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Abstract

In 3D reconstruction, the obtained surface details are
mainly limited to the visual sensor due to sampling and
quantization in the digitalization process. How to get a
fine-grained 3D surface with low-cost is still a challeng-
ing obstacle in terms of experience, equipment and easy-
to-obtain. This work introduces a novel framework for en-
hancing surfaces reconstructed from normal map, where the
assumptions on hardware (e.g., photometric stereo setup)
and reflection model (e.g., Lambertion reflection) are not
necessarily needed. We propose to use a new measure, an-
gle profile, to infer the hidden micro-structure from exist-
ing surfaces. In addition, the inferred results are further
improved in the domain of discrete geometry processing
(DGP) which is able to achieve a stable surface structure
under a selectable enhancement setting. Extensive simu-
lation results show that the proposed method obtains sig-
nificantly improvements over uniform sharpening method
in terms of both subjective visual assessment and objective
quality metric.

1. Introduction
In 3D reconstruction, the surface details are mainly lim-

ited to visual sensors of digital equipment. Specifically,
micro-structure of surface is degraded by sampling and
quantization in the digitalization process. Consequently,
although many dense-based 3D reconstruction techniques
(i.e., photometric stereo [5, 16] and structured light [11]) are
used to perform the reconstruction on a pixel-by-pixel basis,
the reconstructed surface quality is still affected by the input
data, not to mention other sparse-based 3D reconstruction
algorithms (i.e., depth camera [8], stereo/multi-view stereo
vision [12, 14]). However, as the trend of 3D reconstruction
in industry is more inclined to use low-cost technology, how
to improve the surface quality from existing depth data is a
challenging but meaningful research topic.
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Unlike shape information, the texture pattern of 3D ob-
ject cannot be directly represented by the depth values, but
can be reflected by the distribution of the pixel gray-scale
values observed on the object appearance. How to obtain
these gray-scale values from the depth map needs to em-
ploy the reflection model which defines the relationship be-
tween the observed pixel value and the normal vector un-
der a given lighting condition [24]. Reflection model is
the backbone of the most-recent works on the surface en-
hancement, and these works can be divided into two cat-
egories according to their applications: 1) shade rendering
[10, 17, 23] in computer graphics, and 2) photometric stereo
(PS) [21, 22] based surface texture enhancement. In shade
rendering, a complex reflection model is usually employed,
where the captured pixel is rendered by adjusting the light-
ing direction. Note that these methods do not really change
the surface geometry structure, but make varying lighting
conditions such that the observed object appearance seems
to have richer details.

PS-based enhancement methods utilize one camera to
capture a set of images under different lighting conditions,
and the high-resolution normal map can be reconstructed
from the raw data according to the Lambertian reflection
[24]. However, PS-based methods change the surface ge-
ometry structure in a live capture way. Tan et al. [22]
proposed to improve the surface micro-structure by photo-
metric stereo, where the lighting direction within one pixel
is estimated by the Gaussian mixture model (GMM). Li et
al. [15] proposed to refine the surface by multi-view stereo
where triangular meshing of surface is a necessary condi-
tion. Authors in [18, 13, 1, 9] used the normal map to
repair the scanned sparse depth map as well as to recover
the surface details. Significantly, all these methods rely on
the related hardware which will cause two limitations: 1)
it cannot enhance 3D surface from existing depth data; 2)
it is strongly dependent on a reflection model. As a result,
they are not satisfied for general 3D surface enhancement,
which is expected to perform on existing depth or normal
map without taking assumption on any reflection models.

In this paper, we present an efficient surface enhance-
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Figure 1: Enhanced 3D surface results: the left is a 3D surface of the Scolar normal map from Harvard dataset [26]; the right is our directly
enhanced result of the same resolution as inputs.

ment framework which can adaptively select parameters to
amplify the current normal angle based on its texture den-
sity. We summarize our main contributions as three aspects:
1) the proposed method is independent of hardware, reflec-
tion model, or training dataset. Given a normal map as in-
put, our method generates a 3D surface with enhanced ap-
pearance; 2) we propose the concept of angle profile to mea-
sure the local distribution of micro surface structure, and
deformation of the profile can effectively change the qual-
ity of surface details; 3) we introduce the local-global strat-
egy based on discrete geometry processing (DGP) [3, 25]
to solve the difficulty of one-angle-to-many-profiles which
is triggered by simultaneously deforming all angle profiles.
Simulation results show that our method can greatly im-
prove the fine-grained appearance of 3D surface reconstruc-
tion in terms of structural similarity index measure (SSIM).

