of image and video
resolution by modern digital camera makes the efficiency
another challenging issue for MVS methods. Segmentation-
based methods [14] assume that scenes can be represented by a
set of planar structures which partition scenes into sub-regions
via superpixels, and each superpixel is corresponding to a 3D
plane. However, geometric details and thin structures cannot
be preserved in the reconstruction due to over-segmentation.
Data-driven methods learn shape priors [15], normal dis-
tribution [16] and joint reconstruction and semantic labels
[17] from training data. These approaches give remarkable
results on specific classes of objects with high intra-cluster



similarity, such as cars, humans and buildings. Recently, deep
learning-based MVS methods [18], [50] discriminatively train
the end-to-end mapping from images to depth maps or 3D
volumetric fields. Due to the limitation of training data with
available ground-truth, deep learning-based MVS methods
are still lacking in generalization ability on reconstructing
versatile real-world scenes which usually have quit different
data distribution from training data.

For efficient dense reconstruction, interpolation-based meth-
ods [19], [21] adopt a two-stage scheme to reconstruct depth
maps. In particular, the initial reconstruction stage generates
sparse feature points [21] or semi-dense depth map [19] as
anchor points, and the interpolation stage propagates confident
depth points to form dense depth map by using color image as
guidance. However, physically unrealistic interpolations may
happen for the regions far from anchor points. To further refine
the interpolation results, [23] introduces a large-scale stereo
matching method including three stages: a set of anchor points
are detected via Sobel features, Delaunay triangulation is used
to interpolate anchor points to provide an initial estimation
for disparity map, and then refinement is performed with
prior constraint. The main drawback of this method is that it
relies on salient features which are less reliable on low-texture
regions, and the interpolation via Delaunay triangulation on
anchor points cannot preserve surface boundaries. Instead of
relying on specific feature points, [3] uses a set of handcrafted
filters to select semi-dense anchor points from noisy depth
maps, then the interpolated maps estimated by the first-order
Poisson system is used as an auxiliary term of MRF for global
optimization of discrete labels. However, global optimization
needs huge computational efforts and it also cannot achieve
sub-pixel accuracy. Moreover, color images used as guidance
may lead to textured-copy problem [22], because most image
textures are actually not corresponding to true surface bound-
aries.

In this work, we follow the line of interpolation-based
methods and make a series of improvements. To begin with,
normal-aware PatchMatch stereo is adopted as the backbone
of label optimization for maintaining sub-pixel reconstruction
accuracy. We then propose a data-driven confidence prediction
method that adaptively predicts spatial consistency of depth
maps based on self-supervised learning, which does not rely
on salient features, hand-crafted filters and ground-truth depth.
The proposed method combines both spatial and cross-view
consistency to accurately detect confident depth points. Finally,
we present a confidence-driven and boundary-aware interpola-
tion stage to estimate physical-realistic depth and normal prior
maps by utilizing the estimated confidence map and dynamic
guidance, which are then used as constraints for efficient pixel-
wise refinement.

In summary, we propose a confidence-based large-scale
dense multi-view stereo method (CLD-MVS). The proposed
method consists of four key stages: coarse depth and normal
estimation, data-driven confidence prediction, plausible depth
prior construction via interpolation and pixel-wise refinement,
as shown in Fig. 2. The main contributions are summarized
as follows:

« We propose a novel CLD-MVS pipeline consisting of

initial reconstruction, confidence prediction, confidence-
driven and boundary-aware interpolation, and pixel-wise
refinement. The pipeline is robust to low-textured surface
and efficient for large-scale scenes and images.

« A normal-aware PatchMatch stereo is presented to im-
prove accuracy of normal map.

« A confidence-driven and boundary-aware interpolation is
proposed to obtain plausible prior depth maps. We com-
bine both spatial and cross-view confidence measures for
detecting reliable ground control points. Moreover, a self-
supervised method is proposed to learn spatial confidence
of multi-view depth maps. The use of the second order
static and dynamic guidance benefits the reconstruction of
slanted surface while increasing robustness to noise and
inconsistency of boundaries between image and depth.

« The proposed refinement step improves accuracy and
cross-view consistency by constraining photometric
matching costs with interpolation results, thereby re-
sulting in both higher completeness and better detailed
reconstruction.

Among all published results on the ETH3D high-resolution
MVS benchmark [6], the proposed CLD-MVS method has
achieved the highest rank in terms of Fj-scores, which is a
comprehensive metric for both accuracy and completeness. A
qualitative comparison of CLD-MVS with the state-of-the-art
methods on a challenging ETH3D dataset is shown in Fig. 1.
We also achieve the best performance on a set of challenging
datasets from DTU benchmarks [5], including vegetations, and
man-made objects with textureless and specular parts.

The paper is organized as follows. Section II introduces the
related work. Section III presents the framework of the pro-
posed method in detail. Section IV provides the experimental
results. Finally, the paper is concluded in Section V.

II. RELATED WORK

According to the taxonomy proposed by [4], MVS ap-
proaches can be divide into four categories: volumetric-based
[13], mesh-based [24], feature-based [1], [8] and depth map-
based methods [9], [10], [25]. Actually, these methods are
not independent to each other. Some practical MVS pipelines
[2], [26], [27] combine two or more categories of methods in
different stages to achieve high-quality reconstruction.

A. Volumetric-based MVS

Volumetric-based MVS methods assume that 3D scenes
embed in a pre-defined 3D volume. By labeling 3D voxels as
outside or inside true surface, 3D reconstruction can be treated
as a 3D segmentation problem. In the early studies, voxels are
labeled by photoconsistency [28], and inconsistent voxels are
then removed from 3D volume. This kind of methods may
lead to noisy reconstruction since it highly depends on the
photoconsistency which is sensitive to matching ambiguity.
By enforcing surface smoothness in energy function [13],
smoothing 3D reconstruction can be attained. There are some
methods [2], [11] that fuse multi-view depth maps in 3D
volumetric grids. These methods initialize voxel labels using
noisy depth maps, and output a fused 3D surface by labeling
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Fig. 2: Overview of the proposed CLD-MVS method

voxels via the accumulation of votes from multiple depth maps
or optimization of energy function. Some semantic methods
[16], [17] use volumetric methods as backbone for optimizing
semantic 3D reconstruction while incorporating normal prior
as an additional constraint term [16] or joint optimization of
3D reconstruction and semantic segmentation [17]. However,
volumetric-based methods generally suffer from huge compu-
tation and memory cost: (i) resolving energy minimization on
3D volume requires huge computational cost; (ii) volumetric-
based surface representation needs huge memory to represent
detailed surface and thin structures.

B. Mesh-based MVS

Mesh-based MVS methods optimize energy functions de-
fined on triangular meshes to directly deform estimated surface
to true surface by minimizing reprojection errors [24], [26].
The surface regularization terms are defined on vertices of
triangular meshes to explicitly control reconstruction quality.
Given an initial surface obtained from visual hull or other
MYVS reconstructions, mesh-based methods can refine coarse
3D surface to achieve detailed reconstruction while eliminating
surface artifacts. Moreover, mesh-based methods [29], [30] can
incorporate with shading cues to recover fine-scale geometric
structures. However, mesh-based methods are limited in han-
dling topological changes.

