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Multiscale LMMSE-Based Image Denoising With
Optimal Wavelet Selection

Lei Zhang, Paul Bao, Senior Member, IEEE, and Xiaolin Wu, Senior Member, IEEE

Abstract—In this paper, a wavelet-based multiscale linear
minimum mean square-error estimation (LMMSE) scheme for
image denoising is proposed, and the determination of the optimal
wavelet basis with respect to the proposed scheme is also discussed.
The overcomplete wavelet expansion (OWE), which is more ef-
fective than the orthogonal wavelet transform (OWT) in noise
reduction, is used. To explore the strong interscale dependencies
of OWE, we combine the pixels at the same spatial location across
scales as a vector and apply LMMSE to the vector. Compared
with the LMMSE within each scale, the interscale model exploits
the dependency information distributed at adjacent scales. The
performance of the proposed scheme is dependent on the selec-
tion of the wavelet bases. Two criteria, the signal information
extraction criterion and the distribution error criterion, are
proposed to measure the denoising performance. The optimal
wavelet that achieves the best tradeoff between the two criteria
can be determined from a library of wavelet bases. To estimate the
wavelet coefficient statistics precisely and adaptively, we classify
the wavelet coefficients into different clusters by context modeling,
which exploits the wavelet intrascale dependency and yields a local
discrimination of images. Experiments show that the proposed
scheme outperforms some existing denoising methods.

Index Terms—Context modeling, image denoising, multiresolu-
tion analysis, mutual information, optimal basis, wavelets.

I. INTRODUCTION

TATISTICAL modeling is of essence for the effectiveness
S of signal processing. As a Karhunen—Loeve like expansion,
wavelet transform (WT) [1]-[5] can decorrelate random pro-
cesses into nearly independent coefficients [6], which can then
be more effectively modeled statistically. WT has been success-
fully applied to coding and denoising. Since the first wavelet soft
thresholding approach of Donoho [9], many wavelet-based de-
noising schemes were reported [7]-[14], [16]-[18], [26], [28],
[29].

WT packs most of the signal energy into a few significant
coefficients and relates the insignificant coefficients to the
signal-independent additive noise. In threshold-based de-
noising schemes, a threshold is set to distinguish noise from
the structural information. Thresholding can be classified
into soft and hard ones, in which coefficients less than the
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threshold will be set to O but those above the threshold will
be preserved (hard thresholding) or shrunk (soft thresholding).
Donoho [9] first presented the WaveletShrinkage scheme
ne(w) = sgn(w) - max(|Jw| — t,0) with a universal threshold
t = 0v/2log N based on orthonormal wavelet bases, where w is
the wavelet coefficient, o is the noise standard deviation, and N
is the sample length of signal. The threshold is claimed asymp-
totically optimal in minimax sense but it would over-smooth
signals in practice. Since Donoho’s pioneer work, a numerous
threshold-based denoising schemes have been proposed [7],
[8], [10], [11], [13], [14], [16]. It is generally accepted that in
each subband the image wavelet coefficients can be modeled
as independent identically distributed (i.i.d.) random variables
with generalized Gaussian distribution (GGD) [3], [7], [8],
with which Chang [7] presented a near optimal soft threshold
t = o2 /awj (the wavelet base is assumed orthonormal),
where ow, is the standard deviation of wavelet coefficients
at scale j. It reportedly outperformed that of the classical
nonlinear WaveletShrinkage [9] and the improved SureShrink
[10] of Donoho. The aforementioned three thresholds are soft,
meaning that the input w would be shrunk to zero by an amount
of threshold ¢, and derived with orthogonal wavelets. In [13],
Pan et al. presented a hard threshold ¢(j) = co; for nonorthog-
onal wavelet expansion, where o; is the standard deviation of
noise at the jth scale and constant ¢ € [3,4].

Although WT well decorrelates signals, strong intrascale
and interscale dependencies between wavelet coefficients may
still exist. The performance of coding and denoising would
be significantly improved if such dependencies could be effi-
ciently modeled and exploited. Liu and Moulin [27] classified
the wavelet statistical models into intrascale, interscale and
hybrid ones. The denoising schemes in [8], [17], [18] benefit
from intrascale models. Chang et al. [8] proposed a spatially
adaptive wavelet thresholding scheme based on context mod-
eling. Each wavelet coefficient is modeled as a mixture of GGD
with unknown slowly spatially varying parameters, and the es-
timation of these parameters is conditioned on a function of its
neighboring coefficients. M. K. Mihgak et al. [17] estimated the
second-order local statistics of each coefficient with a centered
square-shaped window and developed a linear minimum mean
squared-error estimation (LMMSE) like denoising method.
The denoising approach of Li and Orchard [18] is also LMMSE
based but it models the wavelet coefficients as a mixture of
edge and nonedge classes. In [26], a local contextual hidden
Markov model (LCHMM) was proposed to capture the wavelet
intrascale dependencies. Wavelet interscale models are also
used in many other applications [12]-[15], [19], [20], [24], [25].
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If a coefficient at a coarser scale has small magnitude, its de-
scendants at finer scales are very likely to be small too. Shapiro
[20] exploited this property and developed the well-known em-
bedded zerotree wavelet image compression scheme. In another
viewpoint, if a wavelet coefficient generated by true signal has
large magnitude at a finer scale, its ascendants at coarser scales
will likely be significant as well. But for those coefficients
caused by noise, the magnitudes may decay rapidly along the
scales. With this observation, it is expected that multiplying
the wavelet coefficients at adjacent scales would strengthen the
significant structures while diluting noise. Such a property has
been exploited for denoising [12]-[14], step estimation [19]
and edge detection [15]. The wavelet interscale dependencies
have also been represented by Markov models [24], [25]. The
hidden Markov models (HMMs), especially the hidden Markov
tree model (HMT), proposed by Crouse [24], well characterize
the joint statistics of wavelet coefficients across scales. Each
coefficient is assigned with a hidden state, conditioned on which
the coefficients are i.i.d. Gaussian. Some schemes adopted an
interscale and intrascale hybrid model to better estimate noisy
wavelet coefficients, such as Liu and Moulin [28] and Portilla
et al. [29]. In [29], each coefficient was modeled as the product
of a Gaussian random vector and a hidden multiplier variable to
include adjacent scales in the conditioning local neighborhood.
Liu and Moulin [27], [28] analyzed theoretically the depen-
dency between wavelet coefficients using mutual information
as a measurement. They also compared the ability of various
wavelet models in encapsulating the dependency information.

