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Molecular Pattern Discovery based on Penalized Matrix Decomposition 
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Abstract: A reliable and precise identification of the type of tumors is crucial to the 

effective treatment of cancer. With the rapid development of microarray technologies, 

tumor clustering based on gene expression data is becoming a powerful approach to 

cancer class discovery. In this paper, we apply the penalized matrix decomposition 

(PMD) to gene expression data to extract metasamples for clustering. The extracted 

metasamples capture the inherent structures of samples belong to the same class. At 

the same time, the PMD factors of a sample over the metasamples can be used as its 

class indicator in return. Compared with the conventional methods such as 

hierarchical clustering (HC), self-organizing maps (SOM), affinity propagation (AP) 

and non-negative matrix factorization (NMF), the proposed method can identify the 

samples with complex classes. Moreover, the factor of PMD can be used as an index 

to determine the cluster number. The proposed method provides a reasonable 

explanation of the inconsistent classifications made by the conventional methods. In 

addition, it is able to discover the modules in gene expression data of conterminous 

developmental stages. Experiments on two representative problems show that the 

proposed PMD based method is very promising to discover biological phenotypes. 
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1. Introduction  

The rapid development of DNA microarray technology has made it possible to 

monitor gene expression levels on a genomic scale. The gene expression data 

captured using this high-throughput technique can potentially provide systematic 

information regarding to the underlying dynamics and mechanisms in biology, which  

enhances much the fundamental understanding of life on the molecular level. The 

challenge is how to interpret such data to gain insight into biological processes and 

the mechanisms of human diseases [12, 22, 25, 29, 36, 38]. Analysis of these data 

requires mathematical tools that are adaptable to the huge amount of data, and 

reducing the data complexity to make them comprehensible. Fortunately, many 

effective methods have been proposed for gene expression data analysis. Among them, 

clustering is a topical application to gene expression data for identifying the genes or 

samples with similar expression patterns [2, 3, 10, 23, 27, 37]. 
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Many well-known clustering methods, such as hierarchical clustering (HC), self-

organizing maps (SOM), affinity propagation (AP) and non-negative matrix 

factorization (NMF), have been successfully used for gene expression data clustering 

[5, 9, 10, 28, 30]. HC has been employed in analyzing temporal expression patterns 

[7], predicting patient outcomes among lymphoma patients [2], and providing 

molecular portraits of breast tumours [15]. However, one disadvantage of HC is that it 

imposes a stringent tree structure on the data. In addition, HC is highly sensitive to the 

metric used to assess similarity and often requires subjective evaluation to define 

clusters [5]. SOM provides another tool for clustering [20]. It has been successfully 

used to recognize the subtypes of leukemia [10]. SOM, however, is unstable. It yields 

different decompositions of the data depending on the choice of initial conditions [5]. 

Brunet et al. [5] demonstrated that NMF is more accurate than HC and it is more 

stable than SOM. Gao and George [9] showed that the results of NMF can be 

improved by using the sparse NMF (SNMF). Zheng et al. [28] improved the NMF 

clustering results by using gene selection methods.  

Though these clustering algorithms are useful, one limitation of them is that each 

sample can only be clustered into one class, which may not be identical to the facts in 

some instances, e.g., borderline tumors and compound tumors [11, 14]. To overcome 

this problem, we propose to extract “metasamples” from the gene expression data by 

using Penalized Matrix Decomposition (PMD) [24]. A metasample is a linear 

combination of original samples. By using PMD to extract a small number of 

metasamples, each metasample can capture the inherent structures of the samples 

belong to the same class. At the same time, the samples can be clustered by mapping 

themselves to the extracted metasamples. Moreover, the number of metasamples, i.e., 

the number of clusters, could be determined according to the changing trend of factor 
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D (please refer to Eqs. (1) and (2)) extracted by PMD. The experiments show that the 

proposed method can identify the samples with complex classes, and it provides a 

reasonable explanation of the inconsistent classifications made by conventional 

methods such as HC, SOM, AP, spectral clustering (SC) [34] and NMF. Interestingly, 

it is also able to discover the modules in gene expression data of conterminous 

developmental stages. The contribution of this paper lies in the proposition of a PMD 

based clustering approach to molecular pattern discovery. It can detect compound 

tumors which cannot be discovered by conventional clustering methods.  

The rest of the paper is organized as follows. Section 2 describes the methodology 

proposed in this study. Section 3 presents the numerical experiments. Section 4 

concludes the paper and outlines directions of future work.   

 

2. Methodology  

2.1 Penalized Matrix Decomposition (PMD) 

This subsection briefly introduces the PMD proposed by Witten et al. [24]. Consider a 

gene expression data set that consists of p genes in n samples. We denote it by a 

matrix X of size p n . Without loss of generality, we assume that the column and row 

means of X are zero. The singular value decomposition (SVD) of matrix X can be 

written as follows: 

TX UDV ,  T
pU U I ,  T

nV V I                              (1) 

The PMD generalizes this decomposition by imposing additional constraints on U and 

V. The rank-one PMD can be formulated as the following optimization problem: 

2

, ,

1
min

2
T

Fd
X d

u v
uv                                                       (2) 
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where u is a column of U, v is a column of V, d is a diagonal element of D, 
F

  is the 

Frobenius norm, P1 and P2 are penalty functions that can take a variety of forms [24].  

Let U and V be p K  and n K  orthogonal matrices, respectively, and D a 

diagonal matrix with diagonal elements dk, it can be proved that [24] 

2 2 2

1 1

1 1 1

2 2 2

K K
T T

k k k kFF
k k

X UDV X X d d
 

    u v              (3) 

Hence, when K=1, we can see that u and v satisfying Eq. (2) can also satisfying the 

following problem: 

,
max T X

u v
u v                                                                     (4) 

s.t.
2 2

1 1 2 22 2
1, 1, ( ) , ( )P P    u v u v  

and the d satisfying Eq.(2) is Td X u v . 

The optimization problem in Eq. (4) can be finessed to the following biconvex 

optimization [24]: 

,
max T X

u v
u v                                                                    (5) 

s.t.
2 2

1 1 2 22 2
1, 1, ( ) , ( )P P    u v u v  

It can be turned out that the solution to Eq. (5) satisfies Eq. (4) provided that   is 

chosen appropriately [24]. 

Eq. (5) is called the rank-1 PMD, and the iterative algorithm used to optimize it is 

summarized as following: 

Step1. Initialize v to have unit 2L -norm. 

Step2. Iterate until convergence: 

  (a) arg max T X
u

u u v , s.t.
2

1 12
1, ( ) .P  u u  

(b) arg max T X
v

v u v , s.t.
2

2 22
1, ( ) .P  v v  
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    Step3. Td X u v . 

To obtain multiple factors of PMD, we can maximize the criterion in Eq. (5) 

repeatedly, each time using the residuals obtained by subtracting the product of 

previous factors duv  from X, i.e. 1k k T
k k kX X d   u v . The detailed algorithm of 

PMD can be found in [24]. In this paper, we take the 1l -norm of u and v as the penalty 

function, i.e., 1 21 1
,  u v . By choosing appropriately the parameters 1  and 

2 , PMD can result in sparse factors u and v. Generally speaking, 1  and 2  should 

be restricted to the ranges 11 p   and 21 n   [24]. Examples to 

demonstrate the efficiency of PMD in discovering latent factors can be found in [24].  