2. Surface Details in Normal

From a microscopic point of view, surface details pre-
sented as depth relationship within a small appearance patch
is more easily perceived in normal field. We embrace this
observation and propose to convert the input as below if it
is depth data,

N (i, j) =

[
∂ D (i, j)

∂x
,
∂ D (i, j)

∂y
,−1

]T
, (1)

where D and N are depth map and normal map respectively,
and (i, j) is the pixel coordinate.

2.1. Normal Angle

The surface normals can effectively describe the shape
as well as surface details. There is also evidence [7] that
the shape and surface details are determined by the low-
frequency and high-frequency components of N. In general,
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Figure 2: Amplification of normal angle.

the low-frequency normal NL can be computed by the low-
pass filtering on N, and the high-frequency normal can be
considered as N itself. It is worth noting that when adjusting
N and fixing NL at the same time, we can change the surface
details without deforming the surface shape.

In this section, we measure the relationship between N
and NL by the angle between them,

Θ (i, j) = arccos (N (i, j) · NL (i, j)) , (2)

where Θ (i, j) is normal angle at 〈i, j〉. It is observed that
when Θ increases, surface structure is more visually ap-
pealing. Hence, a direct way to enhance the surface is to
enlarge Θ with respect to a constant NL. Fig. 2 illustrates
the normal angle amplification in terms of Θ, N, and NL,
where normal angle reflects the contrast of surface structure.
Normal map can be updated as N∗ under a new Θ∗,

N∗ (i, j) =N (i, j) +

N (i, j)− NL (i, j)

| N (i, j)− NL (i, j)|
√

2 (1− cos (Θ∗ (i, j)))
. (3)

2.2. Angle Profile

According to Eq. (3), quality of the enhanced surface
depends on the selection of Θ∗. Intuitively, uniform sharp-
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Figure 3: Illustration of angle profiles: the top row is the angle profiles with profile sharpness ϕ; the bottom row is the sharpened angle
profiles highlighted in red. ϕ = arccot
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Figure 4: Illustration of fitting angle profile along four directions,
e.g., i, j, i + j, and i − j, on a 5 × 5 patch centering on (3, 3):
the top row is high-quality normal map N∗ with angle profiles C∗

highlighted in red solid line; the bottom row is the input normal
map N with angle profiles highlighted in blue solid line.

ening is setting Θ∗ = k×Θ, with the scaling factor satisfy-
ing k > 1. Such an updating method is not an effective way
to improve surface details, especially when the surface has
uneven structure. Simulation results in Section 4 (i.e., Fig.
9, Θ∗ = 1.5×Θ) show the unsatisfying performance in this
case. The main reason is that the updating of Θ∗ should be
adaptive according to the local density of surface structure.
Consequently, we propose to use angle profile to measure
the local surface structure as the normal angle distribution
along certain direction on a small patch. We observe that
sharpening the angle profile appropriately to adjust the ex-
isting normal angle is of use to generate high-quality surface
details. We demonstrate how to extract angle profile from a
given normal map as follows.

Suppose we have computed the normal angle Θ from
the normal map N by Eq. (2). Now considering a m ×
m angle patch centering on (i, j), we reorganize the angle
values along direction d as a m× 1 vector,

θdi,j = {Θ (s, t) |s = tan (d · i) (t− j) + i} , (4)

or,
θdi,j = [θ1, · · · , θm]

T
,

where θdi,j is the angle vector, d is a normalized vector with
four possible directions, i.e., i, j, i + j, or i − j (i and
j are unit vectors parallel to x and y axis), and t ranges

from j− m−1
2 to j + m+1

2 . Since we are interested in the
distribution of θdi,j, we consider θdi,j as a mapping opera-
tion from element index to its value: θk = θdi,j (k) with
k ∈ [1, · · · ,m]. Apparently, such a mapping lacks gener-
alization ability to describe the local distribution of angle
values. Extensive experimental results show that by apply-
ing a linear regression model f on θdi,j, we can well simulate
the mapping curve as one of the nine contours illustrated in
Fig. 3.

Cd
i,j = f

(
θdi,j
)
, (5)

where Cd
i,j is named as angle profile centering on (i, j), and

f is a piecewise linear function with a stationary point on〈
k, θk

∣∣k = m+1
2

〉
.

f (θ) = min
{a,b,d}

∑
k

‖ak + bθk − d‖2. (6)

Eq. (6) is applied for the left and right half of θdi,j to fit
the target angle profile, respectively. An example of fitting
angle profile along four directions is illustrated in Fig. 4.