The LMMSE denoising schemes in [17] and [18] ex-
ploit the wavelet intrascale dependencies. In this paper, an
LMMSE-based denoising approach with an interscale model
is presented by using overcomplete wavelet expansion (OWE).
The optimal wavelet bases selection with respect to the pro-
posed scheme is subsequently discussed. To exploit the wavelet
intrascale dependency in our denoising approach, we spatially
classify the wavelet coefficients into several clusters adap-
tively. With OWE, in which there is no downsampling in the
decomposition, each wavelet subband has the same number
of coefficients as the input image. We combine the wavelet
coefficients with the same spatial location across adjacent
scales as a vector, to which the LMMSE is then applied. Such
an operation naturally incorporates the interscale dependencies
of wavelet coefficients to improve the estimation. LMMSE is
similar to soft thresholding strategy to some extent. Suppose
the variable is scalar, instead of shrinking a noisy wavelet
coefficient w = x + v (where x is the wavelet coefficient
of noiseless signal and v is that of noise) with threshold
t: & = sgn(w) - max(Jw| — ¢,0), LMMSE modifies the coeffi-
cient with a factor ¢ : # = ¢ - w, where ¢ = 02 /(0% + 02). 02
and o2 are the variances of signal  and noise v, respectively.
Obviously, ¢ is less than 1 so that |2| will be less than |w|. The
energy of finally restored signal will be shrunk just like in the
soft thresholding schemes.

The performance of proposed interscale LMMSE scheme
is wavelet dependent. A rich library of wavelet bases have
been constructed and widely used in signal processing, such
as Daubechies’ compactly supported orthonormal [1] and

j+l

Sj+1

Fig. 1. One stage decomposition of the 2-D OWE. w!, w} and w? are the
wavelet coefficients at horizontal, vertical and diagonal directions.

biorthogonal wavelets [2]. From denoising point of view
wavelet filters should have the following two properties. One
is the capability of extracting signal information from noisy
wavelet coefficients. A parameter M, which is based on the
mutual information of noiseless wavelet coefficients and noisy
wavelet coefficients, is defined. M is proportional to the per-
formance of the scheme. The other is that the distribution of
interscale image wavelet coefficients is sufficiently close to
jointly Gaussian [when the distribution is jointly Gaussian,
LMMSE is equal to minimum mean square-error estimation
(MMSE)]. A parameter E, which measures the difference be-
tween the Gaussian and real signal density functions, is defined
and F is inversely proportional to the denoising performance.
An optimal wavelet could be determined from a library of
wavelets based on the M and E values of them.

To incorporate the intrascale dependencies into our interscale
model, we classify the wavelet coefficients into several clusters
adaptively by using context modeling. Context modeling gives a
local discrimination of image characteristics, such as edge struc-
tures and backgrounds, according to their spatial dependencies.
We extend the context modeling to interscale wavelet coefficient
vector variables. The statistics of wavelet coefficients are then
estimated locally from each cluster. Experiments show that con-
text modeling improves the denoising performance.

The paper is organized as follows. In Section II, the interscale
model of wavelet coefficients and the LMMSE-based denoising
approach are developed. In Section III, we introduce two cri-
teria for measuring the efficiencies of different wavelets. The
optimal wavelet is selected from a library of wavelets by op-
timizing the tradeoff between the two criteria. Section IV im-
proves the scheme by classifying wavelet coefficients into dif-
ferent clusters through context modeling. Experimental results
are presented in Section V and the paper is concluded in Sec-
tion VI.

II. INTERSCALE MODEL AND LMMSE-BASED DENOISING

Bi-orthogonal wavelet transform (OWT) is translation variant
due to the downsampling. This will cause some visual artifacts
(such as Gibbs phenomena) in threshold-based denoising [11].
It has been observed that the OWE (undecimated WT or trans-
lation-invariant WT in other names) achieves better results in
noise reduction and artifacts suppression [7], [11], [13], [18].
The denoising scheme presented in this paper adopts OWE,
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whose one stage two-dimensional (2-D) decomposition struc-
ture is shown in Fig. 1. No downsampling occurs but the analytic
filters vary in it. Filter H; is interpolated by putting (271 — 1)
zeros between each of the coefficients of original filter Hy, so
does for G;. The bandwidth decrease is accomplished by zeros
padding of filters instead of downsampling of wavelet coeffi-
cients. The restored signal by OWE is an average of several cir-
cularly shifted denoised versions of the same signal by OWT,
and by which the additive noise is better suppressed.

A. LMMSE of Wavelet Coefficients

Suppose the original signal f is corrupted with additive
Gaussian white noise &

g=1f+e )

where ¢ € N(0,02). Applying the OWE to the noisy signal g,
at scale j yields

wj; = T; + vj 2)

where w; is coefficients at scale j, =, and v; are the expansions
of f and ¢, respectively.

In this paper, the LMMSE of wavelet coefficients is employed
instead of soft thresholding. Suppose the variance of v; is UJQ-
and that of z; is J,%J_. Since x; and v; are both zero mean, the
LMMSE of z; is

JAZ]' = C/ s Wy (3)
with

Since v; is Gaussian distributed and independent of x;, if z; is
also of Gaussian distribution, it is well known that w; will be
Gaussian and (3) is equivalent to the optimal MMSE [31]. Un-
fortunately, z; obeys in general the GGD model, which reduces
to Gaussian only in very special cases.

Referring to Fig. 1, term ij—l-l can be written as

D D
where * is the convolution operator and filter L]-D is
LY —HoxHyx...«H; 1« H; | «G;xG}.  (6)
Similarly, we have
H H \% \%
ij:so*Lj7 w]-H:sO*Lj (7)
where

Lf:HO*H(')*...*HJ'A*HJ/'A*GJ'*HJ/' ®)
L}/:HO*H(')*...*H]'_1*HJI'—1*HJ*G;" ®)

Noise standard deviation of v; at scale j in a direction (hori-
zontal, vertical or diagonal) is
oj = |Lj-llo (10)
where L;_; is the corresponding filter (LY, L, or L} ))
and || e || is the norm operator: | L|| =

S5 L2( k). The
standard deviation 032:7 of noiseless image x; is estimated as

follows
623_ = 0121)]_ - 012- (11)
with
, 1 M N ,
O, = M'Nmzﬁngle(m,n) (12)

where M and N are the numbers of input image rows and
columns.

LMMSE is similar to soft thresholding in some sense. Notice
that factor c¢ is always less than 1, thus the magnitude of esti-
mated wavelet coefficient £; would be less than that of w;. This
leads to the energy shrinkage of the restored signal, same as in
the soft thresholding schemes. The LMMSE-based wavelet de-
noising schemes proposed in [17] and [18] have achieved good
results. These two methods exploited the wavelet intrascale de-
pendencies.