C. Feature-based MVS

Feature-based MVS methods focus on reconstructing the
regions with discriminative salient features. Furukawa et al.
[8] proposed the PMVS method that initially estimates a
set of seeds based on Harris corners and Blob detection,
then propagates the estimated depth to neighbors in a region
growing manner. Tola et al. [1] suggested to use Daisy feature
for reliable multi-view matching to generate quasi-dense depth
maps. This type of methods can efficiently reconstruct large-
scale scenes and process high-resolution images. However, re-
constructions by feature-based methods lead to large irregular
holes for the regions where salient feature points are hard to
be detected and matched. The low geometric completeness

has prevented them from the application tasks where dense
reconstruction is an important concern.

D. Depth map-based MVS

Depth map-based MVS methods reconstruct 3D surface in
two stages, i.e. multi-view depth estimation and fusion. Depth
map for each input view is estimated based on view selection
and local correspondence search, and then outlier removal and
fusion are conducted based on point-cloud representation [9],
[10], [31] or volumetric representation [2], [11]. Geselese et al.
[25] proposed an efficient multi-view depth estimation method
to estimate depth only for regions with strong image gradients.
Bailer et al. [32] presented a scale robust MVS for unstructured
image datasets that can deal with large variations in surface
sampling rate. Galliani et al. [9] proposed an GPU-friendly
PatchMatch stereo by alternating between hypothesis propa-
gation and hypothesis refinement based on black-red pattern,
and fused depth maps based on an efficient cross-view depth
and normal consistency checking. Xu et al. [33] improved
propagation speed of [9] by utilizing an asymmetric pattern
that gives priority to hypotheses with smaller photometric
costs. Schonberger et al. [10] proposed an occlusion-aware
multi-view stereo that jointly estimates pixel-wise visibility,
normal maps and depth maps, then consistency filters based
on photometric cost and geometric consistency are used to
remove the outliers when fusing the depth maps. Although
depth map-based MVS methods can achieve accurate and
efficient reconstruction on textured regions, they usually result
in low reconstruction completeness of low-textured surface,
such as man-made scenes. In contrast, we present a novel
depth map-based MVS method which effectively exploits
confident reconstruction parts to help the reconstruction of
unreliable parts, thereby resulting in significant improvement
of the entire reconstruction quality, especially on low-textured
surface.

E. Confidence Prediction

The confidence measures have been demonstrated to be
helpful in improving disparity map in stereo matching. The



high confidence estimates are used to modulate the data term
in MRF [34] and semi-global stereo [35], [36]. A number of
confidence measures have been suggested in stereo matching.
Instead of hand-crafted features, the state-of-the-art methods
usually adopt the learning-based strategy [35], [36], which
train random forest [34], [35] or deep CNNs [36], [37] based
on ground-truth disparities. Besides the supervised learning
methods, several methods [38], [39] have attempted to design
self-supervised strategy for training. Mostegel et al. [38]
proposed a self-supervised method that constructs a set of
training samples based on self-contradiction of depth maps
estimated from continuous stereo frames sampled from video
sequences. Tosi et al. [39] conservatively selected a set of
samples based on a serial of weak classifiers, e.g., left-right
consistency, median deviation of disparity, winner margin,
uniqueness constraint, and then trained a CNN-based model
for confidence prediction. In contrast, confidence prediction
has attracted less attention on multi-view stereo [2], [40],
partially because accumulation of photometric costs from
multiple views is more robust than stereo matching, and cross-
view consistency provides a strong evidence for probable noise
and outliers. However, these measures become less reliable for
sparse input views and low-textured surfaces. In this work,
we propose a self-supervised strategy for learning spatial
consistency of multi-view depth maps without the requirement
of ground-truths information. The predicted spatial consistency
can then be integrated with cross-view consistency to detect
high-quality ground control points.

III. PROPOSED APPROACH

The overview of the proposed CLD-MVS method is il-
lustrated in Fig. 2. The main idea of the proposed method
is based on the assumption that real-world scenes contain
many low-textured surfaces which are difficult to be reliably
reconstructed via multi-view matching, and we propose to
make full use of reliable reconstruction parts to help the
reconstruction of unreliable parts. To achieve this goal, we
first need an initial dense reconstruction and a method to
reliably detect the confident reconstruction parts, then use
a reliable interpolation method for filling missing surfaces
while utilizing a refinement step for improving cross-view
consistency and geometric details. Given a reference view, our
method estimates both dense depth and normal map in four
stages.

(1) The coarse depth and normal maps are estimated using
a normal-aware PatchMatch stereo algorithm.

(2) The confidence measures in terms of cross-view consis-
tency and spatial consistency are integrated to reliably predict
the correctness of each depth hypothesis. A self-supervised
strategy is proposed to generate labeled samples for training
deep CNNs (DCNNs) to predict spatial consistency.

(3) Plausible depth and normal estimation are obtained by
a confidence-driven and boundary-aware interpolation using
both dynamic and static guidance.

(4) Depth and normal are further refined to eliminate
possible interpolation errors, improve cross-view consistency
and recover geometric details.

Random
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Fig. 3: (a) The pipeline of normal-aware PatchMatch stereo. Com-
pared to baseline method (blue dotted line), we further refine normal
via cross-product of depth map (red solid line). (b) First row, from
left to right, input image, normal map by baseline method and normal
map by the proposed normal-aware variant. Second row shows the
corresponding close-ups.

It is worth noting that all steps in the proposed MVS
pipeline collaborate closely, and each step builds upon the
previous one and is essential for high-quality dense re-
construction. The proposed normal-aware PatchMatch stereo
significantly improves accuracy of normals, and the initial
reconstruction increases the density of confident points and
reduces the errors in the subsequent interpolation step. For
confidence prediction, high false positive rate will propagate
the reconstruction errors while high false negative rate will
lead to the unreliable interpolation due to the lack of reference
depth information. The proposed confidence prediction utilizes
both spatial confidence and cross-view consistency to achieve
more reliable confidence prediction for MVS. The interpo-
lation step uses confident points predicted by the proposed
confidence prediction step for reasonable interpolation of the
unreliable parts. The proposed pixel-wise refinement step
utilizes interpolation results as observed maps to estimate more
faithful 3D surface, especially for fine-scale structures, depth
discontinuities and regions far from confident points. After
estimating depth and normal maps for each of input views,
the entire set of depth and normal maps are fused to oriented
point clouds.

A. Multi-view Depth Estimation via Normal-aware Patch-
Match Stereo

Let S c R? denote a 3D surface of a scene, and [; : Q; C
R?> — Rf be an observed image in camera i (¢ = 1 for
grayscale images, and & = 3 for color images). The goal of
multi-view depth map estimation (MVDE) is to assign a dense
label map U : Q ¢ R? — R* for reference view I given its
neighboring views J = {Jilk = 1,2, ..., K}, where U consists
of one channel for depth map D : Q ¢ R*> — R and three
channels for normal map N : Q ¢ R? — R3. Stereo matching
can be treated as a special case of MVDE, where two input
images are rectified and K = 1.