Adjusting the normal angle by deforming Cd
i,j will affect

surface details, and we hence propose to quantize the profile
sharpness as the angle ϕ as shown in Fig. 3. For simplicity,
we denote all the angle profiles from N as a set, C (i.e.,
C (i, j |d ) = Cd

i,j), and the associated profile sharpness as
Φ (i.e. Φ (i, j |d ) = ϕd

i,j), respectively.
We observe that, if normal map N has a high-quality up-

date N∗, then on the same pixel coordinate and the same
direction, the fitted angle profiles have similar contours
but different sharpness, where angle profile of N∗ is more
sharper. This is because, the more clearer surface details,
the bigger variance of normal angles. Conversely, if angle
profile appears to be horizontal (Fig. 3 (i)), it means that the
surface is originally smooth and should be preserved after
enhancement. Therefore, we arrive at the conclusion that if
non-horizontal C is appropriately sharpened, the resulting
normals can be used to produce a fine-grained 3D surface,
which is also confirmed by simulation results in Section 4.

2.3. Sharpening Weight

Cd
i,j can be sharpened by decreasing its profile sharpness

ϕd
i,j, and the decreasing measure is defined as sharpening
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Figure 5: Sharpening for angle profile.

weight wd
i,j, i.e. wd

i,j · ϕd
i,j 6 ϕd

i,j. Given wd
i,j, the sharpen-

ing operation is required to satisfy the following two con-
straints to avoid over-sharpening on surface: 1) the area of
the right triangle should change slowly (i.e., the shaded tri-
angle in Fig. 5); 2) only translation is allowed on the hori-
zontal angle profile. We implement such a deformation on
C 1 according to its angle profile type as shown in Fig. 3,
which can be divided into four cases:

Case 1: C is type (i). It indicates that there is no vari-
ance on the associated normal angles, and the original sur-
face should be smooth. So sharpening operation is not per-
formed.

Case 2: C is type (a) or type (b) with profile sharpness ϕ
and sharpening weightw. We observe that if the sharpening
operation causes instant change on the triangle area of C,
it may spoil the original surface structure. To avoid this
negative effect, we first initialize C as an equal-area triangle
C̃ with profile sharpness w×ϕ (i.e., blue triangle in Fig.
5 left). Meanwhile, if C is directly changed to C̃, it may
result in over-smoothing on surface. So we build a smooth
transition between vp and ve by introducing a buffer tail
ψ = >vpve (i.e., solid green line in Fig. 5), which is defined
as an arc with one tangent parallel to the k−axis. Notice
that vp is the cross point between C and C̃, thus it is easy
to derive the circle form of ψ. Consequently, the updated C
is,

C∗ (k) =

{
C̃ (k) , k > kp
ψ (k) , k < kp

. (7)

Case 3: C is type (c) or type (d). The updated C∗ is obtained
by performing the sharpening operation on the left half and
right half of C independently.

Case 4: C belongs to type (e) ∼ type (h) in Fig. 3. C∗ is
computed by first performing sharpening operation on the
part with profile sharpness ϕ, and conjoin the rest.

The sharpened angle profiles are illustrated on the bot-
tom row of Fig. 3. An enhanced normal map N∗ requires

1In this section, the sharpening operation is discussed on a local patch
only, and for simplicity, the subscripts of (i, j) and d are ignored without
further statement.

each angle profile being sharpened appropriately, which
means that the selection of wd

i,j is a crucial factor. In Sec-
tion 3, we describe how to obtain an optimal weight map
W : W (i, j |d ) = wd

i,j according to a user-selectable
sharpening scale.

3. Refinement as Discrete Geometry Process-
ing

We propose to refine a 3D surface to a user-selectable
level λ. Different from uniform sharpening, we expect the
enhanced surface should keep similar texture pattern as in-
puts. The problem can be formulated as,

min
{Θ(i,j)}

E ( N) s.t.W (i, j |d ) =
max (Φ)

λ×Φ (i, j |d )
, (8)

where E ( N) is the cost function measuring the variation of
surface structure given a normal map N, Θ is computed by
Eq. (2), and Φ and W are the associated profile sharpness
map and sharpening weight map, respectively. We observe
that the statistical distribution of Φ can effectively describe
a whole surface structure. Given λ, a reasonable W can be
guaranteed by max (Φ)/Φ.