B. Interscale Wavelet Model-Based LMMSE

Wavelet adjacent scales are strongly correlated and these in-
terscale dependencies can be exploited for better signal pro-
cessing results. Small magnitude coefficients at coarser scales
are more likely to derive small magnitude descendents at finer
scale. Contrarily, it is also found that a large magnitude wavelet
coefficient produced by true signal at finer scales would yield
significant coefficients at coarser scales. But the coefficients
corresponding to noise decay rapidly along scales. This can
be interpreted by the different singularities of signal and noise
[4]. With this observation Xu et al. [12] multiplied the adja-
cent wavelet scales to sharpen the edge structures and identified
significant pixels from the multiplication iteratively. Sadler and
Swami [19] analyzed the multiscale products of wavelet coef-
ficients and applied it to step detection and estimation. Zhang
and Bao [15] developed an effectively edge detection approach
by finding edge pixels from the scale multiplication. They also
applied the wavelet scale multiplication to threshold-based de-
noising [14]. In [24] and [25], the HMM [24], [25] are used to
represent wavelet interscale dependencies efficiently.

In this section, we apply the LMMSE-based denoising to a
wavelet interscale model. It is well known that the wavelet-rep-
resented images are similar across scales, especially among the
adjacent scales. In wavelet domain, the noise level decrease
rapidly along scales, while signal structures are strengthened
with scale increasing. So we use coarser scale information to
improve finer scale estimation. Suppose the input image is de-
composed into .J scales. Roughly speaking, scale j is strongly
correlated with scale 5 + 1, but its correlations with scales 7 +
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2,7 + 3,...,J will decrease rapidly. These scales would not
provide much additional information to improve the estimation
of scale j. Second, a significant structure has much larger local
supports at coarse scales than at fine scales. At the same spa-
tial location, the wavelet coefficients may correspond to signal
at coarse scales, but to noise at fine scales. Based on these con-
sideration, we would make no use of the measurements at the
finer scale to estimate the signal at the coarser scale, and z; is
estimated only by measurements at scales j and 7 + 1. We as-
semble the points with the same orientation at scales j and j + 1
as a vector

w; (m,n) = [wi(m,n) wj1(m,n)]" (13)
Thus
w,=T;+ v; (14)
with
z; (myn) = [z;(m,n) @j41(m,n)]"
v (m,n) = [vj(m7n) Uj+1(m7n)]T . 15)

v ; is a Gaussian noise vector independent of z j- The LMMSE
of z; is then
z;=Pj(P;+ R))™" w, (16)

where P; and R; are the covariance matrices of x; and v,
respectively

2
PJ:E{EJ-Z.T}ZE[ i ‘TJ"TJ'“}

2
! TiTip1  Tiy
— T 2 ViU
RJZE{vJv].}:E[ j T an
UjUi+1 Vi

Let us compute the components of noise covariance matrix
Rj first. The diagonal element E[v?] is equal to o2 which can be
obtained by (10). Noise variables v; and v; 11 are the projections
of v on different wavelet subspaces. They are correlated with
correlation coefficient

222 Ll k)Ll k)
Ik

Pji+1 = (18)
1Ll - NI
v; and v;41 are jointly Gaussian and their density is
1
p(vj, vit1) = -
2rojoj414/1 — P j+1
2 »2
_ 1 [”_q;_lpj.j+11'j"j+1+ Z;+1:|
Xe 2(1-03 1) L7 A Tl (19)

Thus, the expectation E[v;v;41] is

Elvjviri] = pjj+10j0511- (20)
Each of the components of matrix P; is estimated by
Elzjz] = Elwywg] — Elvjvg] (21)

where [, k = j, j + 1 and F|w,w] is computed as

| Mo
Elwywg] = VN Z Zwl(m,n) swi(m,n).  (22)

m=1n=1

After the LMMSE result Ej is obtained, only the component
Z; is extracted. Estimation of £ ;,, would be obtained form the

LMMSE result Z ; ;1.

III. OPTIMAL WAVELET BASIS SELECTION

The denoising performance of the proposed LMMSE-based
scheme varies with different wavelet filters. Ideally, a good
wavelet filter for denoising should meet the following two
requirements. One is the interscale model’s ability in extracting
signal information from noisy wavelet coefficients. The other
is a high degree of agreement between the distribution of
wavelet coefficients and Gaussian distribution. This is because
the LMMSE denoising method is optimal (i.e., equivalent
to optimal MMSE) only if the underlying signal distribution
is Gaussian, assuming that the additive noise is Gaussian.
However, for a fixed wavelet basis, the above two requirements
may be in conflict with each other. In this section we develop a
technique to strike a good balance between the two conflicting
criteria.

A. Signal Information Extraction Criterion

For denoising purpose, it is expected that the true signal
wavelet coefficients would be enhanced in the noisy environ-
ment with the interscale model. We would like to measure the
signal component in the noisy coefficients for a fixed wavelet
filter. As a good similarity metric, mutual information has
been used in several signal processing applications [27], [30]. It
computes the dependency of variables i and v by measuring the
distance between the joint distribution p(y, v), and the product
of marginal distributions p(x) - p(v) using Kullback-Leibler
measure [30]. The mutual information of 1 and v is defined as

o) = Y 3 ol o T

wrey P

The higher I (1, v) is, the more information p could provide to
estimate v or vice-versa. If  is a function of v, T(u, ) will be
infinite. Otherwise, if 11 is independent with v, obviously I (ju, v/)
is zero. . .

We take the mutual information of # ; and w; as a measure to
evaluate how much signal information could be exploited from
B]- to estimate Ej. We have derived that ?j is Gaussian with
covariance matrix I?; (refer to (17)). The covariance matrix of
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Fig. 2. Histograms (solid) of wavelet coefficients of Lena and the associated Gaussian functions (dash) with zero mean and standard deviation o . (a) Scale 1;

(b) Scale 2.

x; is P; and we assume x ; is also Gaussian. Since w;=t ;
+ v, the mutual information of z ; and w; is [30]

M; = 1(3,,;) = + log <—|Pj +Rj'> (24)

2 | ;]

where | e | represents the determinant of a matrix. The criterion
M is proportional to the performance of the proposed denoising
scheme. A properly selected wavelet should yield a significant
value of M, which means noisy coefficients w 5 could give sig-
nificant information to estimate original signal z j

Since the image wavelet coefficients are subjected to GGD,
the distribution of z j would be of some difference with bivariate
Gaussian function. The errors so caused could be generalized
into the following criterion.

B. Distribution Error Criterion

Compared with MMSE, LMMSE is suboptimal because it ex-
ploits only the second-order statistics of signal x and noise v.
But it is practical and simple compared to the analytic form of
MMSE which is usually impractical to implement. In the spe-
cial case where = and v are zero-mean and jointly Gaussian,
LMMSE will be equivalent to MMSE because the Gaussian
process has only two order statistics [31]. In this paper noise v is
assumed as additive Gaussian and independent of x, so that the
better x follows the Gaussian distribution, the better LMMSE
approximates to MMSE.