 

2.2 Sample Clustering using PMD 

For gene expression data set, the number of genes p is typically in the thousands, 

while the number of experiments n is typically less than one hundred. The data are 

represented by an expression matrix X of size p n , each row of X containing the 

expression levels of a gene in all the n samples, while each column of X containing 

the expression levels of all the p genes in one sample.  

Our goal is to find a small number of metasamples, each of which is defined as a 

linear combination of the n samples. On the other hand, we can approximate each 

sample as a linear combination of these metasamples, and consequently, we can 

cluster the samples according to their representations over the metasamples. In other 

words, the metasamples serve as the cluster centers. Mathematically, this can be 

accomplished by factorizing matrix X into two matrices:   ~  X UH . Matrix U is of 

size p k , with each of the k columns defining a metasample, and each entry iju  in U 

representing the expression level of gene i over metasample j. Matrix H is of size 
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k n , with each of the n columns representing the metasample expression pattern of 

the corresponding sample, and each entry ijh  representing the coefficient of 

metasample i over sample j. Figure 1 shows a simple case with = 2k . 

 

We do the factorization ~ TX UDV UH  by using PMD with sparsity constraints 

imposed on V. Since D is a diagonal matrix, it only affects the magnitude of the non-

zero elements in TV . So matrix H has the same sparsity as TV . After factorizing X, 

we can use matrix TV to group the n samples into k clusters. Samples corresponding 

to the non-zero elements in each row of TV  are placed into a cluster; that is, sample i 

is placed in cluster j if ijv  is non-zero, where ijv  is the element of V . In the following 

section, we illustrate the principle of the proposed PMD based clustering. 

 

2.3 Pattern Inference using PMD 

Let 1u  and 1v  be the first pair of factors extracted from X by using PMD with 

2 1 1 21
( )P  v v  but without constraint 1P  on 1u . By choosing an appropriate 2 , 

we can get a sparse vector 1v  with many entries being (nearly) zero. Without loss of 

generality, suppose that the first c1 entries in 1v  are non-zero, i.e., 

11 1,1 1,2 1,[ , , ,0, 0]T
cv v vv                                         (6) 

Then  

11 1 1 1 1 1,1 1 1,2 1 1, 1
ˆ [ ; ; ; ; ]T

cX d d v v v u v u u u o o              (7) 

where o  is a p-dimensional column vector with all elements being zero.  

From Eq. (7) we can see that 1u  and 1v  can only represent the first 1c  samples in X. 

In other words, only the patterns of the first 1c  samples can be expressed as the linear 

Figure1 Here 
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combinations of metasample 1u . If the metasample 1u  represents the pattern of the 

first class, then only the first 1c  samples have similar expression pattern to 

metasample 1u , and hence the first 1c  samples can be clustered into one class.  

To obtain the second pair of factors, i.e., 2u  and 2v , we first subtract 1X̂  from X: 

1 11 1 1 1
ˆ [ ; ; ; ]c c nX X X    e e x x                         (8) 

where 1 1, 1i i id v e x u , 1i c . Ideally, the residual ie  should be approximately zero. 

Here we assume that ie  fits well for this instance, and later we will discuss the 

situation if ie  is not approximately zero.  

Once 1X  is obtained by Eq. (8), the second pair of factors, 2u  and 2v , can be 

extracted from it. Without loss of generality, 2v  can be denoted as  

1 2 1 22 1 2,1 2,2 2, 1[0 , 0 , , , ,0 , 0 ]T
c c c c nv v v  v            (9) 

Consequently, we have  

1 22 2 2 2 2 1 2,1 2 2,2 2 2, 2
ˆ [ ; ; ; ; ; ; ]T

c cX d d v v v u v o o u u u o o        (10) 

1 1 1 2 1 22 1 2 1 1 1
ˆ [ ; ; ; ; ; ]c c c c c c nX X X       e e e e x x                (11) 

Accordingly, the metasample 2u  represents the pattern of the second class, and we 

can cluster the samples corresponding to the non-zero elements in 2v  to another class. 

Repeating the above procedures, we can obtain k pairs of factors, i.e., 1, , ku u  and 

1, , kv v , and assign each sample in data set X to a class. 

Let’s then discuss the situation when there are some residuals ie  that have non-

negligible values. As an example, we assume 
1c

e  has a relatively large Frobenius 

norm, i.e., the pattern of sample 
1c

x  cannot be perfectly represented by using only one 
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metasample 1u . In other words, 
1c

x  may be a linear combination of 1u  and some 

other metasamples. Without loss of generality, assuming that 
1c

x is the linear 

combination of 1u  and 2u , we have 

1 2 1 22 1 1 2,1 2,2 2, ' ' 1' [0 , 0 , ' , ' , ' , 0 , 0 ]T
c c c c nv v v  v                   (12) 

where 2 2' 1c c  . According to the principle of clustering, the sample 
1c

x should be 

clustered to both class 1 and class 2.  

 

2.4 Model Selection 

In the PMD model of gene expression data, a key issue is how to determine the rank 

k, i.e., the number of clusters. In fact, how to determine the number of clusters is still 

an open problem in gene expression data clustering. Interestingly, with PMD we can 

determine the number of clusters by the following method. From Td X u v  we can 

see that d represents the distribution of the source data’s energy over each of the 

factors. In general, d will monotonically decrease with the increase of k (refer to 

Figure 3 please). Since each metasample represents the pattern of a class, d will not 

decrease much when all the meaningful metasamples were extracted. In other words, 

through observing how d changes as k increases, we can determine k as the value at 

which d falls significantly, e.g. k=4, in Figure 3. Since in this process we only want to 

impose sparsity constraint on v  but not u , we let  1 p  . For 2 , since it is 

restricted in the range 21 n  , and we found experimentally that when 2  is 

about 0.5 n  the factor u  is sparse, we roughly let 2 0.5 n  .  

After determining k, we then choose a precise value for 2 . When taking a small 

value, e.g., 2 0.3 n  , only part of the samples are clustered (Tables 2, 4 and 6). 
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With the increase of 2 , more and more samples are clustered. When every sample is 

clustered to at least one class, the corresponding 2  should be the desired value. 

 

3. Experimental Results  

In this section we evaluate the proposed method by applying it to elucidate cancer 

subtypes and cell differentiation. Three cancer data sets, i.e., the acute leukemia data 

set, the central nervous system tumor data set and the SRBCT cancer data set, are 

used to test our method. In addition, experiment on the lymphoid development data 

set is used to validate the potential capacities of our method for cell differentiation 

analysis. The Matlab source code of our proposed method can be downloaded at 

http://www4.comp.polyu.edu.hk/~cslzhang/code/MPD_PMD.rar. 

