
LEARNING A REAL-TIME GENERIC TRACKER USING
CONVOLUTIONAL NEURAL NETWORKS

Linnan Zhu?, Lingxiao Yang? , David Zhang and Lei Zhang∗

Department of Computing
The Hong Kong Polytechnic University, Hong Kong, China
{cslzhu, cslyang, csdzhang, cslzhang}@comp.polyu.edu.hk

ABSTRACT
This paper presents a novel frame-pair based method for visu-
al object tracking. Instead of adopting two-stream Convolu-
tional Neural Networks (CNNs) to represent each frame, we
stack frame pairs as the input, resulting in a single-stream C-
NN tracker with much fewer parameters. The proposed track-
er can learn generic motion patterns of objects with much
less annotated videos than previous methods. Besides, it is
found that trackers trained using two successive frames tend
to predict the centers of searching windows as the location-
s of tracked targets. To alleviate this problem, we propose a
novel sampling strategy for off-line training. Specifically, we
construct a pair by sampling two frames with a random offset.
The offset controls the moving smoothness of objects. Exper-
iments on the challenging VOT14 and OTB datasets show that
the proposed tracker performs on par with recently develope-
d generic trackers, but with much less memory. In addition,
our tracker can run in a speed of over 100 (30) fps with a G-
PU (CPU), much faster than most deep neural network based
trackers.

Index Terms— convolutional neural networks, single-
target tracking, real-time tracking, generic object tracker

1. INTRODUCTION

Single-target visual tracking is a core computer vision prob-
lem which has been attracting significant attentions in the
past decades [1, 2]. The tracking problem can be consid-
ered as a target detection problem within a search region,
called Tracking-by-Detection. To learn a robust target detec-
tor, many researchers attempted to model the appearance of
targets in an online fashion [3, 4, 5, 6]. Recent paradigms for
this problem exploit the expressive representation power of
Convolutional Neural Networks (CNNs) [7, 8]. Though, C-
NNs have been successfully applied for the problem of visual
tracking [9, 10, 11, 12, 13, 14, 15, 16, 17, 18], it is still a chal-
lenging task due to the uncertain changes of objects online,

? Authors contributed equally
∗ Corresponding Author. This work is supported by the Hong Kong

RGC GRF grant (PolyU 15224015).

such as illumination changes, shape deformation, occlusion,
and fast motion etc.

Most existing methods focus on either using CNNs as a
generic feature extractor [11, 12, 13] or directly training CNN
trackers [14, 15]. Recently, inspired by the success of multi-
ple inputs of CNN model in unsupervised learning [19] and
action classification [20], some pair based CNN architectures
[16, 17, 18] have been proposed for visual tracking.

Despite achieving promising performance, existing pair
based CNN trackers still have many drawbacks. Most of
these methods utilized two separated CNNs for each input.
For example, one CNN stream stands for the target objects
[16, 18] or the cropped regions in previous frame [17], and
the other stream represents the search areas [16, 18] or the
cropped regions in current frame [17]. This strategy results
in a noticeable increasing of the number of model parameter-
s, which consequently requires more labeled samples at the
training stage. In addition, previous works cannot well mod-
el the temporal cues of tracked objects, as they rely much on
the networks, pre-trained on static images [21]. Moreover,
current CNN trackers can run at over 100 fps on a GPU de-
vice, but run at a very slow speed on a single CPU processer
(around 5 fps in our computer) due to the complexity of their
network structure. It is expected to develop a tracker which
can run at fast speed in both CPU and GPU devices.

In this paper, we aim to learn a network in an off-line
fashion and use it to track objects online. To make the tracker
lighter and incorporate the temporal cues, we propose a novel
frame-pair based CNN architecture. Specifically, we stack
the cropped regions from two successive frames together as
the input to a CNN stream. The fusion at early stage allows
the tracker to directly learn many temporal features [22]. The
output of our tracker is a probability map which indicates the
location of target. Our design decreases the model size, and
simultaneously increases the speed of online tracking. More
importantly, we can train the proposed tracker with much less
annotated videos as compared with other works [17, 18].

The rest of the paper is organized as follows. In Section
2, we review the related works on visual tracking using C-
NNs. In Section 3, we introduce the details of our tracker.

978-1-5090-6067-2/17/$31.00 c©2017 IEEE

The implementation details and tracking results are presented
in Section 4.2. Section 5 concludes the paper.

2. RELATED WORKS

CNNs have demonstrated their expressive representation
power in high-level recognition problems [7, 8, 23, 24]. Li
et al. [9] proposed a CNN architecture to learn the feature
representation built upon multiple image cues. Guan et al.
[10] tracked objects with an online CNN. The CNNs utilized
in [9, 10] were trained from scratch and updated online, while
they were likely to suffer from a lack of labeled training data.
To address this problem, in [9], Li et al. sampled useful train-
ing data from the historical tracking results. In [10], Guan
et al. utilized K-means to learn weights in CNN because K-
means does not require any labeled data. Instead of training
CNNs from scratch online, our tracker is built upon the pre-
trained CNNs and trained in an off-line manner.

Many works have been proposed to exploit pre-trained C-
NN features for visual tracking [11, 12, 13]. Danelljan et al.
[11] demonstrated that with the Kernelized Correlation Filters
(KCF) [6], the shallow convolutional layers of the pre-trained
CNNs are more appropriate for tracking since they preserve
more spatial information than deeper layers. Ma et al. [12]
independently trained KCF trackers on multiple layers of the
CNNs. The target location is predicted by combining the de-
cision of all trackers, while the combination weights are hand-
crafted. Qi et al. [13] presented an adaptive weighted method
that pools KCF trackers from different CNN layers. Unlike
these CNN-KCF structures, several works directly train net-
works for visual tracking [14, 15]. Wang et al. [14] tracked
objects with two networks, called GNet and SNet. They at-
tached GNet and SNet on top of the conv5-3 and conv4-3
layers of the VGG [8] model respectively, and demonstrated
that these two networks are able to capture complementary
information for visual tracking. Nam and Han [15] proposed
a multi-domain CNN (MDNet) and achieved state-of-the-art
results on several benchmarks. In this paper, however, we fo-
cus on the problem of learning a generic tracker in an off-line
manner. When applying our tracker online, it can track ob-
jects at a significantly faster speed, which is significant faster
than all trackers mentioned above.