The distribution of wavelet coefficients x is often modeled as
GGD [7]

GG, (x) =C(B, Ugc)e—(a(‘@‘,oz)Iﬂﬁ\)B7

—oo<zr<oo,0,>0,>0 (25)
r(3))
(8,00) =0, | —
(6% a a F(%)
C(B,0z) = %(;) (26)

where o, is the standard deviation of z, (3 is the shape parameter
and I'(t) = [, e "u'"'du is the Gamma function. GGD is
zero-mean and degenerates to Gaussian distribution only when
B = 2. In Fig. 2 the histograms of the wavelet coefficients of
image Lena (shown in Fig. 3(a)) at the first two scales are illus-
trated together with the associated Gaussian function

1 _ =2

Gam = W@ 203 - (27)

Obviously, there exists sharp difference between the histograms
and the associated Gaussian functions. For LMMSE-based de-
noising, a good WT should have the histograms as close to
Gaussian as possible.
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(a)

Fig. 3.
Similarly for our interscale wavelet model, it is desirable that
p(x;,x;41), the joint probability density function (PDF) of ;

and x;1, could be as close to jointly Gaussian as possible

1

pg(zj, zjt1) = -
204, 00,04/ 1 — p;

81|

ox -0
J

i a "Im} (28)

2 2
1 i _2PiT Tl Tit1
2

where p; is calculated as

b= Elrjrj] _ 1
! O2; 0541 M-N-0y;0z;,,
M N
X Z Zx]-(m,n) ~zip1(m,m).  (29)
m=1n=1

We define the distribution error criterion as a kind of Hellinger

distance
Ej = \///(Pg —p)dzjdrji,.

When p and p, are identical, the measurement £; will reach
the minimum 0. The higher the error p = p — p,, the higher
the value of F;, which implies that p, worse approximates a
joint Gaussian distribution, and then the LMMSE will be much

(30)

@

Four 256 X 256 benchmark images for the experiments. (a) Lena. (b) Cameraman. (c) Peppers. (d) Baboon.

inferior to the MMSE. So a good wavelet should yield a small
E;.
C. Tradeoff Parameter

As stated above, the denoising performance increases in
M; but decreases in F;. Therefore, a good wavelet basis for
denoising should aim at maximizing M; and minimizing E;,
which are in general conflicting criteria. In order to balance
the criteria we introduce a tradeoff parameter r;. Intuitively,
one may want to set ; = M;/E;. However, the metric units
of M; and E; differ by a logarithmic factor. Namely, M; is a
weighted sum of logarithmic functions of the PDF of wavelet
coefficients, while E; is a direct difference function of between
two PDFs. Accordingly we adjust the scale of E; such that
E; = log A, and define

M,

J— — ...~ E;
i = =M;- e

S 3D

where e~ Fi ranges from O to 1, and when error F; runs to zero
it reaches the maximum value 1. The optimal wavelet can be se-
lected from a library of wavelets by maximizing ;. In this paper,
we focus on the widely used compactly supported orthogonal
and biorthogonal wavelets constructed by Daubechies et al. [1],
[2].

We denote Daubechies’ orthogonal wavelets [1] by Daw(N),
where N = 1,2,..., o0 is the vanishing moment of the wavelet
whose filter length will be 2N . The biorthogonal wavelet in [2]
is denoted by CDF'(N, N'), where N is the vanishing moment
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TABLE I
VALUES OF M, E; AND r; FOR IMAGE LENA
Lena CDF(1,1) | CDF(1,3) | CDF(2,2) | CDF(2,4) | CDF(3,3) | Dau(2) | Dau(3) | Dau(4)
H 1.1357 1.2148 0.6473 0.7087 0.4718 1.0087 | 0.9553 [ 0.9293
J=1 Vv 0.6221 0.6867 0.3104 0.3401 0.2375 0.4761 | 0.4291 | 0.4069
M. D 0.3711 0.4134 0.2406 0.2634 0.1985 0.3438 | 0.3425 | 0.3436
/ H 2.7660 2.9806 1.9688 2.1933 1.5008 2.7963 | 2.7895 | 2.7797
Jj=2 |14 1.8134 1.9860 1.1129 1.2613 0.8741 1.6140 | 1.5484 [ 1.5098
D 1.3403 1.5179 0.9599 1.1037 0.8279 1.3425 | 1.3526 [ 1.3595
H 0.1387 0.1300 0.1563 0.1518 0.1297 0.1549 | 0.1546 | 0.1529
J=1 |4 0.1853 0.1772 0.1993 0.1971 0.1585 0.2191 | 0.2241 | 0.2228
E. D 0.2576 0.2422 0.2778 0.2728 0.2444 0.2599 | 0.2544 | 0.2503
/ H 0.0606 0.0508 0.0521 0.0487 0.0323 0.0594 | 0.0544 | 0.0511
Jj=2 |14 0.0956 0.0794 0.0823 0.0794 0.0490 0.1038 | 0.1040 | 0.1010
D 0.1462 0.1235 0.1114 0.1058 0.0698 0.1340 | 0.1262 | 0.1206
H 0.9886 1.0667 0.5536 0.6089 0.4144 0.8639 | 0.8184 | 0.7976
J=1 V 0.5169 0.5752 0.2543 0.2793 0.2027 0.3824 | 0.3429 | 0.3256
. D 0.2868 0.3245 0.1822 0.2005 0.1555 0.2651 | 0.2655 | 0.2675
/ H 2.6034 2.8331 1.8689 2.0890 1.4531 2.6350 | 2.6419 | 2.6413
Jj=2 |14 1.6481 1.8344 1.0249 1.1651 0.8322 1.4549 [ 1.3955 | 1.3647
D 1.1580 1.3416 0.8587 0.9930 0.7721 1.1742 | 1.1922 | 1.2051
TABLE 1I
VALUES OF M;, E; AND r; FOR IMAGE CAMERAMAN
Cameraman CDF(1,1) | CDF(1,3) | CDF(2,2) | CDF(2,4) | CDF(3,3) | Dau(2) | Dau(3) | Dau(4)
H 1.2958 1.4036 0.9283 1.0053 0.7317 1.2837 | 1.2685 | 1.2590
Jj=1 |4 1.1325 1.1928 0.7714 0.8207 0.5565 1.1019 | 0.9789 | 0.8930
M. D 0.4457 0.4830 0.2962 0.3194 0.2585 0.3918 | 0.3826 | 0.3801
/ H 2.8121 3.0672 2.2288 2.4723 1.8128 2.9072 | 2.9226 | 2.9197
Jj=2 |4 2.4912 2.6447 1.7697 1.9338 1.3284 2.4337 | 2.2705 | 2.2335
D 1.3869 1.5432 0.9590 1.0885 0.8251 1.3207 | 1.3032 [ 1.2971
H 0.3353 0.3048 0.2898 0.2793 0.2104 0.3335 | 0.3170 | 0.3060
Jj=1 |4 0.2608 0.2366 0.2304 0.2222 0.1840 0.2406 | 0.2277 | 0.2165
E. D 0.3997 0.3742 0.3660 0.3596 0.3092 0.3645 | 03511 | 0.3397
/ H 0.1839 0.1557 0.1498 0.1426 0.0809 0.1961 | 0.1814 | 0.1664
Jj=2 |4 0.1589 0.1244 0.1048 0.0981 0.0605 0.1310 | 0.1151 | 0.1056
D 0.2962 0.2520 0.1899 0.1837 0.1115 0.2514 | 0.2325 | 0.2160
H 0.9267 1.0349 0.6948 0.7604 0.5929 0.9196 | 0.9239 | 0.9271
Jj=1 4 0.8725 0.9416 0.6127 0.6572 0.4629 0.8663 | 0.7796 | 0.7191
- D 0.2988 0.3322 0.2054 0.2230 0.1898 0.2721 | 0.2693 | 0.2706
/ H 2.3397 2.6198 1.9187 2.1438 1.6719 2.3894 | 2.4378 | 2.4703
Jj=2 V 2.1253 2.3354 1.5936 1.7532 1.2505 2.1349 2.0235 2.0097
D 1.0314 1.1994 0.7931 0.9058 0.7381 1.0271 | 1.0328 [ 1.0451