 

3.1 Experiments on the Cancer Data Sets 

3.1.1 Leukemia Data Set 

This data set contains p=5000 genes in 38 samples, and it consists of 19 cases of 

B_cell acute lymphoblastic leukemia (ALL_B), 8 cases of T_cell acute lymphoblastic 

leukemia (ALL_T) and 11 cases of acute myelogenous leukemia (AML). In this data 

set, the distinction between acute myelogenous leukemia (AML) and acute 

lymphoblastic leukemia (ALL), as well as the division of ALL into T and B cell 

subtypes, are known.  

This data set is well established and it is a benchmark data set for comparing the 

performance of different clustering algorithms. In general, most clustering algorithms 

work well on this data set. For example, HC can have good clustering results with 

appropriate choices of linage metric and the number of input genes [5]. However, HC 

is unstable because its performance is subject to the number of input genes. It can 
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correctly find the AML–ALL distinction only when the average linkage metric is used 

and the number of input genes is between 1,800 and 3,200 (the only incorrect 

assignment involves one of the known outlier samples). However, HC cannot 

correctly find the important distinction between ALL-T and ALL-B. 

SOM could also reveal the distinctions on this data set [18]. Golub et al. [10] found 

that, for 2 classes, SOM may split the data into [AML] vs. [ALL-T+ALL-B] or into 

[AML+ALL-T] vs. [ALL-B], depending on the initial conditions.  

We also applied two recently developed popular clustering methods, the AP [31] 

and SC [34], to this data set. The results are listed in the Supplemental Tables S1 (for 

2 classes) and S2 (for 3 classes), which were published on the IEEE web site. These 

two methods cannot find the AML–ALL distinction for 2 classes, either. Compared 

with HC and SOM, no advantage is embodied for AP and SC on the leukemia data 

set. 

Brunet et al. [5] applied NMF to this data set. With rank k=2, NMF can consistently 

discover the ALL-AML biological distinction with high accuracy and robustness. It 

was also found that, a higher rank k can further partition the samples. The clusters 

show a nested structure as k increases from 2 to 4, and the nesting captures the known 

subtypes. For k=2, the two classes correspond to the ALL and AML samples. 

However, it misclassifies two ALL-B subtypes (ALL_14749_B-cell and 

ALL_7092_B-cell) to AML (Table 1). One possible explanation made by Brunet et al. 

[5] is the incorrect diagnosis of the samples. Brunet et al. [5] included them in the 

analysis but expected them to be outliers. For k=3, the partition reflects the distinction 

between ALL-T and ALL-B within the ALL class. Again, there are two 

misclassifications made (Table S2). The same ALL_14749_B-cell is once again 

incorrectly assigned to AML, and another ALL-B sample (ALL_21302_B-cell) is 
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incorrectly assigned to ALL-T, showing some kind of instability. For k= 4, a fourth 

class appears which is deemed robust but its biological significance is unclear [5].  

To improve the results of NMF, Gao and George [9] used sparse NMF (SNMF) to 

cluster this data set. Compared with NMF, when k=2 SNMF correctly classifies the 

two difficult ALL cases that are missed by NMF (Table S1). However, one AML 

sample (AML_13) is assigned to ALL. When k=3, SNMF well splits the ALL 

samples into two subtypes without mistake. However, it still misclassifies one AML 

sample to ALL. One possible explanation may be the incorrect diagnosis of this 

sample. Also, Gao and George suspected that there may exist more than three 

subclasses in the leukemia data set. 

From the above published works we can see that, although these clustering methods 

(HC, SOM, AP, SC, NMF and SNMF) work well, the results are not consistent. By 

using HC, SOM, AP and SC, the distinction between AML and ALL cannot be found. 

Although NMF and SNMF can discover the ALL-AML distinction with high 

accuracy and robustness [5, 9, 28], the clustering results on three samples, i.e., 

ALL_14749_B-cell, ALL_7092_B-cell and AML_13, are not consistent. In addition, 

Brunet et al. [5] found a robust fourth class, and Gao and George [9] suspected that 

there may exist more than three subclasses in the leukemia data set. 

 

 

We then applied the proposed PMD based method to this data set. Since we only 

want to impose sparsity on v  but not u , we let 1 p  . For 2 , we let 2 0.5 n   

(refer to the subsection ‘Model Selection’). The experimental results are given in 

Table 1 and Figures 2 and 3. From the two figures we can see that, identical to the 

results by NMF and SNMF, four subclasses, instead of three subclasses, should be 

Figures 2, 3 Here 
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selected for this data set because the value of d has a significant drop from k=4 to k=5 

(Figure 3), implying that k=4 can characterize all the patterns in this data set.  

 

 

The clustering results for 4 classes by all the seven methods are listed in Table S3. 

From Table S3 we can see that, the results of PMD can reasonably explain why the 

results of the other six methods are not consistent on some samples. For example, 

according to the clustering result of PMD, some ALL-B samples should be the 

combination of subclass 1 and subclass 4, and the other ALL-B samples belong to 

either subclass 1 or subclass 4. This is identical to the result that SOM split ALL-B 

samples into two groups [10] when k=4. In fact, AP, SC and NMF also split ALL-B 

samples into two groups when 4 classes are chosen. On the other hand, ALL-T 

samples are clustered to subclass 2 very consistently. According to the experimental 

results by PMD, some AML samples should be compound tumours. 

 

 

To further investigate the effect of sparsity constraint on the experimental results, 

we perform the experiments with different values of 2  (Table 2) by fixing 1 . When 

2  takes smaller values, i.e., with stronger sparsity constraint, only a small portion of 

the samples will be clustered. With the increase of 2 , more and more samples could 

be clustered to certain clusters, and the results are consistent. 

From the above analysis we can see that HC, SOM, AP, SC, NMF and PMD are all 

useful for clustering the tumour samples. Compared with the other methods, however, 

PMD can locate the samples that have compound subclasses. This will be very helpful 

in subclass discovery.  

Table 1 Here 

Table 2 Here 
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3.1.2 Central Nervous System Tumors 

This data set is composed of five types of central nervous system embryonal tumours 

[16]. It contains 5597p   genes in 42 samples, representing five distinct 

morphologies: 10 classic medulloblasomas (MD), 10 malignant gliomas (MGlio), 10 

rhabdoids (Rhab), 4 normal cerebella (Ncer) and 8 primitive neuroectodermal 

tumours (PNET). 

On this data set, Brunet et al. only analyzed the first four types of tumours since 

they found that the 8 primitive nueroectodermal tumours did not form a distinct tight 

class or subclass using either supervised or unsupervised clustering method [5]. In 

their experiments, it was found that NMF is more suitable to cluster this data set than 

HC and SOM. 

 

 

 

 

We then cluster the whole data set using PMD. The results are given in Table 3. 