Given a label assignment u(p) € U, for an m X m patch
R, centered on p in /I, the corresponding patch in one of K
neighboring views is R, and p; is the correspondence of
p. Let p(p, p;) be photometric matching cost between R, and
R, . To improve robustness to radiometric distortion and depth
discontinuities, we use negative adaptive normalized cross-



correlation (ANCC) [41] to measure photometric matching
cost:
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where ¢ € R, and q; € R, are a pair of correspon-
dences between reference image and nelghbonng image,

= 2lgeR, w,,I(q) and A, ;= Zq Ry w J(qk) are weighted
means of intensity values of plxels w1th1n patch R, and

patch R, , respectively. We define the affinity weight as

k
wh = exp (—M), where y is a user-defined parameter

and ||I(p) — 1(q)||; computes the L;-distance between /(p) and
I(q). The affinity weight decreases the influence of pixels that
differ a lot from the central one.

To increase the robustness to occlusion, accumulation of
photometric costs with respect to all corresponding patches in
neighboring images is defined as a self-weighted average of
the best K}, costs:

K
’ =P, P})
O(p. u(p)) = o P P % »)

Z“k 1 p(p p(p.p}) Zk 1 P(PPA

This correspondence problem is solved by PatchMatch
stereo for sub-pixel accuracy. The PatchMatch stereo was
initially introduced in stereo matching [42], and then adopted
in MVS methods [9], [10], [32] due to its effectiveness for sub-
pixel accuracy and slanted surface. PatchMatch stereo consists
of random hypothesis initialization, hypothesis propagation
and hypothesis refinement. While the original algorithm se-
quentially propagates hypotheses, several GPU-friendly vari-
ants have been proposed to accelerate computation by using
scanlines along diagonals [32] and black-red pattern [9], [10].
Based its highly efficiency for high-resolution images, we
use the black-red alternating optimization framework proposed
by Galliani et al. [9] as the backbone for the PatchMatch
stereo. To further accelerate the hypothesis propagation, we
use an improved red-black pattern proposed by [33]. To select
neighboring view set J for a reference view, Goesele et al.
[25] proposed a global view selection method followed by
a local view selection based on sparse features from outputs
of SFM algorithm, triangulation angles and matching cost in
MYVS, and Bailer et al. [32] improved global view selection
method of [25] by prioritizing views with big view angles
to reference view and views that capture regions which are
not visible to those already selected images. Schonberger et
al. [10] further proposed a pixel-wise view selection method
for elaborately handling occlusions. Since we have used
occlusion-robust cost aggregation function in Eq. 2, we follow
the global view selection method of [32] to efficiently select
a set of neighboring view K for a reference view. We denote
the method introduced above as baseline PatchMatch stereo.

In particular, accurate estimate of normals is important
for recovering detailed surface and slanted geometric struc-

ture. However, since there is one more degree of freedom
than depth, correct normal hypothesis is more difficult to
be found. In most variants of PatchMatch stereo [9], [42],
normal and depth are independently estimated. To further
improve accuracy of normals, Schonberger et al. [10] used
additional hypotheses to refine normals via random guess
and local perturbation, which could be difficult to converge.
Based on the observation that accuracy of estimated normal
is always lower than accuracy of the corresponding depth in
the optimization procedure, we generate a set of high-quality
normal hypotheses based on depth estimates in each iteration,
as shown in Fig. 3(a). Firstly, we filter depth map via a
3x3 median filter, then estimate normal hypotheses via cross-
product of filtered depth maps. Formally, we generate new
normal hypothesis i, for p by cross product of four neighbors
of p:
_ (X —X,) ® (X, — Xg)
"I = %) ® Ry — Ra)ll2

where ® is cross-product operator, p;, p,, p, and p, are 4-
connected pixels of p in the horizontal and vertical directions,
respectively. X, = K™ (x,,,yps Dzps X = K7(xp0 yp, Dzp, s
%, = K (xp0, Y0 D2pys Xa = K7 (X0 ypys 1)zp, are four 3D
points in the camera coordinate system, where z,,,2,,, 25, Zp,
are the corresponding depth hypotheses and K is the camera
intrinsic matrix. Note that A, in Eq. 3 is defined in camera
space, which can be transformed into the global 3D space by
—R"1, where R is a rotation matrix from global 3D space to
camera space.

By using this simple procedure, we can significantly im-
prove accuracy of normals with only slight increase of compu-
tational cost. Fig. 3(b) shows a visual comparison of estimated
normal maps with and without the proposed normal refinement
strategy. The quantitative evaluation are conducted in Section
IV-A.

Finally, the outputs of MVDE are a set of dense depth map
D* = {D*} and normal map N* = {N*} for all input views 7I.

3)

B. Confidence Prediction for Multi-view Depth Estimation

Due to matching ambiguities and occlusions, coarse depth
maps by PatchMatch stereo are inevitably contaminated by
noise and gross outliers. Instead of giving a hard classification
between correct and wrong, we set confidence value to each
pixel for its depth and normal assignment. In particular, a good
depth hypothesis in MVS should be geometrically stable with
support both from other views and its spatial neighbors in the
same depth map. We thus use two complementary confidence
measures to evaluate correctness of depth estimation based on
cross-view geometric consistency and spatial consistency, re-
spectively. In particular, we propose a self-supervised learning
method for predicting spatial consistency.

The cross-view confidence measure f,(z,) is based on cross-
view consistency (visibility). It utilizes the redundancy of
MVS and assumes that a correct depth hypothesis should be
consistent to a number of neighboring depth maps. Let z, € D*
and n, € N* be depth and normal in pixel p = (x,,y))
of reference view and D} be a depth map of neighboring
view i, where n, defined in the global space. Let (q;, 1)" =



o (H,- ° (H" o (Xp, Yps 1)sz)) be the correspondence of p in
D;, where IT-" and TI; represents camera inverse projection
and projection operator in reference view and neighboring
view i, respectively, and 7 = (x/z,y/z,z/z) is a normalization
operator. The reprojection position p, of p is defined by
projecting q; back to reference view. Depth hypothesis z, € D*
is regarded to be consistent with neighboring view i if (1)
distance between reprojection position p; and p is less than €
and (2) angle between normal n, in p and normal n,, in q; is
less than e,

1
Vepi = 0

where the normal n, and normal n, are all defined in
the global 3D space, and € and €, are two thresholds for
reprojection error and normal consistency, respectively.

The more reliable depth estimation will be voted by more
neighboring views. We use summation of consistency over all
neighboring views as a confidence for z,:

fv(zp) = Z Vi (5)
i€g

If the scene is densely covered by images, the cross-
view confidence measure can provide a strong confidence for
detecting inliers and outliers. However, if input views are
sparse (e.g., some parts of scene are observed by only two
views), this confidence measure becomes less reliable.

