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The Discrete Kalman Filtering of a Class of Dynamic
Multiscale Systems

Lei Zhang, Quan Pan, Paul Bao, and Hongcai Zhang

Abstract—This paper discusses the optimal estimation of a class
of dynamic multiscale systems (DMS), which are observed by sev-
eral sensors at different scales. The resolution and sampling fre-
quencies of the sensors are supposed to decrease by a factor of two.
By using the Haar wavelet transform to link the state nodes at each
of the scales within a time block, we generalize the DMS into the
standard state-space model, for which the Kalman filtering can be
employed as the optimal estimation algorithm. The stochastic con-
trollability and observability of time invariant DMS are analyzed
and the stability of the Kalman filter is then discussed. Despite that
the DMS model maybe become incompletely controllable and ob-
servable, it is proved that as long as the DMS is completely con-
trollable and observable at the finest scale, the associated Kalman
filter will be asymptotically stable. The scheme is illustrated with
a two-scale Markov process.

Index Terms—Dynamic multiscale system (DMS), Kalman fil-
tering, optimal estimation, wavelet transform.

I. INTRODUCTION

I N THE LAST two decades, the multiscale autoregressive
(MAR) framework [1]–[6] was developed to model a

variety of random processes compactly and estimate them
efficiently. The MAR was first motivated by Bassevilleet al.
[1], and based on their works Chouet al. [2], [3] proposed the
multiscale stochastic models and optimal estimation algorithms
for a rich class of processes whitened by wavelet transforms
(WT) [9]–[13]. Luettgen [5] and Frakt [6] contributed a lot to
the stochastic realization of the MAR. MAR estimates the sta-
tionary processes from numerous measurements by multiscale
techniques, which aim at saving much computation compared
with the traditional linear minimum mean-square-error estima-
tion (LMMSE).

In this paper, we aim at obtaining the real-time optimal esti-
mation of a class of dynamic multiscale systems (DMS), which
are observed by sensors independently with different resolu-
tion. Then sets of measurements are obtained. Since the ob-
served target is the same, the measurements of the different sen-
sors are correlated and they can be fused to estimate the state of
the DMS optimally.
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Order the sensors by their resolution from 1 toand sup-
pose sensor 1 is of the highest resolution. We have the following
equations to characterize the system:

(1-1)

(1-2)

where is the state vector to be estimated and
is its measurement. denotes the sampling time at scale

. , , and are the system, input and measure-
ment matrices. and are individually independent.
They are Gaussian white processes with zero mean and covari-
ance matrices and , respectively. State belongs
to a subspace of . It is determined by the resolution of sensor
. For the mentioned DMS, the well-known Kalman filtering

[15], [16] could not be employed directly as the LMMSE algo-
rithm.

An important case of the DMS is when the sampling frequen-
cies of the sensors decrease by a factor of two from 1 to. Fig. 1
illustrates the tree structure of the state nodes for such a DMS.
In each time block , there are 2 state nodes at scale 1,
2 nodes at scale 2, …, and sequentially only 1 node at scale

. The real-time optimal estimation of the state nodes should
exploit all the measurements at each scale up to time .

Hong [7] presented a multiresolution-filtering scheme for
such DMSs. WT is used to link the state nodes at different
scales. See Fig. 2, node is the low-pass output of
and the lost detail information is preserved in wavelet coeffi-
cient . Hong first estimated with the measurements
at scale 1 within , then he wavelet decomposed the esti-
mation to scale as the prediction of . The updating
was performed at each scale by the local measurements. At
last, the local updated estimations were inversely transformed
to scale 1 and fused together. It should be noted that in Hong’s
algorithm, the updating is imposed only on but not on

, which is correlated with state and measurement
. should also be updated and it would make con-

tributions to the estimation of through the inverse WT.
It can be seen that Hong’s multiresolution-filtering is not an
optimal estimation.

In [8], Hong et al. developed a multiscale Kalman filtering
technique for standard state-space model, which is a special
case of the DMS when only one sensor is working. Honget al.
decomposed the random signal at several scales and reformed
the state-space model by state augmentation. The Kalman fil-
tering of the new model is declared to yields better results than
the standard Kalman filtering. But it should be noticed that the
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Fig. 1. Tree structure of the DMS state nodes within a time block.

Fig. 2. Implementation of the wavelet transforms to the DMS state nodes. The
downward arrows denote the subsampling and the upward arrows denote the
upsampling.F andF are the analytic wavelet filters whileF andF being
the synthetic wavelet filters.

comparison is unfair. The Kalman filtering of the new model
uses some measurements after timeto estimate the state . If
we perform the associated Kalman smoothing with the standard
state-space model, the same results will be gotten with much
less computation than Hong’s scheme.