Figure 4 shows the image of matrix TV  with k=5. Figure 5 shows the changes of d 

with respect to the rank k ( 2 0.45 n  ). From Figure 5 we can see that, five 

subclasses should be reasonable for this data set. Table S4 lists the results by the other 

six methods with 5 clusters. Consistent with the conclusion of Brunet et al., the 8 

PNET samples do not form a distinct tight class, but they distribute over the other four 

classes. The experimental results of PMD show that except for Brain_PNET_7, all the 

other 7 PNET samples are compound tumours, which may be a reasonable 

interpretation for why they can not form a distinct tight class. It can also be found that 

Figures 4, 5 Here 

Table 3 Here 
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AP and SC split the MGlio samples into 2 subclasses. In summary, the PMD can well 

explain the disagreement of clustering results by the other methods. 

 

 

We also performed the experiments with different values of 2  on this data set. The 

results are listed in Table 4. Except for a couple of samples, such as Brain_MD_12 

and Brain_MD_61, the results are consistent. 

 

3.1.3 SRBCT Cancer Data Set 

This data set has 63 samples with 2308 genes and 4 expression diagnosis patterns 

(Kahn et al., 2001). For this data set, Leone et al. reported that the best tuning-robust 

estimate of AP partitions this data set into 5 clusters, while making as many as 22 

errors [30].  

 

 

Tables 5 and S5 show the clustering results by different methods. Figure 6 shows 

the image of matrix TV  with k=5 and Figure 7 shows the changes of d with respect to 

the rank k ( 2 0.42 n  ). From Figure 7 we can see that, five subclasses should be 

reasonable for this data set, which is consistent with the result of AP [30]. The 

experimental results of PMD also show that many samples are compound tumors, 

which can well explain the disagreement of clustering results on some samples by the 

other methods. At the same time, the clustering results of some samples, e.g., the last 

one in Table 5, may not be reasonable. This implies that our method still has much 

room to be improved. 

 
Figures 6, 7 Here 

Table 4 Here 

Table 5 Here 
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The experimental results of PMD with different values of 2  are listed in Table 6. 

Similar to the first two experiments, except for a couple of samples, the results are 

consistent. 

 

3.2 Experiments on the Lymphoid Development Data Set 

In all multi-cellular organisms, somatic differentiated cells are developed from 

embryonic stem cells in the formation phase, and from adult tissue-specific stem cells 

in the adult phase. The study of triggers and molecular programs that drive cells 

through proliferation and differentiation stages is a key issue of developmental 

biology. In classical models of such processes, external or internal factors will initiate 

and drive differentiation stages in a non-reversible manner. Diagrams can be depicted 

to resemble genealogies of developmental stages, which are often called 

developmental trees [6]. Recently, the gene expression programs of developmental 

trees have been studied extensively using microarrays, which help to elucidate the 

underlying molecular processes [1, 4, 8, 13]. 

In this paper, our purpose is not to infer the developmental trees using the gene 

expression data of developmental stages. Since the gene expression pattern of 

conterminous developmental stages may be analogous, here we use PMD to discover 

the modules of conterminous developmental stages, which may be useful for 

developmental biology research potentially.  

 

 

Figure 8 Here 

Table 6 Here 
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Lymphoid development has been extensively studied. Many developmental stages 

are known, and there is a large amount of data available on distinct stages of 

development and in several cell lineages (Figure 8). In this paper, the lymphoid 

development data set contains four stages of early development hematopoietic cells [1] 

(hematopoietic stem cell (HSC), multipotent progenitor (MPP), common lymphoid 

progenitor (CLP) and common myeloid progenitor (CMP)); three B-cell lineage 

stages [21] (pro-B cells (Bpro), pre-B cells (Bpre) and immature B-cells (Bimm)); one 

natural killer (NK) stage [17]; and four T-cell lineage stages [26] (double negative T-

cells (TDN), cd4 T cells (TCD4), cd8 T-cells (TCD8) and natural killer T-cells 

(TNK)). The developmental tree describing the order of differentiation of the cells is 

shown in Figure 8. The final data set consists of 11 developmental stages and 3697 

genes (HSC was used as reference when pre-processing the data set). We got the data 

from [6], where the pre-processing procedures can also be found. 

In this experiment, we set 2 0.55 n   when applying PMD to the data set. The 

experimental results are given in Figures 9 and 10. From Figure 10 we can see that, 

there should be three clusters for this data set. Figure 9 shows the samples of the three 

clusters, which correspond to the three groups in Figure 8. From Figures 8 and 9 we 

see that each cluster corresponds to a branch of the development tree. Especially, 

stage 2 (CLP) is clustered into two groups since it is the crotch in the development 

tree. 

 

 

4. Conclusions and Discussions 

In this study, we proposed to use the penalized matrix decomposition (PMD) to 

extract metasamples from gene expression data. With the sparsity constrain on the 

Figures 9, 10 Here 
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decomposition factors, the extracted metasamples can well capture the intrinsic 

structures of the samples in the same class. Meanwhile, the PMD factors of each 

sample are good indicators of the class label of it. Compared with traditional methods, 

such as HC, SOM, AP, SC and NMF, the proposed method can identify the samples 

with complex classes. The experimental results on four representative data sets 

showed that the proposed method is able to effectively discover biological 

phenotypes, verifying that PMD is a powerful tool for gene expression data clustering.  

It should be mentioned that we found experimentally that d can be used to 

determine the number of clusters according to its changing tendency. When d falls 

significantly from k to k+1, this means that all the meaningful patterns can be 

extracted using k clusters. If d has a gradual decay from k to k+1, this implies that 

more than k meaningful patterns may exist in the dataset. This is the reason that why d 

can be used to determine the number of clusters according to its changing tendency. 

However, at present, we can not conclude in theory that d must be or must not be the 

indicative value. It needs more investigation in the future. Fortunately, there have 

been some similar works on the statistical significance of matrix eigenvalues 

[32,33,35], which may be useful to our future study. 

Although DNA microarray technology is a potential method for disease diagnosis, 

especially for gene related diseases, it can be found that for some samples, different 

methods may cluster them into different subclasses. Therefore, currently it is more 

appropriate to serve as an assistant technology. Interestingly, it can be found that the 

proposed PMD method provides a reasonable explanation on these inconsistent 

classifications by various methods such as HC, SOM, AP, SC and NMF, etc. It can 

find more than one subclasses contained in one sample. A challenging work in the 

future is how to provide a meaningful biological interpretation of the classes 
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discovered by PMD when the class labels and substructures of the data set are 

unknown. In addition, how to introduce the biological interpretation into the 

metasample calculation process is another problem that deserves further study.  

Finally, it should be noted that there is a dual view of decomposition ~ TX UDV , 

which defines metagenes (rows of V) and clusters the genes according to the entries of 

U. One can study the factor U for pathway enrichment analysis or other 

interpretations of biological significance. We do not focus on this view in this paper, 

but it is clearly of great interest. A good example of using factor models for 

interrogating biological pathways can be found in [39]. We will further study it in 

future. 
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Figures 

 

Figure 1. A rank-2 reduction of gene expression data using matrix factorization. 
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Figure 2. The image of matrix TV  extracted from the leukemia data set, which is used 
to cluster the samples. The 1st row of TV is the first factor 1v , the 2nd row of TV is 2v , 
and so on. 
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Figure 3. The value of d with respect to k. When k is changed from 4 to 5, there is a 
significant drop of the value of d. This suggests that 4 should be the number of 
clusters. 
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Figure 4. The image of matrix TV extracted from the central nervous system 
embryonal tumours data set, which is used to cluster the samples. The 1st row of TV is 
the first factor 1v , the 2nd row is 2v , and so on. 
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Figure 5. The value of d with respect to k. When k is changed from 5 to 6, there is a 
significant drop of the value of d. This suggests that 5 should be the number of 
clusters. 
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Figure 6. The image of matrix TV  extracted from the lymphoid development data set, 
which is used to cluster the samples. The 1st row of TV is the first factor 1v , the 2nd 
row is the 2v , and so on. 
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Figure 7. The value of d with respect to k. When k is changed from 5 to 6, there is a 
significant drop of the value of d. This suggests that 5 should be the number of 
clusters. 