of analytic wavelet and N’ is that of synthetic wavelet. The
set of Dau(N) wavelets (except for Dau(1), i.e., CDF(1,1)
or Haar wavelet) are lack of (anti)symmetry, which is an
important property in signal and image processing. Biorthog-
onal wavelets CDF(N,N’) trade the orthogonality for
the (anti-)symmetry.

We use four 256 x 256 benchmark images Lena, Cam-
eraman, Peppers, and Baboon, shown in Fig. 3, to compute
their M;, E; and r; values with respect to eight wavelets:
CDF(1,1),CDF(1,3),CDF(2,2),CDF(2,4),CDF(3,3),
Dau(2), Dau(3), and Dau(4). In calculating M, we set the
noise level o as 25 (other noise level values would reach the
similar analysis results). The PDF function p(z;,z,41) for
calculating E; is taken as the histogram of image wavelet
coefficients. The noise decreases rapidly along wavelet scales
and most of its energy is concentrated at the first three scales.
In wavelet based denoising, three-scale decomposition is well

accepted because noise is greatly smoothed in the third-level
low frequency band. Decomposing an image into more than
three scales would not yield much additional improvement in
noise reduction. In Tables I-IV, we list the values of M, E;
and r; when j = 1 and j = 2. These results represent the
information of the first three wavelet scales. (The letters H,
V and D in Tables I-IV indicate the horizontal, vertical and
diagonal subbands, respectively.)

The best values of M;, E;, and r; are highlighted in Ta-
bles I-IV. From the experimental results, it can be observed
that CDF'(1, 3) is obviously the best of the eight wavelets. Its
r; values are almost always higher than that of other wavelets.
CDF(1,3) (i.e., Dau(1)) and Dau(2) are also proper se-
lections. Biorthogonal wavelets CDF(2,2), CDF(2,4),
CDF(3,3) are inferior. They are not suitable for the proposed
denoising scheme. The experiments in Section V validated
these observations.
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TABLE III

VALUES OF M, E; AND r; FOR IMAGE PEPPERS
Peppers CDF(1,1) | CDF(1,3) | CDF(2,2) | CDF(2,4) | CDF(3,3) | Dau(2) | Dau(3) | Dau(4)
H 1.0977 1.1627 0.5987 0.6517 0.4004 0.9858 | 0.8785 | 0.8330
J=1 4 0.8441 0.9112 0.4416 0.4855 0.3204 0.7000 | 0.6510 | 0.6309
M. D 0.3130 0.3406 0.1757 0.1882 0.1416 0.2604 | 0.2471 | 0.2414
/ H 2.6914 2.8872 1.8838 2.0997 1.3996 2.7163 | 2.6581 | 2.6542
Jj=2 V 2.2488 2.4282 1.4491 1.6354 1.0899 2.1452 | 2.1014 | 2.0758
D 1.2444 1.4004 0.8082 0.9402 0.6439 1.2012 | 1.2033 | 1.2016
H 0.1260 0.1159 0.1247 0.1202 0.0956 0.1307 | 0.1257 | 0.1212
J=1 4 0.1294 0.1233 0.1240 0.1203 0.0879 0.1408 | 0.1382 | 0.1345
E D 0.1652 0.1545 0.1652 0.1625 0.1445 0.1528 | 0.1435 | 0.1394
/ H 0.0564 0.0464 0.0461 0.0426 0.0262 0.0513 | 0.0449 | 0.0415
Jj=2 |4 0.0640 0.0538 0.0525 0.0501 0.0302 0.0667 | 0.0656 | 0.0623
D 0.0919 0.0768 0.0605 0.0573 0.0365 0.0774 | 0.0690 | 0.0648
H 0.9678 1.0355 0.5285 0.5779 0.3639 0.8650 | 0.7747 | 0.7379
J=1 4 0.7417 0.8055 0.3901 0.4305 0.2934 0.6080 | 0.5670 | 0.5515
. D 0.2653 0.2919 0.1490 0.1600 0.1226 0.2235 | 0.2141 | 0.2100
/ H 2.5437 2.7563 1.7990 2.0121 1.3633 2.5804 | 2.5414 | 2.5463
Jj=2 4 2.1093 2.3009 1.3750 1.5555 1.0575 2.0068 | 1.9681 1.9504
D 1.1351 1.2969 0.7608 0.8879 0.6208 1.1117 | 1.1231 1.1262