The spatial confidence measure fi(z,) is based on spatial
consistency. This is based on the assumption that a correct
depth hypotheses should be consistent with its spatial neigh-
bors in the same depth map. Traditional methods for detecting
spatial confidence measures use some heuristic features, such
as dissimilarity from all surrounding points [23], difference
with median [3], [34] and total variation [2]. To adaptively
explore the spatial consistency, we train a deep convolutional
neural network (DCNN) M(R)) that inputs a depth image
patch R, centering on pixel p and outputs a confidence
measure fi(z,) for the depth z,. The network structure is
inspired by an effective DCNN-based method [36] for stereo
matching. Poggi et al. [36] proposed to directly learn spatial
consistency from scratch by DCNN, which uses a fully con-
volutional network that inputs the small depth patches and
returns the confidence of the center pixel. According to the
quantitative evaluation conducted by [47], [36] is the most
accurate data-driven confidence prediction method for stereo
matching. Moreover, in contrast to other data-driven methods
[34], [35], the only inputs of [36] are depth maps, so it
can learn spatial confidence independent to other features,
e.g., photometric costs. Based on these works, we use the
similar network structure of [36] to learn the spatial confidence
for depth maps estimated by MVS. Different from [36], we
use a 15 X 15 depth image patch R, as input and a deeper
convolutional network (Fig. 4(a)) which has shown better
performance in our experiments (Fig. 10). As shown in Fig.
4(a), the network M consists of seven 3 x3 convolution layers
and three 1 X 1 convolution layers. Each of convolution layers
are followed by a ReLU (Rectified Linear Units) nonlinearity
except the last convolution layer where softmax is adopted.

“P - f’t“g < e Narccos(my, -ny) < &
otherwise
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Fig. 5: Illustration of confidence prediction by hard classification and
soft classification. First row: one of estimated depth maps and the
corresponding normal map. Second row, from left to right: confidence
map based on hard classification and soft classification, respectively.

The receptive field of this DCNN is 15 x 15. The loss for
training the DCNN is cross-entropy:

L= (gr, Tog () + (1 - gt oz (1 - 1)) (6
P

where gz, is ground-truth label of spatial confidence, fi(z,) =
M(R,) is the predicted probability and # is the total number
of samples of training data. The confidence map f; is a
probability map where each continuous value indicates the
probability of the estimated depth being correct. As shown
in Fig. 5, instead of directly removing the less reliable regions
(e.g., distant buildings) as done by hard classification, the
predicted confidence map sets a lower probability to these
regions.

Learning confidence requires sufficient training data, espe-
cially for DCNNs. Moreover, to achieve reasonable perfor-
mance, the characteristics of training data should be similar
to the one to be reconstructed at present. However, it is
difficult and expensive to build an abundance of ground-truth
for different type of real-world scenes. Though synthetic data
in the virtual world can be used, the characteristics of these
synthetic data are different with real-world captured data in
both appearance and geometric structures. In this work, we
propose to use a self-supervised method based on cross-view
consistency and truncated signed distance fields (TSDFs) to
train DCNNs for confidence prediction of multi-view stereo.
In comparison to binocular stereo matching, it is very likely
for MVS to find a set of pseudo-positive and pseudo-negative
depth samples based on redundant viewpoints. Since the labels
of training samples are obtained based on the proposed self-
supervised method, we use the prefix pseudo to emphasize that
the labels are different with ground-truth labels obtained by
directly comparing estimated depths with ground-truth depths.
Our self-supervised method of constructing training samples
for spatial consistency prediction is as follows:

To find a set of pseudo-negative samples, an intersection
of fi(z,) < 1 andjw > & are used, where med(z,)
represents median epthpof 3 x 3 window centering on p.

To find a set of pseudo-positive samples, we select pixels
whose depth are voted by a large number of neighboring
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Fig. 4: Illustration of the proposed confidence-driven and boundary-aware interpolation. (a) Overview of the method. (b) Algorithm flow

chart of the interpolation method.

views, i.e. f,(zp) > 1, Meanwhile, we use a confidence
measure f;(z,) based on truncated signed distance field to
further eliminate false positive samples. Concretely, given a
reference view, a 3D point x € X in the world coordinate space
is calculated using depth z, and camera inverse projection
' x = I! o (x,,y,, 1)7z,. The projected depth z, of x
in neighboring view i is calculated by (q;, 1)"z) = Il o x
. Let z, be bilinear depth interpolated by four neighboring
pixels of q; using depth map Dy, the difference between z;, and
Zq4, measures signed distance from 3D point x to the surface
estimated by D [31]. We use truncated signed distance to
measure geometric consistency between z, and view i

b (ag-zg)>0
tsdfy, ;=4 2% g -zl | <6 (7
-1 (zq, = Z;i) <-6

where § is a parameter measuring uncertainty of near surface.
Similar to volumetric fusion method in [11], we use a binary
weight to consider uncertainty due to the occlusion,

0
WZp,i = ]

where 71, = 30 controls the width of the occluded region
behind the surface. f;(z,) is a summation of weighted TSDFs
on all neighboring views:

ft(zp) = Z wzp,itSdep.i
ieg

(zg; —2g) <=1
(zg; — 25) = —1p

®)

€))

A depth estimation z,, is regarded to be consistent with 3D
surface if fi(z,) satisfies 0 < |fi(z,)| < 7/6.

Finally, the pseudo-positive and pseudo-negative samples
are extracted from coarse depth maps by:

{ 1 filz) 20,00 < |fizy)| <8
th,; = 0

Filzp) < 10 [Ee > o
In practice, we empirically set n, = 5, 7, = 0.1, 5 = 0.01
and ¢ be 0.1% of maximum depth.
To train the network M, based on Eq. 10, we collect

(10)

a set of 15 x 15 patches R, and the corresponding labels
as training samples from training set. We balance the ratio
of pseudo-positive and pseudo-negative samples and extract
about 5 million samples. Although the set of extracted samples
is a subset of entire training set, it is enough to represent
the characteristics of spatial consistency for both inliers and
outliers. Before patches are fed to the network, we normalize
them to zero mean and unit variance. The mean and standard
deviation are calculated on entire training samples. Stochastic
gradient descent (SGD) is used for training the network in
14 epochs. The batch size is fixed to 128. The learning rate
is set to 0.003 for first 10 epochs and decreases to 0.0003
for next 4 epochs. After M is trained, for a depth map with
zero padding in boundaries, the network can output a complete
confidence map for each pixel of the depth map. By using the
self-supervised method, we can train the spatial confidence
prediction model on any type of multi-view images and scenes,
and do not depend on whether ground-truths are available.

Cross-view consistency and spatial consistency are comple-
mentary. As shown in Section IV-A, by combining both of
them, confidence measure can be more robust to scenes and
results. We combine these two confidence measures to extract
a set of ground control points (GCPs) which are used in the
interpolation stage of Section III-C. The final confidence for
a depth hypothesis z,, is defined by:

C@p) = A(fizp) 1) - flep) + WA (fizp) 1) - A(filzp). 7o)
an

where A(f,6) is a function which equals to 1 for f > 8 and 0
otherwise. The depth hypotheses with non-zero confidence are
GCPs. Eq. 11 gives more weights to GCPs which are voted
by a larger number of neighboring views. In the experiments,
parameter 7 is fixed to 0.6 and 7, is fixed to 2 for all datasets.