In this paper, an optimal estimation algorithm for the men-
tioned DMS is presented. We employ Haar wavelet transform
to represent the state projection across scales within a time
block and generalize the DMS into the standard state-space
model. Then the classical Kalman filtering would naturally
be the LMMSE algorithm. The stochastic controllability and
observability of the DMS and the stability of its associated
Kalman filter are discussed in the time invariant case.

Section II focuses on the modeling of the DMS by Haar
wavelet transform. The stochastic controllability and observ-
ability of time invariant DMS is analyzed in Section III and
the stability of the Kalman filter is discussed in Section IV.
Section V presents some illustrative examples and Section VI
is the discussion and conclusion.

II. DMS MODELING

Refer toFig.1,supposestatevector and
is a closed subspace sequence. Ifis the linear projec-

tion of from space to , where
is the linear projection operator, we have

(2-1)

where , and
is the identity operator.

We want to implement the state space projection from the
finest scale to other scales within a time block . The
Haar wavelet whose lowpass filter has only two taps is a natural
choice to approximate the linear state projection. Refer to Fig. 1,
recursively there is

(2-2)

where 2 2 2 . At the
coarsest scale, the node is the linear combination of all
the nodes at scale 1 within time block . Define (2-3)–(2-4)
at the bottom of the page where 2 and

is the identity matrix. We have

(2-5)

From (1-2) there is

(2-6)

(2-3)

(2-4)
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Denote

(2-7)

...
(2-8)

(2-9)

We have

(2-10)

where the covariance of is shown in (2-11) at the bottom
of the page. Denote

(2-12)

(2-13)

(2-14)

Thus

(2-15)

and the covariance of is

(2-16)

Then (2-15) is the measurement equation of the DMS. The as-
sociated state-transition equation should be derived to complete
the modeling. In time block , recursively by (1-1)
shown in (2-17) at the bottom of the page. Denote (2-18)–(2-20)
at the bottom of the page. Equation (2-17) can be rewritten as

(2-21)

Let

...
...

...
...

...
(2-22)

Then the state-transition equation of the DMS is

(2-23)

where is a Gaussian white process uncorrelated with
and its covariance matrix is shown in (2-24) at the bottom of the
next page.

(2-11)

(2-17)

(2-18)

(2-19)

...

...

(2-20)
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Equations (2-23) and (2-15) make up the state-space model
of the DMS

(2-25)

Obviously, the model meets the requirements of the standard
Kalman filtering, which is then the LMMSE estimation algo-
rithm of the DMS. Denote by the Kalman filtering result
of model (2-25). consists of the LMMSE of those nodes at
the finest scale. The LMMSE of the nodes at coarser scales can
be directly obtained from . We have the following theorem.

Theorem 2-1:Suppose is the LMMSE of , then the
LMMSE of node 2 is .

Proof: Denote . Since
and are jointly Gaussian distributed, the LMMSE of
conditioned on can be represented as

(2-26)

where is a matrix and is a vector. Denote by
the estimation error. Since LMMSE is unbiased [15, p. 94,

theorem 2.3] and according to the orthogonal projection the-
orem [15, p. 95, theorem 2.5], there are

and (2-27)

Let 2 , it is easy to obtain

(2-28)

So, from (2-27) we have

(2-29)

(2-30)

Thus, according to the orthogonal projection theorem, the
LMMSE of 2 is

(2-31)

In fact 2 where
and . End of proof.

III. STOCHASTIC CONTROLLABILITY AND OBSERVABILITY OF

TIME INVARIANT DMS

The matrices , , and in model (2-25) contain
many zero elements. In general, the stochastic controllability
and observability of the DMS model would be lost. Here we dis-
cussed them for the time invariant DMS, where matrices ,

, and are constant and the covariance matrices of
and are constants and . The model of the time

invariant DMS is

(3-1)

with

...
...

...
...

...
...

. . .
...

(3-2)

The covariance matrices of and are constants and
.

A. Stochastic Controllability

Since is positive, there exists a matrix such that
. So we have , where

. Let , the con-
trollability matrix of pair ( ) is

(3-3)

where 2 . Pair ( ) is completely controllable
if and only if [16].

Theorem 3-1:Suppose at the finest scale pair ( ) is com-
pletely controllable, where . Then pair is
completely controllable if and only if matrix is of full row
rank.

Proof: From the special structure ofwe have (3-4) at the
bottom of the page. It is well-known that ( ) is completely

(2-24)

...
...