TABLE 1V

VALUES OF Mj, E; AND 7; FOR IMAGE BABOON
Baboon CDF(1,1) | CDF(1,3) | CDF(2,2) | CDF(2,4) | CDF(3,3) | Dau(2) | Dau(3) | Dau(4)
H 1.1828 1.2255 0.9781 1.0109 0.9001 1.1410 [ 1.1333 | 1.1300
Jj=1 4 1.4842 1.5654 1.3382 1.3834 1.2301 1.5108 | 1.5858 | 1.5961
M. D 0.9564 0.9837 0.8762 0.8914 0.8386 0.9450 | 0.9369 | 0.9332
/ H 2.1476 2.2836 1.7009 1.8440 1.4895 2.1443 | 2.1624 | 2.1780
Jj=2 |4 2.2889 2.4305 1.9060 2.0370 1.6372 2.3434 | 2.4849 | 2.4945
D 1.4665 1.5724 1.2928 1.3673 1.2161 1.4835 | 1.4922 | 1.4961
H 0.0327 0.0302 0.0287 0.0276 0.0230 0.0303 | 0.0292 | 0.0284
J=1 4 0.0435 0.0423 0.0392 0.0387 0.0292 0.0457 | 0.0460 | 0.0451
E. D 0.0502 0.0469 0.0494 0.0484 0.0464 0.0465 | 0.0457 | 0.0452
J H 0.0173 0.0153 0.0110 0.0108 0.0080 0.0153 | 0.0148 | 0.0138
Jj=2 |4 0.0260 0.0240 0.0192 0.0194 0.0113 0.0282 | 0.0291 | 0.0282
D 0.0275 0.0240 0.0188 0.0182 0.0146 0.0245 | 0.0228 | 0.0224
H 1.1447 1.1890 0.9504 0.9834 0.8796 1.1069 | 1.1007 | 1.0983
Jj=1 |4 1.4211 1.5006 1.2867 1.3309 1.1947 1.4432 | 1.5146 | 1.5257
’ D 0.9096 0.9387 0.8340 0.8493 0.8006 0.9020 | 0.8950 | 0.8919
/ H 2.1108 2.2490 1.6823 1.8242 1.4777 2.1118 | 2.1306 | 2.1482
Jj=2 |4 2.2302 2.3728 1.8699 1.9978 1.6188 22782 | 24137 | 2.4251
D 1.4267 1.5352 1.2687 1.3425 1.1984 1.4476 | 1.4586 | 1.4630

IV. CLUSTERING THE WAVELET COEFFICIENTS BY
CONTEXT MODELING

As seen in Fig. 2, the histograms of wavelet coefficients are
not very close to the Gaussian distributions. In fact, it is not
appropriate to model all the wavelet coefficients in one sub-
band with only one random variable. For example, the edge
pixels are of large magnitude while the background pixels being
of small magnitude. They have very different variances and it
would introduce numerous errors in PDF if considering them as
the samples of the same Gaussian variable. To estimate the sta-
tistics of wavelet coefficients more accurately and adaptively,
we model them with several variables. The context modeling
technique [8], [21]-[23], which was widely used in differenti-
ating and gathering pixels with some similarities but not neces-
sarily spatially adjacent, is a good technique for the classifica-
tion. The statistics could then be estimated locally within each

cluster of pixels. Chang et al. [8] presented a similar work with
their BayesShrink denoising scheme. By computing the context
of each wavelet coefficient, Chang et al. estimated the standard
deviation of it with a collection of pixels whose context values
fall into a specified field.

The context value of a given coefficient is defined as a func-
tion of its neighbors. The weighted average of its adjacent pixels
is often employed. In [8], C;(m, n), the context value of noisy
wavelet coefficient w;(m,n) is calculated as the weighted av-
erage of the magnitude of its neighbors

Cj (m, n) = 'u,;”’"hj

(32)

where 'u,;n" is a1 X 9 vector whose elements are the absolute
value of w;(m,n)’s eight nearest neighbors plus its parent at
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Fig. 4. Clustering the diagonal wavelet coefficients of Lenna at the second scale into three clusters by the context values. Solid curves are the histograms of
each cluster, and dash curves are the associated Gaussian functions with zero mean and standard deviation o, of the cluster. Compared with the curves in Fig. 2,
obviously the two curves are more closed. (a) The first cluster. (b) The second cluster. (c) The third cluster.

scale j + 1. Weight h; is a 9 x 1 vector. The weight h; is
determined by the least square estimation

-1
h; (U]T U]-) Uty (33)

where U isa M - N x 9 matrix with each row being u}"" and
Y isan M - N x 1 vector containing all elements of w;(m, n).

With context modeling, the coefficients of similar natures can
be well clustered. By sorting the context values C;(m,n) in
the ascending order, the wavelet coefficients w,;(m,n) could
be classified into several clusters, in which the coefficients are
assumed having the same statistics. Suppose each cluster has L
point and denote by @3 the 41 cluster, the variance of wavelet
coefficients in cluster ©; is estimated by

6y, =T Z w]z(m,n) — 012-.

w; (m,,n)G@;

(34)

Take the diagonal wavelet coefficients at the second scale of
Lena as an example, we calculate their context values and then
divide them into 3 clusters. In Fig. 4, the histogram of each
cluster is illustrated comparing with the corresponding Gaussian
function G, (x). It can be seen that the two curves are much
closer than those in Fig. 2(b), in which the whole band is mod-
eled with only one random variable. With the context-based
clustering, the statistical estimation of the coefficient is more
accurate and adaptive.

For our jnterscale model, calculation of Llle context value
of vector w; is straightforward. Denote by w;.(m n) (i), 7 =
1,...,8 the absolute value of the 8 neighboring elements of
13]- (m,n). And let

—m,n T T
The context value of 13]- (m,n) is defined as
Cj (m,n) =u, h, (36)

—

where h ; is a 16 x 2 weighted matrix and it is calculated by the
least square estimate

_ T\ ! _1 _
h;= (UjUj> U; |Y| (37)

5j isa M - N x 16 matrix with each row being E;ﬂn and 17 is
a M - N x 2 matrix with each row being EJT (m,n).

E'j (m,n)isal x 2 vector. We cluster w; (m,n) according
to the position of c i (m,n) in the 2-D Euclidean space. Let the

x-coordinate represent the first element of C; (m,n) and y-co-
ordinate represent another. We first divide the plane into several
regions by evenly splitting z-coordinate with a preset step length
(which is 20 in our experiments), and then evenly split each re-
gion by y-coordinate. The so divided regions may have different

numbers of context data C'; (m, n). Each vector w ; (m,n) that
belongs to the sth cluster @; is assumed to possess the same the
covariance matrix, which is estimated from all the data in @;
The LMMSE scheme described in Section II-B is then applied
to each cluster @;

V. EXPERIMENTS

This section compares the proposed scheme with other
popular denoising schemes. The four benchmark images in
Fig. 3 are used for the experiments. As stated in Section III,
the values of r; imply that wavelet CDF(1,3) would be
most suitable for the proposed scheme. Other four wavelets
CDF(1,1), CDF(2,2), Dau(2), and Dau(4) are employed
for comparison. The noisy images are simulated by adding
Gaussian white noise ¢ ~ N (0, 02) on the original images.