 

 

Figure 8. The developmental tree with the stages contained in the Lymphoid data set. Three 
groups in dash ellipse are the clusters found by using PMD. The numbers of the 
developmental stages are as follows: 1for MPP, 2 for CLP, 3 for CMP, 4 for Bpro, 5 for Bpre, 
6 for Bimm, 7 for NK, 8 for TDN, 9 for TCD4, 10 for TCD8, and 11 for TNK.  
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Figure 9. The image of matrix TV  extracted from the lymphoid development data set, 
which is used to cluster the samples. The 1st row of TV is the first factor 1v , the 2nd 
row is the 2v , and so on. 
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Figure 10. The value of d with respect to k. When k is changed from 3 to 4, there is a 
significant drop of the value of d. This suggests that 3 should be the number of 
clusters. 
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Tables 

Table 1. Class assignment of the leukemia data set based on PMD(4 clusters). 

No.  Sample Label Cluster No.  Sample Label Cluster 
1 ALL_B 1,4 20 ALL_T 2 
2 ALL_B 1,4 21 ALL_T 2 
3 ALL_B 1,4 22 ALL_T 2 
4 ALL_B 4 23 ALL_T 2 
5 ALL_B 1,4 24 ALL_T 2 
6 ALL_B 2,3,4 25 ALL_T 2 
7 ALL_B 1 26 ALL_T 2 
8 ALL_B 1 27 ALL_T 2 
9 ALL_B 1 28 AML 3 
10 ALL_B 2,4 29 AML 4 
11 ALL_B 4 30 AML 3 
12 ALL_B 1 31 AML 3 
13 ALL_B 1 32 AML 4 
14 ALL_B 4 33 AML 2,3 
15 ALL_B 4 34 AML 3 
16 ALL_B 1 35 AML 3 
17 ALL_B 3,4 36 AML 2,3 
18 ALL_B 1 37 AML 2,3,4 
19 ALL_B 2,4 38 AML 3 

 

Table 2 Class assignment using PMD with different 2  (4 clusters). 

No.  
Sample 
label 

2 ( n ) No. 
Sample 
label 

2 ( n ) 

0.3 0.35 0.4 0.45 0.5 0.3 0.35 0.4 0.45 0.5 
1 ALL_B 1 1 1 1,4 1,4 20 ALL_T   2 2 2 
2 ALL_B 4 4 1,4 1,4 1,4 21 ALL_T  2 2 2 2 
3 ALL_B    1 1,4 22 ALL_T 2 2 2 2 2 
4 ALL_B 4 4 4 4 4 23 ALL_T 2 2 2 2 2 
5 ALL_B   4 4 1,4 24 ALL_T 2 2 2 2 2 
6 ALL_B  4 3,4 3 2,3,4 25 ALL_T 2 2 2 2 2 
7 ALL_B 1 1 1 1 1 26 ALL_T    2 2 
8 ALL_B  1 1 1 1 27 ALL_T 2  2 2 2 
9 ALL_B 1 1 1 1 1 28 AML   3 3 3 
10 ALL_B    4 2,4 29 AML  4 4 4 4 
11 ALL_B     4 30 AML 3 3 3 3 3 
12 ALL_B 1 1 1 1 1 31 AML 3 3 3 3 3 
13 ALL_B    1 1 32 AML     4 
14 ALL_B    4 4 33 AML  3 3 3 2,3 
15 ALL_B 4 4 4 4 4 34 AML     3 
16 ALL_B   1 1 1 35 AML 3 3 3 3 3 
17 ALL_B    4 3,4 36 AML   3 3 2,3 
18 ALL_B 1 1 1 1 1 37 AML  3 3 3 2,3,4
19 ALL_B 4 4 4 4 2,4 38 AML 3 3 3 3 3 
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Table 3. Class assignment of the central nervous system embryonal tumor data set 
(5 clusters). 

No. Sample Label Cluster No.  Sample Label Cluster 
1 Brain_MD 1,5 22 Brain_Rhab 3 
2 Brain_MD 1 23 Brain_Rhab 3,4 
3 Brain_MD 1 24 Brain_Rhab 3 
4 Brain_MD 1 25 Brain_Rhab 3 
5 Brain_MD 1 26 Brain_Rhab 5 
6 Brain_MD 1 27 Brain_Rhab 3 
7 Brain_MD 1 28 Brain_Rhab 3 
8 Brain_MD 4 29 Brain_Rhab 3 
9 Brain_MD 1,5 30 Brain_Rhab 5 
10 Brain_MD 1 31 Brain_Ncer 4 
11 Brain_MGlio 2 32 Brain_Ncer 4 
12 Brain_MGlio 2 33 Brain_Ncer 4 
13 Brain_MGlio 2 34 Brain_Ncer 4 
14 Brain_MGlio 2 35 Brain_PNET 1,4,5 
15 Brain_MGlio 2 36 Brain_PNET 3,4,5 
16 Brain_MGlio 2,4,5 37 Brain_PNET 4,5 
17 Brain_MGlio 2 38 Brain_PNET 4,5 
18 Brain_MGlio 3,5 39 Brain_PNET 4,5 
19 Brain_MGlio 2 40 Brain_PNET 1,4 
20 Brain_MGlio 2 41 Brain_PNET 4 
21 Brain_Rhab 3 42 Brain_PNET 2,5 

Table 4. Class assignment using PMD with different 2  (5 clusters). 