.. .
...

(3-4)
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controllable if and only if is of full row rank. Let

...
...

. . .
...

(3-5)

Obviously, is nonsingular. Transforming by shown in
(3-6) at the bottom of the page. Since pair ( ) is completely
controllable, its controllability matrix [ ]
is of full row rank. So, must have full row rank. and
are linearly independent in row. It can be observed thatis of
full row rank if and only if has full row rank. Because
is nonsingular, it is equivalent that is of full row rank. End of
proof.

B. Stochastic Observability

Since is positive, pair ( , ) is completely observable if
and only if its observability matrix

(3-7)

is of full column rank [16]. We have the fol-
lowing theorem.

Theorem 3-2:Suppose at the finest scale pair ( ) is com-
pletely observable, and then pair ( ) is completely observ-
able if and only if

rank

rank
(3-8)

Proof: Denote , where
2 2 .

We have . Denote

, there will be

...
...

(3-9)

Pair ( ) is completely observable if and only if is of full
column rank. Since ( ) is completely observable, its ob-
servability matrix has full

column rank. Each row of the matrix is included in , so
is of full column rank if and only if has full column rank.

If , and it has full column

rank when . If , has

2 columns in total. Divide it into (2 )
blocks from left to right and each block has columns.
Subtract the first block from the second block, and with
some linear row transforming, the second block will be

. To make
be of full rank, must has full column rank. Since each block
of contains a unit and those ’s are not overlapped in
row, has full column rank if and only if .
End of proof.

IV. STABILITY OF THE KALMAN FILTER

Although pair ( ) would be incompletely controllable
and observable in general, it will be shown that as long as at the
finest scale ( ) is completely controllable and observ-
able, the Kalman filter of pair ( ) will be asymptotically
stable. Let us review a lemma and two definitions first [15].

Lemma 4-1: Suppose time invariant linear system is

(4-1)

where is Gaussian white process with zero mean and co-
variance . If pair ( ) is completely detectable and pair
( ) is completely stabilizable for any with

, then the system’s Kalman filter is asymptotically stable.
Definition 4-1: Pair ( ) is completely stabilizable if there

exists a nonsingular matrix such that

(4-2)

with ( ) is completely controllable and .
Definition 5-2: Pair ( ) is completely detectable if there

exists a nonsingular matrix such that

(4-3)

with ( ) is completely observable and .
Based on the above lemma and definitions, we have the fol-

lowing theorem.
Theorem 4-1: If pair ( ) is completely controllable

and observable, then the Kalman filter of pair ( ) is
asymptotically stable.

...
...

. . .
...

...
. . .

...
...

...
. . .

...
(3-6)
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Proof:
( ) is Completely Stabilizable:For -dimensional

pair ( ), there exists nonsingular matrix such that
with having full row rank, where

controllability matrix . Then
with being completely control-

lable and being uncontrollable [16]. This gives a way to
find . It has been shown in the proof of theorem 3-1 that

, where has full row rank and
linearly independent with in row. So

...
...

...
...

...

(4-4)

There exists a nonsingular matrix such that

(4-5)
where is of full row rank. Then has full rank due to

and being linearly independent in row. Now we have

(4-6)

is the canonical controllable decomposition of. The
subsystem matrix of the controllable elements is and that
of the uncontrollable elements is, whose eigenvalues are all
zeros. According to the definition 4-1, ( ) is completely
stabilizable.

( ) is Completely Detectable:For -dimensional
pair ( ), there exists nonsingular matrix such that

with being of full column rank,
where observability matrix .
Then , where being completely observ-
able and being unobservable. This gives a way to find. In
the proof of theorem 3-2 we have

(4-7)

where has full rank and independent with in column.
There exists nonsingular matrix such that

(4-8)

where has full column rank. Thus

(4-9)

Permute in column as ,

then

(4-10)

is the canonical observable decomposition of. The sub-
system matrix of the observable elements is and that of the
unobservable elements is, whose eigenvalues are all zeros.
According to definition 4-2, ( ) is completely detectable.

Now that ( ) is completely detectable and stabiliz-
able. According to the lemma 4-1, the corresponding Kalman
filter will be asymptotically stable. End of Proof.

V. EXAMPLES

We take scalar Markov processes as illustrative examples,
whose system equation at the finest scale is

(5-1)

where is Gaussian white noise with zero mean and vari-
ance . Suppose the DMS has two scales. We discuss it in
two cases. One is that the measurements are available only at the
finest scale and the other is that the measurements are available
at both the scales.

A. Measurements are Available Only at the Finest Scale

Suppose that only the measurements at scale 1 are available,
i.e.