Since Φ is dependent on Θ, we take the iterative strategy
to solve Eq. (8). The current Θ is computed based on the
previous Φ, where the iteration process is terminated until
Φ reaches stable values. In addition, it is easy to fall into a
local minimum to solve Eq. (8) using the traditional opti-
mization method. Thus, we propose to find the optimum Θ
in discrete geometry processing (DGP) domain.

3.1. DGP Setup

For an input N and a user-given setting λ, suppose the
associated angle profile C have been sharpened as C∗ under
an initialized W. Then, we can compute a new Θ∗ which lo-
cally satisfies each angle profile in C∗. Apparently, a proper
Θ∗ cannot be obtained by directly mapping the angle val-
ues from C to C∗, because C holds the one-to-many rela-
tionship between angle and angle profile, where a normal
angle is constrained by multiple angle profiles (i.e., from
both neighboring patches and different directions). Fortu-
nately, following the local/global formulation [19, 20], the
non-linear constrained geometry processing problems can
be solved by iteratively applying the local projection and
the global blending step [3]. Our solution is partly inspired
by this local/global strategy, where the normal angle is ad-
justed according to the involved sharpened angle profiles in
Eq. (7), and the profile sharpness map Φ is redistributed
according to a new angle map Θ∗ based on the global least-
square optimization. Θ∗ directly affects the constraint in
Eq. (8), and the updated constraint will trigger a new round
of iteration.



Figure 6: Local projection and global blending under four con-
straints.

3.2. Local/global Solution

We restate our input-output as: input is a 2D normal an-
gle map Θ and a user-selectable scale λ; output is an en-
hanced angle map Θ∗. To solve this problem, we generate
a five-step DGP solver as:

Step 1 Compute C according to Θ by Eq. (5), and initialize
the sharpening weights as W (i, j |d ) = max(Φ)

λ×Φ(i,j|d ) ,
where Φ is calculated from C in Subsection 2.2.

Step 2 Use W to sharpen the angle profile as C∗ (see Sub-
section 2.3).

Step 3 Obtain a new Θ∗ according to C∗ by the lo-
cal/global strategy (see Subsection 3.3). For a single
normal angle θ in Θ, the local projection step is per-
formed by mapping values from C to C∗. Suppose
there is a total number of g angle profiles associated
with θ, then θ will have total g different target val-
ues. As illustrated in Fig. 6, if the related C∗ is
considered as a feasible region, the local projection
step actually projects the current θ onto its closest
point. Thereafter, the global blending step is applied
to determine a compromised position of θ according
to all different projected values. All updated θ con-
tributes to a new Θ∗;

Step 4 Use Θ∗ to update the normal map as N∗ (see Eq.
(3)), where NL is extracted from the original input
and kept as a constant during each iteration.

Step 5 Set Θ as Θ∗, and return to Step 1 to conduct the
next round of optimization.

After iteratively performing Step 1 to Step 5, the DGP
solver will converge to an optimal W∗ which determines
a stable surface structure under the enhancement level λ.
Then, the associated output Θ∗ is used to achieve an en-
hanced N∗ according to Eq. (3). The main reason is that the
local/global strategy can obtain an optimal solution for the
problem in Eq. (8), where the local step avoids the prob-
lem of finding a “good” initial guess that is needed by most
optimization methods in solving non-convex problems, but

easily stuck at a local optimum when given a “bad” initial-
ization. Detailed implementation of Step 3 is given in Sub-
section 3.3.

3.3. Formulation in DGP

In the global blending of Step 3 in Subsection 3.2, we
aim to solve an improved Θ∗ where each angle vector can
be fitted into a curve with the same profile sharpness as C∗.
Specifically, a profile C corresponds to a certain θ. Accord-
ingly, the sharpened C∗ has the counterpart θ∗. For a given
Θ∗, each pair of θdi,j and θ∗di,j is expected to exhibit the same
sharpness of angle profiles. Consequently, a straightforward
formulation is used to minimize the following cost function,

L
({
θlr,c

})
=
∑
d

∑
i,j

∥∥∥θdi,j − θ∗di,j ∥∥∥2, (9)

By minimizing the above function, we can obtain a nor-
mal angle map Θ∗ with the associated angle profiles close
to the target C∗. It is worth noting that directly solving Eq.
(9) will make the DGP solver converge slowly, as θdi,j = θ∗di,j
is a hard constraint condition. The convergence speed can
be improved by translating θdi,j and θ∗di,j into the local co-
ordinate with the origin on their own center. So, the corre-
sponding reformulation of Eq. (9) is,

L
({
θlr,c
})

=
∑
d

∑
i,j

∥∥(I − 1
m

1
) (
θdi,j − θ∗di,j

)∥∥2
, (10)

where m is the length of θ, I is a m×m unit matrix, and 1
is a m×m matrix with all elements equal to 1.