No. 
Sample  
label 

2 ( n ) No.
Sample  
label 

2 ( n ) 

0.3 0.35 0.4 0.45 0.3 0.35 0.4 0.45 
1 Brain_MD 3  1,3 1,5 22 Brain_Rhab  3 3 3 
2 Brain_MD 5 1 1 1 23 Brain_Rhab  3,5 3 3,4 
3 Brain_MD 1 1 1 1 24 Brain_Rhab  5 3 3 
4 Brain_MD 1 1 1 1 25 Brain_Rhab 3 3 3 3 
5 Brain_MD 1,5 1 1 1 26 Brain_Rhab   5 5 
6 Brain_MD 1 1 1 1 27 Brain_Rhab 3 3 3 3 
7 Brain_MD 5 5 1 1 28 Brain_Rhab 3 3 3 3 
8 Brain_MD  4 4 4 29 Brain_Rhab 3 3 3 3 
9 Brain_MD  5 1,5 1,5 30 Brain_Rhab    5 
10 Brain_MD 1 1 1 1 31 Brain_Ncer 4 4 4 4 
11 Brain_MGlio 2 2 2 2 32 Brain_Ncer 4 4 4 4 
12 Brain_MGlio 2  2 2 33 Brain_Ncer 4 4 4 4 
13 Brain_MGlio 2 2 2 2 34 Brain_Ncer 4 4 4 4 
14 Brain_MGlio 2 2 2 2 35 Brain_PNET 5 5 5 1,4,5 
15 Brain_MGlio  2 2 2 36 Brain_PNET  5 5 3,4,5 
16 Brain_MGlio   4,5 2,4,5 37 Brain_PNET   5 4,5 
17 Brain_MGlio  2,5 2 2 38 Brain_PNET   5 4,5 
18 Brain_MGlio  5 5 3,5 39 Brain_PNET 5 5 5 4,5 
19 Brain_MGlio 2 2 2 2 40 Brain_PNET 5 4 4 1,4 
20 Brain_MGlio 2 2 2 2 41 Brain_PNET  4 4 4 
21 Brain_Rhab 3 3 3 3 42 Brain_PNET  5 4,5 2,5 
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Table 5.  Class assignment of the SRBCT data set (5 clusters). 

No. Sample 
label 

Cluster No. Sample 
label 

Cluster No. Sample 
label 

Cluster 

1 EWS_T 2 22 EWS_C 5 43 NB_C 1 
2 EWS_T 2,5 23 EWS_C 5 44 RMS_C 4 
3 EWS_T 2 24 BL_C 3 45 RMS_C 2,4 
4 EWS_T 5 25 BL_C 3 46 RMS_C 4 
5 EWS_T 2 26 BL_C 3 47 RMS_C 2,4 
6 EWS_T 2 27 BL_C 3 48 RMS_C 1 
7 EWS_T 2 28 BL_C 3 49 RMS_C 4 
8 EWS_T 2 29 BL_C 3 50 RMS_C 1 
9 EWS_T 2 30 BL_C 3 51 RMS_C 5 
10 EWS_T 5 31 BL_C 3 52 RMS_C 1 
11 EWS_T 2 32 NB_C 3 53 RMS_C 4 
12 EWS_T 2 33 NB_C 3,5 54 RMS_T 4 
13 EWS_T 2 34 NB_C 3,5 55 RMS_T 4 
14 EWS_C 5 35 NB_C 1 56 RMS_T 4 
15 EWS_C 3,5 36 NB_C 1 57 RMS_T 4 
16 EWS_C 3,5 37 NB_C 1,5 58 RMS_T 4,5 
17 EWS_C 5 38 NB_C 1 59 RMS_T 2,4 
18 EWS_C 2,5 39 NB_C 1 60 RMS_T 4 
19 EWS_C 2,5 40 NB_C 1,5 61 RMS_T 4 
20 EWS_C 1 41 NB_C 1 62 RMS_T 4 
21 EWS_C 3,5 42 NB_C 1 63 RMS_T 5 

 



 - 32 - 

 

Table 6. Class assignment using PMD with different 2  (5 clusters). 

No. 
Sample 

label 
2 ( n ) No. 

Sample 
label 

2 ( n ) 

0.3 0.35 0.40 0.42 0.3 0.35 0.4 0.42 
1 EWS_T  2 2 2 33 NB_C  5 3,5 3,5 
2 EWS_T   2 2,5 34 NB_C  5 3,5 3,5 
3 EWS_T  2 2 2 35 NB_C 1 1 1 1 
4 EWS_T    5 36 NB_C 1 1 1 1 
5 EWS_T   2 2 37 NB_C  5 1,5 1,5 
6 EWS_T 2 2 2 2 38 NB_C 1 1 1 1 
7 EWS_T 2 2 2 2 39 NB_C  1 1 1 
8 EWS_T 2 2 2 2 40 NB_C  5 1,5 1,5 
9 EWS_T 2 2 2 2 41 NB_C 1 1 1 1 
10 EWS_T    5 42 NB_C 1 1 1 1 
11 EWS_T 2 2 2 2 43 NB_C 1 1 1 1 
12 EWS_T 2 2 2 2 44 RMS_C 4 4 4 4 
13 EWS_T 2 2 2 2 45 RMS_C 4 4 4 2,4 
14 EWS_C 5 5 5 5 46 RMS_C  4,5 5 4 
15 EWS_C  5 3 3,5 47 RMS_C 4 4 4 2,4 
16 EWS_C   3 3,5 48 RMS_C 4 1 1 1 
17 EWS_C   5 5 49 RMS_C  5 4,5 4 
18 EWS_C 5 5 2,5 2,5 50 RMS_C 4 1 1 1 
19 EWS_C 5 5 2,5 2,5 51 RMS_C   5 5 
20 EWS_C 5 1,5 1 1 52 RMS_C 1 1 1 1 
21 EWS_C  5 3,5 3,5 53 RMS_C  4 4 4 
22 EWS_C 5 5 5 5 54 RMS_T   4 4 
23 EWS_C 5 5 5 5 55 RMS_T 4 4 4 4 
24 BL_C  3 3 3 56 RMS_T   4 4 
25 BL_C 3 3 3 3 57 RMS_T 4 4 4 4 
26 BL_C 3 3 3 3 58 RMS_T    4,5 
27 BL_C 3 3 3 3 59 RMS_T 4 4 2,4 2,4 
28 BL_C 3 3 3 3 60 RMS_T   5 4 
29 BL_C 3 3 3 3 61 RMS_T  4 4 4 
30 BL_C 3 3 3 3 62 RMS_T 4 4 4 4 
31 BL_C 3 3 3 3 63 RMS_T    5 
32 NB_C  5 3 3       
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Supplemental Tables 

Table S1. Class assignment of the leukemia dataset(2 clusters). 