C. Confidence-driven and Boundary-aware Interpolation

Now we have a set of noisy depth maps with corresponding
confidence maps {D*, N*,C}. Our goal is to integrate these
data into a unified energy function so as to estimate smooth
and complete depth maps. On the one hand, since some pixels



do not have reliable depth hypotheses, we should faithfully
interpolate the missing depth value using large context infor-
mation; on the other hand, the hypotheses with high confidence
will have higher weights and can be allowed to propagate to
low confidence regions. The proposed interpolation method
adopts the weight least square (WLS) framework [20]. The op-
timization of WLS-based objective function is highly efficient
for the high-resolution images. We also attempt to use noise-
robust regularization terms, e.g., total variation (TV) or total
generalized variation (TGV). However, these regularization
terms showed lower convergence speed and required much
longer running time. Moreover, compared with filtering-based
methods which can only fill small holes, WLS-based global
optimization method can leverage global context information
to interpolate large missing surface. Since color and depth
map are naturally aligned per view in the multi-view stereo,
it is ideal to use color image as guidance for the depth map
interpolation based on the assumption that edges and depth
discontinuities are co-occupancy. However, it is not necessary
that the image edges in the color image are corresponding
to the true depth discontinuities. As a result, artifacts occur
in the estimated depth maps. Ham et al. [22] proposed a
WLS-based method that combines the first-order static and
dynamic guidance to improve the robustness to the texture-
copy problem for the image restoration task. To increase the
robustness to noise and inconsistency of boundaries between
image and depth, we follow [22] and further propose to use
a combination of second-order static and dynamic guidance
which enforces the second-order regularization to respect
slanted structures in the real-world scenes. Moreover, instead
of using binary weights for the GCPs, the soft weights defined
in Eq. 11 have been used to give more weights for the GCPs
which are voted by a larger number of neighboring views:

EG)= Y Cep(zp—D @) +

peQ’

LY 6,(V6 @) v (ViD ()

peqy’ helxy)

(12)

where V%G and ViD are the second order difference on
guidance color image and depth, respectively, and & € {x,y}
indicates the direction of derivatives. Q' < Q is a set of
vertices of regular grids that overlay on image domain Q
with grid size of m, X m,, and p € Q' is a vertex of grid.
The fidelity term constrains the estimated depth map z, to
fit coarse depth according to confidence measure. Confidence
C(zp) gives a higher penalty for difference between estimated
depth z, and input depth D* (p) with high confidence, and
eliminates influence of input depth with zero confidence. The
second term is a regularization term that smooths the solution
Zp, and makes its structures similar to static and/or dynamic
guidance.

The static guidance is defined as ¢, (x) = exp(—ux?), and
dynamic guidance is defined as ¢, (x) = (1 —¢, (x))/v. Wy
is Welsch function that is robust to outliers. By combining
static and dynamic guidance, depth recovery is more robust to
noise and less sensitive to inconsistency of boundaries between
image and depth. An example of interpolated depth map is

Fig. 6: Different interpolation strategies for prior maps construction.
From left to right, coarse depth and normal maps, results by interpo-
lation w/o confidence measure, confidence-driven interpolation w/o
dynamic guidance, and the proposed method, respectively

shown in Fig. 6.

Since the aim of the proposed interpolation is to provide
a plausible depth map, it is not necessary to directly perform
interpolation on pixel level. In our experiments, the width m,
of each grid is set to 4 for all datasets. The interpolation results
for pixels inside grids are obtained by bicubic interpolation
of vertices of grids. Fig. 4(b) illustrates the pipeline of the
proposed interpolation procedure.

After iterative optimization of Eq. 12 via majorize-
minimization algorithm, we obtain a dense and smooth depth
map D! The corresponding normal map N can be calculated
directly from D via cross product. For outdoor scenes, we
remove interpolation results on textureless sky since these
are usually not reasonable. We use a simple threshold seg-
mentation based on its effectiveness and simplicity. We first
build a sky mask based on image gradient ||g|| < 7, based
on the assumption that the color of textureless sky varies
smoothly. Then we further smooth this mask image using 7x7
median filters. Finally, mask image is eroded with structuring
element of 11x11. 7, is empirically set to 7.5 pixels. Though
the high-textured sky, e.g., clouds, could not be removed via
above operations, these regions prefer to generate inconsistent
depth for different views in the following refinement stage
and can be finally removed in depth fusion via cross-view
consistency checking. We further remove physically impos-
sible interpolation surfaces: let ¢ be the optical center of
camera, and x be 3D point converted from z/ € D" via
camera parameters, when the angle between vector ¢ — x and
ng € N is higher than a certain threshold 7, the estimated
depth and normal are discarded from the D and N¥. Since
¢ — x represents a ray from 3D point to camera center and
ng is the corresponding normal vector, this post-processing
operation attempts to remove the interpolated regions that are
under oblique observations and usually are unreliable.

By using the confidence-driven and boundary-aware inter-
polation, we can obtain a set of clean and smooth depth maps
and normal maps which can be used as prior to guide the
further refinement in Section III-D.

D. Pixel-wise Depth and Normal Refinement

The results by the proposed interpolation can fill in holes
while diminishing noise. However, some regions recovered
via interpolation are not cross-view consistent and fine-scale
geometric details are not kept. Hedman et al. [3] used in-
terpolation results for calculating a near envelope cost then
integrated it into MRF for global optimization of discrete



labels to discard erroneous near depth hypotheses. However,
this refinement method needs huge computational efforts. In
this work, by utilizing interpolation results as prior maps,
the proposed pixel-wise refinement stage is conducted via
PatchMatch stereo to improve surface details and correct
interpolation artifacts. The PatchMatch stereo is initialized
by prior depth and normal maps. And photometric matching
costs are also constrained by prior maps by introducing prior
probability and likelihood.

For each pixel p € Q, the interpolating depth z// € D" and
normal ng € N¥ can be used to construct a prior probability.
The prior probability of a certain depth and normal hypothesis
is formulated as Gaussian distribution:

2 2
“ZP _ZPH”2+K||HP —“5”2] (13)
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The likelihood is formulated as Laplace distribution based
on its robustness against noise:

H
Z

P(Zp,mylz,, n}) o CXP{

_M} (14)

g2

where @(p,u(p)) denotes photometric matching cost in pixel
p with label assignment uw(p) = (z,,n,). The depth refinement
can be formulated by minimizing the following energy func-
tion:

E(p,zp,mnp) = ||zp - z;’”z + /<||np - n;'”2 +a®(p,z,,m,) (15)

where a = Z—z is a tradeoff parameter between likelihood and
prior, and « is a tradeoff parameter controlling penalty of depth
difference and normal difference. Note that we use the pixel-
wise constraint to efficiently conduct the optimization of depth
and normal on GPU.