In threshold-based (hard or soft) denoising schemes, the
wavelet coefficients whose magnitudes are below a threshold
will be set to 0. The corresponding pixels are generally noise
predominated and thus the thresholding of these coefficients is
safely a structure-preserving denoising process. We apply the
LMMSE only to those coefficients above a threshold and shrink
those below the threshold to 0. Here the threshold applied to
wj is set as t; = 2.50;.
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TABLE V
PSNR (dB) RESULTS OF THE DENOISING SCHEMES FOR LENA WITH
DIFFERENT NOISE LEVELS

TABLE VII
PSNR (dB) RESULTS OF THE DENOISING SCHEMES FOR PEPPERS WITH
DIFFERENT NOISE LEVELS

Lena Dau(4) Dau(2) CDF(1,1) | CDF(1,3) | CDF(2,2) Peppers Dau(4) Dau(2) | CDF(1,1) | CDF(1,3) CDF(2,2)

SCH]1 29.27 29.33 29.19 -- - SCH1 29.10 29.25 29.19 - -
SCH2 29.35 29.30 28.97 28.99 29.16 SCH2 28.90 28.96 28.75 28.69 28.80

=20 [ scH3 29.29 29.32 29.14 29.05 28.81 o=20 | SCH3 29.21 29.33 29.21 29.30 28.83
SCH4 28.64 28.84 29.01 29.23 27.86 SCH4 28.47 28.86 29.22 29.49 27.80
SCH5 29.10 29.28 29.46 29.55 28.74 SCHS5 29.05 29.42 29.76 29.82 28.83
SCH| 28.04 28.12 28.09 - - SCHI 27.81 28.04 28.20 -- --
SCH?2 28.10 28.08 27.79 27.80 27.90 SCH2 27.73 27.82 27.66 27.62 27.60

=25 [ SCH3 28.14 28.15 28.01 28.00 27.61 o=25 [ SCH3 28.02 28.11 28.21 28.26 27.57
SCH4 27.45 27.70 27.92 28.16 26.77 SCHA 2731 27.73 28.12 28.41 26.64
SCH5 27.98 28.20 28.35 28.42 27.60 SCHS5 27.97 28.34 28.71 28.78 27.62
SCH] 27.10 27.20 27.19 - — SCH| 26.78 26.98 27.22 - --
SCH2 27.11 27.15 26.90 26.87 26.96 SCH2 26.73 26.82 26.70 26.63 26.54

o=30 [ scH3 27.22 27.25 27.15 27.24 26.69 =30 | SCH3 27.02 27.16 27.15 2723 26.49
SCHA 26.70 26.89 27.06 27.30 26.11 SCH4 26.48 26.84 27.19 27.52 25.77
SCH5 27.08 27.30 27.54 27.61 26.68 SCH5 27.01 27.40 27.82 27.90 26.60

TABLE VI TABLE VIII

PSNR (dB) RESULTS OF THE DENOISING SCHEMES FOR CAMERAMAN WITH
DIFFERENT NOISE LEVELS

Cameraman Dau(4) | Dau(2) | CDF(1,1) | CDF(1,3) | CDF2,2)
SCH1 28.02 28.04 28.07 -- --
SCH2 28.43 28.46 28.49 28.32 28.37
oc=20 | SCH3 28.42 28.63 28.79 28.87 28.25
SCHA4 27.39 27.83 28.28 28.12 26.88
SCHS5 28.32 28.71 29.12 29.16 28.20
SCHI 26.82 27.08 27.21 - -
SCH2 27.22 27.28 27.35 27.16 27.13
oc=25 [ scm3 27.28 27.52 27.73 27.84 26.96
SCHA 26.21 26.54 27.04 27.06 25.36
SCH5 27.19 27.60 28.05 28.07 27.04
SCH1 25.83 26.02 26.21 -- --
SCH2 26.20 26.25 26.36 26.18 26.10
o =30 | SCH3 26.34 26.49 26.69 26.74 25.89
SCH4 25.30 25.71 26.10 26.15 24.84
SCH5 26.30 26.70 27.18 27.20 26.06

The denoising schemes in [8], [17], [18] are used for com-
parison with the proposed scheme. It should be noted that the
images used here are 256 x 256, while the images used in
[8], [17], and [18] are 512 x 512. At the same noise level,
the denoising results of high resolution images are much better
than those of low resolution images. For convenience, we de-
note the spatially adaptive BayesShrink of Chang et al. [8] by
SCH1, the locally adaptive LMMSE-based scheme of Mih¢ak
etal. [17] by SC H2 and the LMMSE-based scheme of Li ef al.
[18], which models the wavelet coefficients as nonedge and edge
groups, by SC H3. All schemes are implemented with the OWE
of the five orthogonal and biorthogonal wavelets CDF(1, 3),
CDF(1,1),CDF(2,2), Dau(2), and Dau(4) for comparison
fairness. The proposed scheme without context modeling is de-
noted by SC H4 and the counterpart with context modeling is
denoted by SCH5.

Tables V-VIII list the peak signal-to-noise ratio (PSNR) re-
sults of the five schemes on the benchmark images in Fig. 3
corrupted by different levels of additive Gaussian noise. From
the first three tables we see that the context modeling would im-
prove the denoising performance and the scheme SC H 5 outper-
forms the other four schemes. For comparison of wavelet filters,
obviously CDF'(1, 3) is the best one, whose denoising results

PSNR (dB) RESULTS OF THE DENOISING SCHEMES FOR BABOON WITH
DIFFERENT NOISE LEVELS

Baboon Dau(4) Dau(2) | CDF(1,1) | CDF(1,3) | CDF(2,2)

SCH1 24.84 24.14 24.71 -- -
SCH2 25.17 25.19 25.16 25.17 25.13

=20 | SCH3 24.75 24.52 24.69 24.73 24.60
SCH4 23.21 23.28 23.30 23.39 22.88
SCH5 23.93 23.90 23.97 24.05 23.69
SCH1 23.65 23.64 23.63 -- -
SCH2 23.94 23.96 23.93 23.92 23.88

=25 | SCH3 23.48 23.48 22.47 23.50 23.33
SCH4 22.05 22.11 22.12 2221 21.72
SCH5 22.74 22.72 22.73 22.79 22.54
SCH1 22.63 22.64 22.65 -- --
SCH2 23.07 23.03 23.05 23.02 22.98

o =30 [ ScH3 22.58 22.57 22.56 22.59 22.44
SCH4 21.32 2131 21.35 21.44 21.12
SCH5 2191 21.90 21.89 22.01 21.76

by SCHS5 were highlighted in Tables V-VII. CDF(1,1) and
Dawu(2) also have better performances. The wavelet CDF'(2, 2)
yields the worst results. Notice that these conclusions are in ac-
cordance with the wavelet filter analyzes in Section III.