No.  Name of Samples HC SOM* AP SC NMF SNMF PMD 
1 ALL_19769_B-cell 1 1 1 1 1 1 1,4 
2 ALL_23953_B-cell 1 1 1 1 1 1 1,4 
3 ALL_28373_B-cell 1 1 1 1 1 1 1,4 
4 ALL_9335_B-cell 1 1 1 1 1 1 4 
5 ALL_9692_B-cell 1 1 1 1 1 1 1,4 
6 ALL_14749_B-cell 1 2 1 1 2 1 2,3,4 
7 ALL_17281_B-cell 1 1 1 1 1 1 1 
8 ALL_19183_B-cell 1 1 1 1 1 1 1 
9 ALL_20414_B-cell 1 1 1 1 1 1 1 
10 ALL_21302_B-cell 2 1 1 1 1 1 2,4 
11 ALL_549_B-cell 1 2 1 1 1 1 4 
12 ALL_17929_B-cell 1 1 1 1 1 1 1 
13 ALL_20185_B-cell 1 1 1 1 1 1 1 
14 ALL_11103_B-cell 1 1 1 1 1 1 4 
15 ALL_18239_B-cell 1 1 1 1 1 1 4 
16 ALL_5982_B-cell 1 1 1 1 1 1 1 
17 ALL_7092_B-cell 1 2 1 1 2 1 3,4 
18 ALL_R11_B-cell 1 1 1 1 1 1 1 
19 ALL_R23_B-cell 1 1 1 1 1 1 2,4 
20 ALL_16415_T-cell 2 2 2 2 1 1 2 
21 ALL_19881_T-cell 2 2 2 2 1 1 2 
22 ALL_9186_T-cell 2 2 2 2 1 1 2 
23 ALL_9723_T-cell 2 2 2 2 1 1 2 
24 ALL_17269_T-cell 2 2 2 2 1 1 2 
25 ALL_14402_T-cell 2 2 2 2 1 1 2 
26 ALL_17638_T-cell 2 2 2 2 1 1 2 
27 ALL_22474_T-cell 2 2 2 2 1 1 2 
28 AML_12 1 1 1 1 2 2 3 
29 AML_13 1 1 1 1 2 1 4 
30 AML_14 1 1 1 1 2 2 3 
31 AML_16 1 1 1 1 2 2 3 
32 AML_20 1 1 1 1 2 2 4 
33 AML_1 1 1 1 1 2 2 2,3 
34 AML_2 1 1 1 1 2 2 3 
35 AML_3 1 1 1 1 2 2 3 
36 AML_5 1 1 1 1 2 2 2,3 
37 AML_6 1 1 1 1 2 2 2,3,4 
38 AML_7 1 1 1 1 2 2 3 

*The result of SOM is not stable. It depends on the initial conditions. 
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Table S2. Class assignment of the leukemia dataset (3 clusters). 

No.  Name of Samples HC SOM AP SC NMF SNMF PMD 
1 ALL_19769_B-cell 1 1 1 1 1 1 1,4 
2 ALL_23953_B-cell 1 1 1 1 1 1 1,4 
3 ALL_28373_B-cell 1 1 1 1 1 1 1,4 
4 ALL_9335_B-cell 1 1 1 1 1 1 4 
5 ALL_9692_B-cell 1 1 1 1 1 1 1,4 
6 ALL_14749_B-cell 3 3 3 3 3 1 2,3,4 
7 ALL_17281_B-cell 1 1 1 1 1 1 1 
8 ALL_19183_B-cell 1 1 1 1 1 1 1 
9 ALL_20414_B-cell 1 1 1 1 1 1 1 
10 ALL_21302_B-cell 2 2 1 1 2 1 2,4 
11 ALL_549_B-cell 1 1 1 1 1 1 4 
12 ALL_17929_B-cell 1 1 1 1 1 1 1 
13 ALL_20185_B-cell 1 1 1 1 1 1 1 
14 ALL_11103_B-cell 1 1 1 1 1 1 4 
15 ALL_18239_B-cell 1 1 1 1 1 1 4 
16 ALL_5982_B-cell 1 1 1 1 1 1 1 
17 ALL_7092_B-cell 3 3 3 3 1 1 3,4 
18 ALL_R11_B-cell 1 1 1 1 1 1 1 
19 ALL_R23_B-cell 1 1 1 1 1 1 2,4 
20 ALL_16415_T-cell 3 2 3 2 2 2 2 
21 ALL_19881_T-cell 2 2 2 2 2 2 2 
22 ALL_9186_T-cell 2 2 2 2 2 2 2 
23 ALL_9723_T-cell 2 2 2 2 2 2 2 
24 ALL_17269_T-cell 2 2 2 2 2 2 2 
25 ALL_14402_T-cell 2 2 2 2 2 2 2 
26 ALL_17638_T-cell 2 2 2 2 2 2 2 
27 ALL_22474_T-cell 2 2 2 2 2 2 2 
28 AML_12 3 3 3 3 3 3 3 
29 AML_13 1 2 3 1 3 1 4 
30 AML_14 3 3 3 3 3 3 3 
31 AML_16 3 3 3 3 3 3 3 
32 AML_20 1 3 3 3 3 3 4 
33 AML_1 3 3 3 3 3 3 2,3 
34 AML_2 3 3 3 3 3 3 3 
35 AML_3 3 3 3 3 3 3 3 
36 AML_5 3 3 3 3 3 3 2,3 
37 AML_6 1 3 3 3 3 3 2,3,4 
38 AML_7 3 3 3 3 3 3 3 
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Table S3. Class assignment of the leukemia dataset (4 clusters). 

No.  Name of Samples HC SOM AP SC NMF SNMF PMD 
1 ALL_19769_B-cell 1 1 1 4 1 1 1,4 
2 ALL_23953_B-cell 1 1 4 4 4 1 1,4 
3 ALL_28373_B-cell 1 1 4 1 1 1 1,4 
4 ALL_9335_B-cell 1 4 4 4 4 4 4 
5 ALL_9692_B-cell 1 1 1 4 4 4 1,4 
6 ALL_14749_B-cell 1 4 3 4 4 4 2,3,4 
7 ALL_17281_B-cell 1 1 1 1 1 1 1 
8 ALL_19183_B-cell 1 1 1 1 1 1 1 
9 ALL_20414_B-cell 1 1 1 1 1 1 1 
10 ALL_21302_B-cell 2 4 4 1 2 2 2,4 
11 ALL_549_B-cell 4 1 1 1 1 1 4 
12 ALL_17929_B-cell 1 1 1 1 1 1 1 
13 ALL_20185_B-cell 1 1 1 1 1 1 1 
14 ALL_11103_B-cell 1 4 1 1 1 1 4 
15 ALL_18239_B-cell 1 4 4 4 4 4 4 
16 ALL_5982_B-cell 1 1 4 1 1 1 1 
17 ALL_7092_B-cell 1 4 3 3 1 1 3,4 
18 ALL_R11_B-cell 1 4 1 4 1 1 1 
19 ALL_R23_B-cell 1 4 4 4 4 4 2,4 
20 ALL_16415_T-cell 2 2 3 2 2 2 2 
21 ALL_19881_T-cell 2 2 2 2 2 2 2 
22 ALL_9186_T-cell 2 2 2 2 2 2 2 
23 ALL_9723_T-cell 2 2 2 2 2 2 2 
24 ALL_17269_T-cell 2 2 2 2 2 2 2 
25 ALL_14402_T-cell 2 2 2 2 2 2 2 
26 ALL_17638_T-cell 2 2 2 2 2 2 2 
27 ALL_22474_T-cell 2 2 2 2 2 2 2 
28 AML_12 3 3 3 3 3 3 3 
29 AML_13 1 4 4 4 4 4 4 
30 AML_14 3 3 3 3 3 3 3 
31 AML_16 3 3 3 3 3 3 3 
32 AML_20 3 3 3 3 3 3 4 
33 AML_1 1 4 3 3 3 3 2,3 
34 AML_2 3 3 3 3 3 3 3 
35 AML_3 3 3 3 3 3 3 3 
36 AML_5 3 4 4 3 3 3 2,3 
37 AML_6 1 4 3 3 3 3 2,3,4 
38 AML_7 3 3 3 3 3 3 3 
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Table S4. Class assignment of the central nervous system embryonal tumor 
dataset (5 clusters). 