E. Fusion of Depth and Normal Maps

We uses a simple depth map fusion method proposed by
[9] to efficiently fuse all depth and normal maps, which is
based on cross-view consistency. According to Eq. 4 and Eq.
5, a depth estimate is filtered out if the consistent depth from
all neighboring depth images are less than 2, otherwise, the
positions and normals of 3D points from consistent depth
estimates are averaged. The fused point clouds are the final
reconstruction results. We select the fusion method of [9]
based on following considerations: (1) it is GPU-friendly and
efficient for the large-scale reconstruction, which is suitable for
our aim in this work; (2) compared with other sophisticated
fusion methods, [9] is a very simple method that only consists
of cross-view checking and points averaging, so we can ensure
the performance gains of the proposed method are mainly from
the claimed contributions.

IV. EXPERIMENTAL EVALUATION

To evaluate the proposed CLD-MVS method on multi-view
stereo from high-resolution images, we conducted quantitative
and qualitative evaluation on recent published ETH3D high-
resolution MVS benchmark [6], as well as on DTU large-scale
MVS benchmark [5]. In the current implementation, coarse

depth and normal estimation and refinement were implemented
using C++ with OpenCV and CUDA, DCNN was trained
using MatConvNet, the depth interpolation was implemented
using Matlab. The experiments were conducted on a computer
equipped with a i7 CPU and a GTX 1070 GPU.

Unless otherwise stated, for experiments in ETH3D high-
resolution MVS benchmark, the matching window diameter
m, weight parameter y and best K, views used in PatchMatch
stereo are fixed to 25, 20 and 3, respectively, and ¢ = 1.0,
€ =mn/6, 41 =4, 1, =0.02, u =200, v =200, 7, = 167/33,
k = 0.001 and @ = 2. For all datasets used in DTU MVS
benchmark, we set m =15, y =5, K, =3, ¢, = 0.5, & = n/6,
A1 =4, 1, =0.1, p =200, v = 200, 7, = 167/33, « = 0.001,
and « = 2, respectively.

A. Evaluation on ETH3D High-resolution MVS Benchmark

ETH3D high-resolution MVS benchmark consists of cal-
ibrated high-resolution photos of indoor and outdoor chal-
lenge scenes with the image size of 6,048x 4,032. There
are training and testing branches. Training branch includes
13 datasets with ground-truth, and testing branch includes
12 datasets and ground-truth is not publicly available. This
benchmark proposes to use a novel metric in terms of F; score
which is the harmonic mean of accuracy and completeness
of reconstructions. We downsample the undistorted images to
3,200 x 2, 130 and evaluate our reconstruction results on both
testing and training branches. Quantitative evaluation results
for ours and competing methods' are shown in Table 1. These
results are public in the website of the benchmark. As shown
in Table I, CLD-MVS achieves best results in terms of F;
score for all scenes except the outdoor scene in training branch
where our method ranked the second. The visual comparison
among different methods are shown in Fig. 7. CLD-MVS
achieves much higher completeness while preserving fine-
scale geometric details for both indoor and outdoor scenes.
The DCNN for spatial confidence estimation is trained using
samples from training branch.

We further quantitatively evaluate the contribution of ini-
tialization, interpolation and refinement in CLD-MVS frame-
work. To speed up experimental validation, we downsample
undistorted images to approximately one fourth of original
resolution (i.e., 1,600x1,064). The evaluation results in terms
of Fy score for different evaluation thresholds are listed in
Table II. The baseline PM is a PatchMatch stereo method
without the proposed normal refinement. The normal-aware
PM is a PatchMatch stereo method with our normal refine-
ment which has been used as initial reconstruction of depth
and normal maps for the subsequent stages. The interp wjo
dynamic, interp wfo crossview and interp wjo spatial are three
variants of the proposed interpolation method by removing
dynamic guidance, spatial confidence and cross-view confi-
dence, respectively. The interp is the proposed confidence-
driven and boundary-aware interpolation method and the full
pipeline means refinement after interpolation, which represents
full stages of our MVS pipeline. Note that the interpolations

'In Table I, we only show results whose publications are available. The
full lists can be found in website of the benchmark



TABLE I: The quantitative evaluation on ETH3D high-resolution benchmark. Competing methods include MVE [27], PMVS [8], COLMAP
[10], Gipuma [9], LTVRE [2], CMPMVS [43], ACMH [33], OpenMVS [46], ACMM [48] and TAPAMYVS [49]. Reconstructions are measured
in terms of F; score(%) and running time(minutes). The evaluation threshold is 0.02 which is default setting for the evaluation.

Indicator MVE PMVS COLMAP Gipuma LTVRE CMPMVS ACMH OpenMVS ACMM TAPAMVS Ours
Training

indoor 2327 4330 66.76 35.80 62.64 62.52 70.00  76.82 78.13 80.05 81.23
outdoor 1720  49.28 68.70 23.27 60.87 62.46 71.54 7537 79.71 74.94 77.16
all 2047  46.06 67.66 36.38 61.82 62.49 70.71  76.15 78.86 77.69 79.35
time 22131 1394 4484 9.80 827.60 34.73 15.80 31.60 17.46  46.07 116.45
Testing

indoor 2589  40.28 7041 41.86 74.54 68.16 7393 7833 79.84  77.94 81.65
outdoor  43.81 55.82  80.81 55.16 81.41 76.28 81.77  84.09 83.58 82.79 84.29
all 3037 4416 73.01 41.86 76.25 70.19 75.89  79.77 80.78 79.15 82.31
time 175.84 1595 27.64 11.50 389.63  33.05 16.13  37.72 1942 56.25 122.30

Fig. 7: Qualitative comparison on terrace 2 and meadow of ETH3D
high-resolution benchmark. For each dataset, from left to right, first
row shows input image, results by [10], [43], respectively, and second
row shows results by [8], [2] and our method, respectively. The point
clouds are shaded using EyeDome lighting.

are conducted on regular grids with the grid size of 4 and
the refinement is conducted pixel-wisely. According to Table
II, each proposed contribution is helpful for improving recon-
struction quality. In particular, our interpolation method can
even improve reconstruction scores of initial reconstruction on
a one fourth of input resolution. If we conduct interpolation
on smaller grid size (e.g. 2), the reconstruction score can be
further improved (e.g., F'; scores are 59.14 74.61 85.07 89.46
92.67 95.88 for grid size being 2). Since the main aim of
interpolation is to provide a plausible prior for refinement, it is
not necessary to conduct interpolation on denser grids. Besides
improving reconstruction quality, combination of spatial and
cross-view confidence can improve robustness of interpolation,
as shown in Fig. 8. For some parts of scenes, they may be
only observed by sparse views, the cross-view confidence is
not reliable since it can either introduce noise or remove true
surface (e.g., in the middle left and middle right of Fig. 8). By

combining both spatial and cross-view confidence, our method
can recover more plausible depth map (in the right of Fig. §).