A more efficient way to solve Eq. (10) is de-
veloped by reformulating it into the matrix form,
L
({
θlr,c
})

= ‖Ax− b‖2, where A is a matrix de-
rived from

(
I − 1

m1
)
θdi,j, b is a vector derived from(

I − 1
m1
)
θ∗di,j , and x is the vector containing all unknown

angle values of Θ∗.

4. Experimental results
We implement our algorithm in MATLAB R2014a and

evaluate its performance on real depth or normal data from
scanning or photometric stereo. All the simulation results
are obtained on a uniform platform, Intel TM2 CPU with
3.16GHz and 8GB RAM. We compare our approach with
uniform sharpening by setting Θ∗ = 1.5 × Θ in Eq. (3).
The detailed experiments are discussed as below.

Fig. 7 illustrates the general performance in enhancing
five real examples, and the quantitative results are tabulated
in Table 2. Since SSIM has been generally considered as
a better perceptual quality metric for 2D natural image or
depth image [2, 4] than PSNR, we compute the SSIM score
for comparison based on the depth map (i.e., all compared
pair depths are normalized into the same range). For each
surface patch, we compute the profile sharpness of inputs



Figure 7: SSIM scores along profile sharpness of 5 models listed
in Table 2. Blue, red and green lines correspond to 1

2
× 1

2
, 1
3
× 1

3
,

1
4
× 1

4
down-sampled inputs, respectively. The lines labelled with

“+” and “•” denote our method and uniform sharpening. Notice
that, our enhancement from 1

3
× 1

3
input achieves the same quality

as from 1
2
× 1

2
, where the associated lines are nearly overlapping.

and the mean SSIM of the results, and plot them into a
“sharpness-SSIM” curve. We use blue, red, and green lines
to denote three downsampling ratios 1

2 ×
1
2 , 1

3 ×
1
3 , and

1
4 ×

1
4 , respectively. We use symbols “+” and “•” to distin-

guish our results from the uniform sharpening. As shown
in Fig. 7, our method shows great stability in 1

2 ×
1
2 and

1
3 ×

1
3 downsampling, with high SSIM score for different

profile sharpness. However, for a lower downsampling (i.e.,
1
4×

1
4 ), our method fails to guarantee the quality of enhance-

ment, especially for the patch with high profile sharpness.
Consequently, we conclude that performance of our algo-
rithm is dependent on the variance of the angle profile in-
ferred from the input normal data. To illustrate this relation,
we also plot the sharpness curves of the vase surface under
three different downsampling ratios (i.e., 1

2 ×
1
2 , 1

3 ×
1
3 , and

1
4 ×

1
4 ) as shown in Fig. 8. For comparison convenience, all

the downsampled normal maps are interpolated to the same
resolution as the original one. To visually compare contour
of the curves, we re-index the patch in the ascending or-
der based on the profile sharpness from the original normal
map. As illustrated in Fig. 8, the trends of the sharpness
curve of 1

2 ×
1
2 and 1

3 ×
1
3 downsampling are similar to the

original, although they are more flatter, while the curve of
1
4 ×

1
4 downsampling is almost to be a straight line.

We apply our method for 11 real surfaces including 9
scanned depth data downloaded from Aim@Shape (see Fig.
9, Fig. 10, and Fig. 11), and 2 normal data by photometric
stereo (see the Lincoln cent and Cloth in Fig. 11). Since our
algorithm only accepts the normal map as the input, for the
depth data, we use MeshLab [6] to re-mesh it and convert
it into normal. For each example as shown in Fig. 9, we
first downsample the original normal map and enhance it to
the same resolution as the original one. For visualization

Figure 8: Profile sharpness comparisons among the original, 1
2
×

1
2

, 1
3
× 1

3
, and 1

4
× 1

4
downsampled normal maps of the vase model

in Fig. 9.

Table 1: Mean SSIM scores of depth maps in Fig. 9.

1
2
× 1

2
1
3
× 1

3
1
4
× 1

4

uniform’s 0.8384 0.9542 0.5943
Ours 0.9898 0.9914 0.6172

Table 2: Mean SSIM scores of depth maps in Fig. 10†.