No. Name of Samples HC SOM AP SC NMF SNMF PMD 
1 Brain_MD_12 1 5 3 1 1 1 1,5 
2 Brain_MD_61 1 1 1 1 1 1 1 
3 Brain_MD_15 1 1 1 1 1 1 1 
4 Brain_MD_57 1 1 1 1 1 1 1 
5 Brain_MD_33 1 1 1 1 1 1 1 
6 Brain_MD_64 1 1 1 1 1 1 1 
7 Brain_MD_17 1 1 1 1 1 1 1 
8 Brain_MD_62 1 1 4 1 1 1 4 
9 Brain_MD_63 1 5 1 1 1 1 1,5 
10 Brain_MD_32 1 1 1 1 1 1 1 
11 Brain_MGlio_1 2 2 2 2 2 2 2 
12 Brain_MGlio_2 2 2 2 2 2 2 2 
13 Brain_MGlio_3 2 2 2 2 2 2 2 
14 Brain_MGlio_4 2 2 2 2 2 2 2 
15 Brain_MGlio_5 2 2 5 5 2 2 2 
16 Brain_MGlio_6 2 2 5 5 2 2 2,4,5 
17 Brain_MGlio_7 2 2 5 5 2 2 2 
18 Brain_MGlio_8 3 3 5 5 5 3 3,5 
19 Brain_MGlio_9 2 2 2 2 2 2 2 
20 Brain_MGlio_10 2 2 2 2 2 2 2 
21 Brain_Rhab_1 3 3 3 3 3 3 3 
22 Brain_Rhab_2 3 3 3 3 3 3 3 
23 Brain_Rhab_3 3 3 3 3 3 3 3,4 
24 Brain_Rhab_4 3 3 3 3 3 3 3 
25 Brain_Rhab_5 3 3 3 3 3 3 3 
26 Brain_Rhab_6 3 3 3 3 5 5 5 
27 Brain_Rhab_7 3 3 3 3 3 3 3 
28 Brain_Rhab_8 3 3 3 3 3 3 3 
29 Brain_Rhab_9 3 3 3 3 3 3 3 
30 Brain_Rhab_10 5 5 3 3 5 5 5 
31 Brain_Ncer_1 4 4 4 4 4 4 4 
32 Brain_Ncer_2 4 4 4 4 4 4 4 
33 Brain_Ncer_3 4 4 4 4 4 4 4 
34 Brain_Ncer_4 4 4 4 4 4 4 4 
35 Brain_PNET_1 1 5 1 1 1 1 1,4,5 
36 Brain_PNET_2 3 3 3 5 5 5 3,4,5 
37 Brain_PNET_3 2 2 5 5 2 5 4,5 
38 Brain_PNET_4 2 2 5 5 2 3 4,5 
39 Brain_PNET_5 1 5 1 1 1 5 4,5 
40 Brain_PNET_6 1 1 1 1 1 1 1,4 
41 Brain_PNET_7 4 4 4 4 4 4 4 
42 Brain_PNET_8 2 2 5 5 2 2 2,5 
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Table S5. Class assignment of the SRBCT dataset (5 clusters). 

No. Name of Samples HC SOM AP SC NMF SNMF PMD 
1 EWS-T1 2 2 2 4 2 5 2 
2 EWS-T2 2 2 3 4 5 5 2,5 
3 EWS-T3 2 2 2 2 2 2 2 
4 EWS-T4 5 3 2 4 5 5 5 
5 EWS-T6 2 2 2 2 2 2 2 
6 EWS-T7 2 2 2 2 2 2 2 
7 EWS-T9 2 2 2 2 2 2 2 
8 EWS-T11 2 2 2 2 2 2 2 
9 EWS-T12 2 2 2 2 2 2 2 
10 EWS-T13 4 4 4 2 4 2 5 
11 EWS-T14 2 2 2 2 2 2 2 
12 EWS-T15 2 2 2 2 2 2 2 
13 EWS-T19 2 2 2 2 2 2 2 
14 EWS-C1 1 5 5 5 1 1 5 
15 EWS-C2 3 2 3 3 5 5 3,5 
16 EWS-C3 3 2 3 3 5 5 3,5 
17 EWS-C4 3 2 3 4 5 5 5 
18 EWS-C6 1 5 5 5 1 1 2,5 
19 EWS-C7 1 5 5 5 1 1 2,5 
20 EWS-C8 1 5 5 5 1 1 1 
21 EWS-C9 3 2 3 4 5 5 3,5 
22 EWS-C10 1 5 5 5 1 1 5 
23 EWS-C11 1 5 5 5 1 1 5 
24 BL-C1 1 1 3 3 3 3 3 
25 BL-C2 1 1 3 3 3 3 3 
26 BL-C3 1 1 3 3 3 3 3 
27 BL-C4 1 1 3 3 3 3 3 
28 BL-C5 1 1 3 3 3 3 3 
29 BL-C6 1 1 3 3 3 3 3 
30 BL-C7 1 1 3 3 3 3 3 
31 BL-C8 1 1 3 3 3 3 3 
32 NB-C1 1 1 1 3 5 5 3 
33 NB-C2 1 1 1 1 5 5 3,5 
34 NB-C3 1 1 1 1 5 5 3,5 
35 NB-C4 1 1 1 1 1 1 1 
36 NB-C5 1 1 1 1 1 1 1 
37 NB-C6 1 1 1 1 1 1 1,5 
38 NB-C7 1 1 1 1 1 1 1 
39 NB-C8 1 1 1 1 1 1 1 
40 NB-C9 1 1 1 1 1 1 1,5 
41 NB-C10 1 1 1 1 1 1 1 
42 NB-C11 1 1 1 1 1 1 1 
43 NB-C12 1 1 1 1 1 1 1 
44 RMS-C2 1 5 4 1 4 4 4 
45 RMS-C3 1 5 1 1 4 4 2,4 
46 RMS-C4 1 5 1 1 1 1 4 
47 RMS-C5 1 5 1 1 1 1 2,4 
48 RMS-C6 1 1 1 1 1 1 1 
49 RMS-C7 1 1 1 1 1 1 4 
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50 RMS-C8 1 1 1 1 1 1 1 
51 RMS-C9 3 3 3 4 5 5 5 
52 RMS-C10 1 1 1 1 1 1 1 
53 RMS-C11 3 3 4 4 5 5 4 
54 RMS-T1 3 3 3 4 5 5 4 
55 RMS-T2 4 4 4 4 4 4 4 
56 RMS-T3 3 3 3 4 5 5 4 
57 RMS-T4 4 4 4 4 4 4 4 
58 RMS-T5 4 4 4 2 4 4 4,5 
59 RMS-T6 4 4 4 4 4 4 2,4 
60 RMS-T7 4 4 4 4 4 4 4 
61 RMS-T8 3 3 4 4 5 5 4 
62 RMS-T10 4 4 4 4 4 4 4 
63 RMS-T11 4 4 4 4 4 4 5 

 