In Fig. 5, we illustrated a set of denoising results of image
Lena. Fig. 5(a) is the noisy Lena where the noise level is 0 = 20.
Fig. 5(b)—(d) are the denoised versions by SCH1, SCH2, and
SC H3 with wavelet Dau(2). Fig. 5(e), (f) are the denoised im-
ages by SCH4 and SCH5 with wavelet CDF(1,3). It is ob-
served that SCH1 and SC'H4 over-smooth the image a little,
and in SC H5 the edge structures are well preserved while re-
ducing noise.

Although the proposed scheme works well for images Lena,
Cameraman, and Peppers, it does not give satisfying results for
Baboon (referring to Table VIII). SC H5 works worse than the
three schemes SCH1 ~ SCH 3. This is because image Baboon
has many fine “hair” structures. These structures are weakly
correlated and similar to white noise to some extent. They pos-
sess little interscale dependencies in wavelet domain. For quan-
titative measurement, let us calculate the mutual information of
wavelet coefficients z; and x ;41 at adjacent scales. Referring
to (23) and let

I§ = I(zj,241)

(38)
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(c)

(d)

Fig. 5.
Denoised images by SCH4 and SCH5 with wavelet CDF(1,3).

be the mutual information between xz; and x ;1. In Table IX,
the values of [ f when 5 = 1, 2 are listed for the four test im-
ages. It can be noticed that the I5 values for Baboon are much
smaller than those for Lena, Cameraman, and Peppers. It im-
plies that not much information would be conveyed from scale
J + 1 to scale j for updating the estimation of x;. So the pro-
posed denoising scheme, mainly based on an interscale wavelet
model in exploiting interscale dependency information, would
not present its merits for images such as Baboon.

VI. CONCLUSION

In this paper, we presented an LMMSE-based denoising
scheme with a wavelet interscale model and discussed the

Denoising results of Lena. (a) Noisy Lena (o = 20). (b), (c), and (e) Denoised images by SCH1, SCH2, and SC H3 with wavelet Dau(4). (e)—(f)

optimal wavelet basis selection for it. With OWE the wavelet
coefficients at the same spatial locations at two adjacent scales
are represented as a vector and the LMMSE is applied to the
vector. The wavelet interscale dependencies are thus exploited
to improve the signal estimation. The performance of the
scheme is wavelet filters dependent. We proposed two criteria
to determine the optimal wavelet for the scheme. One is to
measure the signal information encapsulating ability from noisy
environment. This criterion is proportional to the denoising
efficiency. The other is to measure the wavelet coefficients
distribution difference with joint Gaussian function and this
criterion is inversely proportional to denoising performance.
The optimal wavelet could be determined by optimizing the
tradeoff of the two criteria from a library of wavelets. In this
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TABLE IX

MUTUAL INFORMATION T § OF ADJACENT TWO WAVELET SCALES FOR THE FOUR TEST IMAGES
1 ; CDF(1,1) | CDF(1,3) | CDF(2,2) | CDF(2,4) | CDF3,3) | Dau(2) | Dau(3) | Dau(4)
H 0.9816 0.9071 0.5140 0.4521 0.2593 0.5254 | 0.3509 | 0.2608
J=1 4 0.7108 0.6744 0.4104 0.3517 0.2207 04148 | 0.2939 | 0.2288
s D 0.4637 0.3933 0.2222 0.2008 0.1613 0.2534 | 0.1796 | 0.1780
S H 1.1147 0.9296 0.5463 0.4899 0.3075 0.6364 | 0.4391 0.3627
j=2 |14 0.8949 0.7880 0.5014 0.4428 0.2946 0.5460 | 0.4059 | 0.3257
D 0.6207 0.5504 0.3736 0.3575 0.3180 0.3869 | 0.2878 | 0.2824
- H 0.5693 0.4935 0.4561 0.4033 0.2912 0.4858 | 0.3982 | 0.3568
S Jj=1 4 0.6830 0.6117 0.4673 0.4077 0.3020 0.4969 | 0.3770 | 0.3225
§ D 0.4634 0.3854 0.2684 0.2424 0.1944 0.2973 0.2303 0.2232
§ H 0.7347 0.6559 0.5679 0.5346 0.4172 0.6276 | 0.5843 0.5207
S j=2 |14 0.8843 0.7456 0.5861 0.5318 0.4042 0.6416 | 0.5265 | 0.4464
D 0.6226 0.5827 0.4443 0.4278 0.3741 0.4593 0.3714 | 0.3637
H 0.7612 0.7094 0.3992 0.3428 0.1708 04152 | 0.2752 | 0.2063
@ Jj=1 vV 0.6852 0.6319 0.3420 0.2894 0.1563 0.3692 | 0.2420 | 0.1907
2 D 0.3398 0.2740 0.1581 0.1369 0.1149 0.1743 0.1041 0.0993
S H 1.0660 0.8645 0.5316 0.4622 0.2695 0.6052 | 0.4348 | 0.3487
j=2 |14 0.9615 0.8113 0.4461 0.3990 0.2470 0.5400 | 0.3936 | 0.0018
D 0.5680 0.5047 0.2704 0.2572 0.2160 0.3059 | 0.1949 | 0.1889
H 0.3736 0.3727 0.2814 0.2156 0.1268 0.2862 | 0.1815 | 0.1280
2 Jj=1 vV 0.3815 0.3387 0.2926 0.2350 0.1579 0.3069 | 0.2241 0.1784
S D 0.3356 0.2391 0.1813 0.1529 0.1308 0.1949 | 0.1416 | 0.1371
E H 0.5461 0.5226 0.3277 0.2769 0.1988 0.3737 | 0.2618 | 0.1924
Jj=2 |4 0.5049 0.4694 0.3267 0.2842 0.2278 0.3782 | 0.2881 0.2444
D 0.3398 0.2690 0.1960 0.1733 0.2142 0.1994 | 0.1390 | 0.1311

paper, we considered eight typical wavelets and observed that
biorthogonal CDF(1,3) would give the best performance.
This observation was validated by the experiments. Finally,
context modeling techniques were employed to cluster wavelet
coefficients. The adaptively spatial classification of wavelet
pixels reduces the statistics estimation error and subsequently
improves the denoising performance.

Although the proposed scheme outperforms other popular de-
noising schemes for most of the images, it may not be a suitable
method for images that are weakly correlated in scale spaces (for
example, Baboon image). For such images the wavelet inter-
scale dependency is typically very low, and the proposed model
would be unable to take the advantage of interscale dependen-
cies to yield reasonable gain for denoising.
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