We further visually illustrate the estimated normal map
in initialization, interpolation and refinement stages of CLD-
MVS on pipes, office and kicker in Fig. 11, respectively, as
well as fused point clouds in Fig. 12. The resolution of input
images is 3,200 x 2,130. We can clearly see that the depth
maps and normal maps by coarse estimation stage contain a
large amount of noise due to textureless parts dominated in
these scenes, and the resultant fused point clouds contain lots
of holes. The results by the proposed interpolation can fill
holes while diminishing noise. However, some regions recov-
ered via interpolation are not cross-view consistent and fine-
scale geometric details are not kept. Finally, refinement stage
improves accuracy and cross-view consistency, and results in
both of highest completeness and detailed reconstruction. The
quantitative evaluation is consistent to visual comparison. The
results of pipes in terms of F score (threshold 0.02) in three
stages are 61.62, 66.21 and 73.21, respectively. The results
of office in terms of F; score are 57.05, 67.02 and 72.96,
respectively. The results of kicker in terms of F; score are
69.48, 71.74 and 80.07, respectively. The results demonstrate
that both the proposed interpolation and pixel-wise refinement
stages make contributions to high-quality reconstruction.

We also report the running time of the proposed method on
ETH3D benchmark, as shown in Table 1. Note that, different
methods report running time based on their own platforms.
For example, the platform for running COLMAP is Intel
Xeon CPU E5-2697 and GTX 1080 GPU, and the platform
for running LTVRE is a cluster with 96 Intel Xeon Cores.
There is always a tradeoff between computational complexity
and reconstruction quality. As shown in Table II, when input
images are downsampled to 1,600 x 1,064, our F; scores are
still better than most of competitors, where the running time
decrease by a factor of four times. By considering that our
method achieves much better reconstruction results than com-
petitors, the computation complexity is reasonable. Moreover,
there are some rooms for further improving efficiency, e.g., by
replacing unoptimized Matlab code with C++ on GPU.
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Fig. 8: Illustration of different confidence measures for depth interpolation. First row, from left to right: noisy depth map, GCPs by selecting
pixels that are visible at least in one neighboring view and two neighboring views, respectively, and GCPs by combining both cross-view
and spatial confidence. Second row, from left to right: the reference image, the corresponding interpolation results by using GCPs in the first
row. To aid visualization, the results are visualized in normal map. Combining both of spatial and cross-view confidence shows best results.
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Fig. 11: The estimated normal maps by each stage of the proposed method on one reference view of pipes, office and kicker of ETH3D
benchmark. From left to right, results by coarse estimation, confidence-driven and boundary-aware interpolation, and refinement, respectively.
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Fig. 9: Quantitative evaluation on testing set of DTU benchmark in
terms of overall quality Q. Compared to the competing methods, our
CLD-MVS achieves overall best performance.
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B. Evaluation on DTU Large-scale MVS Benchmark

We further evaluate our method on DTU large-scale MVS
benchmark [5]. The DTU benchmark includes 124 different
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Fig. 10: Illustration of the plot of AUC values versus patch sizes on
GTAV dataset. When patch size is gradually increased, the confidence
prediction accuracy in terms of AUC is quickly improved then
converged around patch size 15 x 15.



Fig. 12: Fused point clouds by each stage of the proposed method on pipes, office and kicker of ETH3D benchmark. From left to right, the
textured point clouds by coarse estimation, confidence-driven and boundary-aware interpolation, and refinement, respectively.

TABLE II: Quantitative evaluation of the components of the proposed
CLD-MVS method on ETH3D training branch in terms of F, score.

Methods \ thresholds 0.01 0.02 0.05 0.1

52.01 69.08 81.35 87.00 91.32 95.22
54.36 71.55 83.64 89.00 92.73 95.94
53.73 71.46 83.69 88.61 92.14 95.57
53.13 70.28 82.33 87.35 91.14 95.14
54.53 72.15 84.09 88.72 92.05 95.39
54.87 72.60 84.59 89.23 92.59 95.89
60.91 77.46 88.12 92.23 94.78 96.99

02 05

Baseline PM
Normal-aware PM
Interp w/o dynamic
Interp w/o crossview
Interp w/o spatial
Interp

Full pipeline

TABLE III: The quantitative evaluation on DTU testing set. The met-
rics include accuracy (mean of Acc. / median of Acc.), completeness
(mean of Comp. / median of Comp.) and overall quality (Q score
and A score). [18] and [50] are denoted by surfnet and r-mvsnet.

Indicators  furu camp tola  surfnet r-mvsnet ours

Mean Acc. 0.6124 0.8360 0.3426 0.4496 0.3835 0.3347
Med Acc.  0.3240 0.4908 0.2101 0.2539 0.2223  0.2083
Mean Comp. 0.9386 0.5545 1.1900 1.0432 0.4520 0.4307
Med Comp. 0.4628 0.1923 0.4921 0.2854 0.2662 0.1851
Q Score 1.1608 1.0795 1.2534 1.1597 0.6070  0.5709
A Score 0.7755 0.6952 0.7663 0.7464 0.4178  0.3827

indoor datasets at a resolution of 1,600 X 1,200 pixels, where
80 of them have been used in the evaluation. The photos of
scenes were captured using a robot arm at multiple calibrated
viewpoints (49 or 64) under controlled light. We quantitatively
compare our method to five state-of-the-art methods [1],
[71, [8], [18], [50]. Furu [8] and tola [1] are two feature-
based MVS methods, camp [7] is a depth map-based MVS
method, and surfaceNet [18] and R-MVSNet [50] are two
deep learning-based MVS methods. The reconstruction results
of first three methods were provided by the DTU benchmark,
and the authors of surfaceNet published 22 reconstructed point

clouds which are reported in [18] as testing set, i.e., 1, 4, 9-13,
15, 23, 24, 29, 32-34, 48, 49, 62, 75, 77, 110, 114, 118. The
authors of R-MVSNet [50] also published their reconstruction
results on these datasets. To conduct faithfully comparison,
we evaluate competing methods and ours in these 22 datasets,
named as “festing set”. For surfaceNet, we use the results
for cubes with 64° voxels which are reported higher accuracy
and completeness in [18]. The DTU benchmark uses four
metrics to evaluate reconstruction, including mean of accuracy,
mean of completeness, median of accuracy and median of
completeness. For each of these metrics, smaller value is
better. The mean values of four metrics > on festing set are
shown in Table III. Our method achieves best results in terms
of all metrics. Note that there is always a tradeoff between ac-
curacy and completeness. For example, tola [1] prefers a high-
accurate reconstruction while the completeness usually lowers
than other methods, and camp [7] achieves a high-complete
reconstruction with lowest accuracy among these methods. To
measure the overall quality of the reconstruction, [44] uses

0 = \/(mean acc.)” + (mean cornp.)2 for each dataset as a
comprehensive metric in the spirit of F; score. Yao et al.
[50] proposed another overall score A that calculates average
of mean accuracy and mean completeness on entire festing
set. As shown in Table III, our method ranked the highest
in terms of overall quality Q and A. In Fig. 9, the metric Q
is plotted for the results by competing methods and ours for
each of testing set. One can see that our method achieves better
results than all competing methods for 17 out of 22 datasets.
Overall, compared with these competing methods, our method
can obtain best results in terms of completeness, accuracy

2We followed the standard evaluation protocol provided by DTU bench-
mark. [18] uses a slightly different way to compute statistics according to
their published code. To keep faithful comparison, we also evaluate methods
according to the way used by [18] in which our method is still top ranked
for 5 out 6 metrics. The results can be found in the supplementary materials.
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Fig. 13: Average AUC values for testing sequences of GTAV obtained
by photometric cost, cross-view consistency, supervised DCNN, and
our self-supervised DCNN, respectively. The optimal AUC values
are also plotted in green dashed curve. Testing set has been sorted in
order of increasing optimal AUC values for better visualization.

and overall quality. The samples for training the confidence
prediction network are extracted from 10 training set of DTU
via the proposed self-supervised method.