Vase Eros Wall 1 Life mask Rame.

uniform’s 0.9542 0.9864 0.9538 0.9816 0.9837
Ours 0.9914 0.9993 0.9884 0.9991 0.9885

† All the compared enhancements are based on 1
3 ×

1
3

downsampled inputs.

purpose, we use the reconstruction method [25] to estimate
the 3D surface from normal. We set the normal angle patch
as 5×5 for fitting the angle profile. Larger size of patch (i.e.
> 7 × 7) is not suggested , because some hidden structure
is lost during angle profile fitting. As shown in Fig. 9, for
1
2 ×

1
2 downsampling, surface details are recovered (see the

close-up view in the red box in Fig. 9), where the SSIM
score is up to 0.9898 in comparison with the original data
(see Tabel 1). For the case of 1

3 ×
1
3 downsampling, the

visual quality of enhancement is almost as good as that of
1
2 ×

1
2 , although the input loses more information. For the

case of 1
4 ×

1
4 downsampling, our result in terms of SSIM

drops to 0.6172, but still gives better result than uniform
sharpening. This is because under 1

4 ×
1
4 downsampling,

the reserved hidden structure information is not enough to
obtain a proper angle profile.

Fig. 10 shows the comparison results of 1
3 ×

1
3 down-

sampling for the models of Eros, Wall 1, Life mask, and
Rame. Our method is conducted on each model of the top
row, and the bottom row gives the corresponding enhance-
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Figure 9: Comparison of the vase surface enhancements under different downsampling ratios. All partial close-up views are in red box. The
most left column is the ground-truth with 298× 298 resolution with side view on its top. The second to the last column are enhancements
on 1

2 ×
1
2 , 1

3 ×
1
3 , 1

4 ×
1
4 down-sampled normals, where the first row is input, the second row is obtained by uniform sharpening, and the

third row is obtained by our method.

Eros Wall_1 RamessesLife_mask

Figure 10: The 3D surface enhancements for 1
3
× 1

3
downsampling of the model Eros, Wall 1, Life mask, and Rame. The top row is the

downsampled inputs with resolution of 100 × 100, 102 × 102, 100 × 100, and 35 × 35, respectively. The bottom row is the enhanced
results by our method.

ments. We can see that substantial hidden structures are visually improved by our method. The related SSIM scores



Figure 11: Surface enhancement comparisons. There are six original normal maps from the right-most column to the left-most are dragon
scales, hair of Eros, fish tail, part of human lips, Lincoln cent, and cloth, respectively. The first four models are depth data scanned from
plaster models, and the last two models are the normal data obtained by photometric stereo. The first row is the original inputs, the second
row is results by uniform sharpening with Θ∗ = 1.5×Θ, and the third row is our method with λ = 0.3.

Bicubic: 0.9813 Bilinear: 0.9797 Nearest: 0.9788 Ours: 0.9993

Figure 12: Comparison of applying image sharpening on normal map. The normal map is taken as an image and applied three up-sampling
(3×3) methods bicubic, bilinear, nearest followed by image sharpening. The associated depth SSIM values are indicated below the images.

are tabulated in Table. 2.
We also evaluate our method on the original surface

without downsampling. Fig. 1 indicates our enhancement
results on the publicly available normal map of scolar from
Harvard dataset [26]. Fig. 11 shows the visual comparison
between our method and uniform sharpening. There is no
SSIM score for the quantitative analysis, because the related
ground-truth is not available. However, it can be observed
that our enhancements show more high-frequent informa-
tion without over-sharpening. Note that, for Lincoln Cent
and the cloth, their original normal maps are obtained by
photometric stereo.

We conduct the experiemnts by taking the normal map
as an image and applying up-sampling followed by image
sharpening. Fig. 12 shows the comparison of reconstruction
surface on the Eros model under three up-sampling methods
bicubic, bilinear, and nearest, where the upsampling scale

is 3×3. The associated depth SSIM values are about 0.9813,
0.9797, 0.9788 and 0.9993 respectively.

5. Conclusion

This paper presents a new method to enhance 3D sur-
face details for general given normal maps. We address
the fine-grained 3D enhancement by introducing angle pro-
file which makes our method independent of photometric
stereo as well as the reflection model assumption. The hid-
den surface structure is obtained from the raw data based
on its angle profile. Meanwhile, we propose to use the DGP
method to further refine the enhanced surface. Extensive
simulation results show that our method greatly improves
the fine-grained details of the raw depth.
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