(5-2)

where is Gaussian white noise with zero-mean and vari-
ance . It is individually uncorrelated with . Naturally the
standard Kalman filtering could be employed to obtain the real
time LMMSE of . Now we assume that the system has
two scales but there is no measurement at the second scale. Ac-
cording to Section II, the elements of the time invariant DMS
model (3-1) are
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Fig. 3. True-state sequencex (k ) (solid) and its measurementz (k )
(dotted).

Fig. 4. Measurement noisev (k ) (solid) and estimation error~x (k )
(dotted). The noise compression ratio isc = 1.47. (No Measurements
available at the second scale.)

Actually, in this case the Kalman filtering of model (3-1)
is equivalent to the “half Kalman filtering + half Kalman
smoothing” of pair ( ), the subsystem at scale 1. That is
to say, once the Kalman filtering of and
is finished, the filtering result of is then smoothed by
measurement . The following experiments validate
this observation.

Let 0.94, 1, 1, and 1.69. Fig. 3 shows a
sequence of true state and its measurement . The
estimation result of by the presented scheme is denoted
as . Fig. 4 compares the measurement noise with
the estimation error . The noise com-
pression ratio , which is defined as the ratio of the norm of
to that of , is 1.47. Fig. 5 plots the “half Kalman filtering + half
Kalman smoothing” result of pair ( ) as well as .
Obviously the two curves are the same.

Fig. 5. Estimation̂x (k ) by the proposed scheme and the estimation by the
“half Kalman filtering + half Kalman smoothing” processing. The two curves
are overlapped because they are the same.

B. Measurements are Available at Both the Scales

Now suppose the measurements are also available at the
second scale, i.e.

(5-3)

where Gaussian white noise is with zero-mean and vari-
ances . It is uncorrelated with and . Now in model
(3-1), there are

Let 1 and 1.44. Fig. 6 shows the true-state se-
quence and its measurement . is taken as
the lowpass output of ’s Haar wavelet transform. Its es-
timation by the presented scheme is denoted as . Fig. 7
compares with . The noise compression ratio
is 1.85. It is higher than that in the last section because the mea-
surements at the second scale improve the estimation accuracy.
Fig. 8 compares noise with estimation error

. The noise compression ratio is 1.50.

VI. CONCLUSION AND DISCUSSION

The modeling and optimal estimation of a class of DMSs that
observed independently by several sensors at different scales,
to which the traditional Kalman filtering could not be applied
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Fig. 6. True-state sequencex (k ) (solid) and its measurementz (k )
(dotted).

Fig. 7. Measurement noisev (k ) (solid) and estimation error~x (k )
(dotted). The noise compression ratio isc = 1.85. (Measurements are
available at both the scales.)

directly, were proposed here. Using Haar wavelet transform
to approximate the state projection between scales, we gener-
alized the DMS into the standard state-space model and then
the Kalman filtering is employed as the LMMSE algorithm.
In the time invariant case, we prove that as long as the DMS
is stochastically completely controllable and observable at the
finest scale, its associated Kalman filter will be asymptotically
stable. Examples were presented with a two-scale Markov
process to illustrate the proposed scheme and its relationship
with the traditional Kalman filtering and smoothing.

The computation will increase rapidly with the increasing
of scale number . If the dimension of state is , the di-
mension of augmented state vectorwill be 2 . Suppose
the dimension of measurement matrix is , and then
the dimension of measurement matrixwill be 2 ,
where 2 . A matrix inverse operation of di-

Fig. 8. Measurement noisev (k ) (solid) and estimation error~x (k )
(dotted). The noise compression ratio isc = 1.50. (Measurements are
available at both the scales.)

mension will occur when calculating the gain matrix
in Kalman filtering [14], [15], which needs very heavy com-

putation .
Fortunately, a fast algorithm of the DMS estimation was pro-

posed by Zhang [17]. With observation that the measurements
are independent of each other inter-scale and intra-scale,

Zhang employed the sequential Kalman filtering of , i.e.,
in each time block , the estimation of is updated by
measurement one by one. So the inverse computation of

matrix is replaced by the inverse of those small ma-
trices . Furthermore, Zhang pointed out that the com-
putation could still be reduced much at the finest scale because
the associated state transition (1-1) is available for this scale.
The sequential Kalman filtering with all the measurements at
scale 1 is equivalent to the fixed-interval Kalman smoothing of
the subsystem at scale 1. Thus, for the 2measurements at
scale 1 (about half number of the 2 measurements within
a time block), the 2 dimensional DMS is reduced to the

dimensional dynamic system.
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