Several visual comparisons of reconstructions by differ-
ent methods on representative datasets are shown in Fig.
16 and Fig. 17. Scanll contains a large amount of low-
textured parts, and scan77 contains both low-textured and
highly-specular regions. Obviously, the proposed method can
achieve significant better visual quality. Besides, we give a
qualitative and quantitative evaluation on scanl02. This dataset
captures a pot plant including lots of thin-structures and heavy
self-occlusions which pose a challenging to MVS methods.
As shown in Fig. 18, our method shows higher geometric
completeness while visually more pleasing. The quantitative
evaluation results in terms of overall quality (i.e., Q score)
for furu, camp, tola and ours are 1.2622, 1.0541, 1.8626, and
0.5522, respectively.

C. Evaluation of Confidence Prediction

We quantitatively validate the self-supervised confidence
learning method on GTAV a synthetic multi-view dataset pro-
vided by [45]. This dataset consists of 120 image sequences,
and each sequence includes 100 video frames with the cor-
responding ground-truth depth maps. In our experiments, we
uniformly sample 25 images for each sequence and run depth
estimation algorithm introduced in Section IIl to estimate
depth maps of sampled 120 sequences (3000 depth maps
in total). The first 12 sequences are used as training set
(300 depth maps and more than 5 million training samples)
and others are used as testing set. Four different confidence
measures are used in evaluation: photometric cost, cross-view
consistency, DCNN trained on ground-truth and DCNN trained
based on the self-supervised learning method proposed in
Section III-B. A depth estimation z,, is regarded as incorrect
if ’(z,,—zg,) /zg,' < 0.01. Following literature on learning
stereo confidence [34], [36], we used area under the curve
(AUC) to quantify the ability of a confidence measure to
predict correct depth estimates. We first compute receiver

Fig. 14: Confidence prediction on GTAV dataset. From left to right,
input images, depth maps, GCPs by the self-supervised method, GCPs
by the supervised method.

operating characteristic (ROC) curves as a function of the
depth map density as follows: all depth estimates are ranked
in decreasing order according of confidence measure, and
pixels are gradually selected from top to bottom to record
error rate. Ties are handled by including pixels with same
confidence in a sample. The AUC of a confidence measure
is the area integral under its ROC curve. According to [34],
the optimal AUC is computed by € + (1 — €) In(1 — €), where
€ is the error rate for a depth map at full density. We plot
mean of AUC of each testing sequence for different confidence
measures and optimal AUC, respectively, as shown in Fig.
13. We can see that the DCNN trained from ground-truth
shows best performance, and the prediction ability of self-
supervised confidence measure is the second best on each
sequence and always better than cross-view consistency and
photometric cost. The average AUC of all testing sequences
by using optimal AUC, supervised DCNN, self-supervised
DCNN, cross-view consistency and photometric cost, are:
0.2459, 0.2869, 0.3139, 0.3501 and 0.5727, respectively. In
particular, the average AUC increases to 0.3315 if TSDFs are
not used to generate pseudo-positive samples in Eq. 10, which
demonstrates that TSDFs are helpful for improve quality of
training samples. The visual comparison of GCPs detection
via confidence prediction (f; > 0.6) between the supervised
and the self-supervised method is shown in Fig. 14. Though
the self-supervised method shows lower prediction accuracy
than the supervised method, the results are still reasonable.

Fig. 10 illustrates the plot of confidence prediction perfor-
mance along with the increase of patch size. When patch size
is gradually increased, the confidence prediction accuracy in
terms of AUC is quickly improved then converged around
patch size 15 X 15. Note that the time for inference also
gradually increases when the patch size is increased. Our
DCNN uses 15x 15 patches as inputs to achieve good trade-off
between confidence prediction accuracy and efficiency.

Fig. 15 shows GCPs detection results on DTU benchmark.
The self-supervised method trains DCNN based on extracted
samples from 10 training set of DTU benchmark. It clearly
shows that GCPs detected by integrating both of spatial and
cross-view confidence based on Eq. 11 are more complete
while having less noise.

V. CoNcLUSION

In this paper, we proposed a confidence-based large-scale
dense multi-view stereo method, namely CLD-MVS, which



Fig. 16: Reconstruction results of scanll of DTU benchmark. From left to right, cropped input images, and results by Furukawa et al. [8],
Campbell et al. [7], Tola et al. [1], Ji et al. [18] and our method, respectively. The point clouds are shaded using EyeDome lighting.

Fig. 17: Reconstruction results of scan77 of DTU benchmark. From left to right, cropped input images, and results by Furukawa et al. [8],
Campbell et al. [7], Tola et al. [1], Ji et al. [18] and our method, respectively. The point clouds are shaded using EyeDome lighting.

S

Fig. 18: Reconstruction results of scani02 of DTU benchmark. From left to right, cropped input image, result by Furukawa, et al. [8],
Campbell et al. [7], Tola et al. [1] and our method, respectively. The point clouds are shaded using normal map.

-~

Fig. 15: GCPs detection on DTU. From left to right, input images,
depth maps, GCPs by the self-supervised method (f; > 0.6), GCPs by
utilizing both of spatial and cross-view confidence based on Eq.11.

consists of four key stages: coarse depth and normal esti-
mation, confidence prediction, confidence-driven interpolation
and refinement. We leveraged the normal-aware PatchMatch
stereo to improve the accuracy of normal map in the coarse
estimation stage, and presented a self-supervised learning ap-
proach to predict spatial confidence for multi-view depth maps
while combining spatial and cross-view confidence to detect
high-quality GCPs. We then presented a confidence-driven and
boundary-aware interpolator to construct high-quality depth
and normal map priors, and refined pixel-wisely the geometric

details to diminish the artifacts caused by interpolation errors.
Quantitative and qualitative evaluations on large-scale MVS
benchmarks demonstrated that our CLD-MVS achieves more
promising reconstruction results than the state-of-the-art MVS
methods, and the proposed self-supervised learning method
is competitive for confidence prediction in real world scenes
without ground-truth. In the future, we will investigate how
to combine semantic segmentation cues with the proposed
method for separating different objects from background (e.g.,
sky) and interpolating large missing regions.
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