More recently, several authors proposed to learn a simi-
larity function for visual tracking [16, 18, 17]. Tao et al. [16]
and Bertinetto et al. [18] considered tracking as a template
matching task and utilized a siamese architecture to learn the
matching function. Held et al. [17] treated the similarity
learning as a regression problem and directly regressed the
location of tracked objects. There are many differences be-
tween our method and aforementioned. While methods in
[16, 18, 17] utilize a two-stream CNNs for visual tracking,
our tracker uses a single stream. When using a similar CNN
network, our tracker has less model parameters, which signif-
icantly reduces the size of training samples, and improves the

speed of online tracking.

3. OUR METHOD

In this section, firstly we describe the general framework of
our tracker, and then present the technical details. Finally, we
illustrate our off-line training stage.

3.1. Tracker framework

Our work falls into the frame-pair based tracking framework
[16, 17, 18]. Specifically, we are interested in searching a
single target object in the current frame Ft given the objec-
t’s location in previous frame Ft−1, where t is the frame in-
dex. Introducing bounding box B = (x, y, w, h) to denote
the object location (x, y) and size (w, h), we aim at learning
a function Φ to predict B:

Bt = Φ(Ft,Ft−1,Bt−1). (1)

Here, the function Φ is learned as a CNN considering the fact
that CNNs have recently achieved state-of-the-art results in
visual tracking.

Our proposed architecture of CNN-based tracker is shown
in Figure 1, where the input is the concatenation of a pair
of cropped regions. The output of our tracker is a prob-
ability map where the max score indicates the center of
tracked object in the current frame. We crop a pair of frames
(Ft,Ft−1) with target center (x+w/2, y+h/2)t−1, and size
(kw, kh)t−1, where t − 1 stands for the index of previous
frame and k defines our search radius. The cropped regions
are resized into min×min with scale factor (sx, sy), and fed
into a CNN model to obtain the l-th convolutional activation-
s. Notably, we adopt the early fusion technique to make our
tracker lighter. Another merit of early fusion at pixel level is
that the network can directly learn temporal cues and predic-
t the motion patterns [22]. Finally, a deconvolutional layer
is adopted to upsample the output to a finer probability map
with size mout×mout, leading to a more precise localization
[12, 18]. Therefore, each pixel in the final probability map
corresponds a r × r region in original network inputs, where
r = min/mout is the sampling factor. However, instead of
fixing the interpolation kernel for upsampling, in our exper-
iment we find that the learned kernel in deconvolution layer
can locate target better.

Let us briefly compare our tracker with the most similar
work GOTURN [17]. Our tracker takes full advantage of ear-
ly fusion (Figure 1) and thus largely reduces the number of
model parameters (from 113M to 9M). Moreover, the output
of our tracker is a discrete probability map compared with
continuous regression output in GOTURN [17]. Thanks to
above changes, we can train our model with fewer annotat-
ed videos, which significantly reduces the human efforts for
annotation. Finally, our tracker can achieve comparable re-
sults with GOTURN and can run at about 30 fps with a single

Fig. 1. Illustration of the proposed tracker. The input to our tracker is a pair of cropped regions and the output of our tracker
is a probability map, where the max score indicates the coordinates of tracked target in current frame. We back-project the
coordinates to un-cropped original frame to obtain real bounding box. (Best viewed in color and magnification).

cpu, which is much faster than GOTURN (around 5 fps in our
computer).

In online tracking, usually only the initial bounding box
is given, so that we start from (F1,B1) and track target ob-
jects in successive frames. For each other frame {Ft, t =
2, 3, ..., N}, we search the location of target from the output
probability map, and project its coordinates back to the origi-
nal un-cropped frame by:

c̃ = (c · r)/(s) + coordcrop, (2)

where c̃ = (x, y) is the center of target bounding box
in un-cropped frame, c = (x, y) is coordinates on probabili-
ty map, r = (r, r) is the sampling factor from the network
inputs to outputs, s = (sx, sy) is the resizing factor, and
coordcrop = (x, y) is the start coordinates of cropped re-
gions in the original frame. All operations in Eq. (2) are
element-wise operations. The Bt can be calculated from c̃
with bounding box size. For simplicity, we fix the size of
tracked target across all frames in each video.

3.2. Tracker design

Our tracker is built upon existing CNNs, which were pre-
trained on ImageNet [21] dataset. In order to adapt the pre-
trained CNNs to our problem, we make several changes. First,
we simply double copy the channels of filters in the first con-
volutional layer to accept stacked regions. The stacked re-
gions are transformed into feature maps through 5 convolu-
tional layers. Here, we remove all layers after the last pool-
ing layer to preserve more spatial information, and to reduce
the model size. We believe smaller network is more suitable
for the problem of visual tracking because: 1) visual tracking
is a binary classification task that requires much less mod-
el complexity than general recognition problems, and 2) less
parameters make our tracker easy to train with less labeled da-
ta. Second, we create another 2 multilayer perceptron (MLP)
layers on the top of output from the pre-trained CNNs. These

two MLP layers help us to learn a more robust tracker. Third,
in order to obtain a probability map, a typical operation [25]
is to convolute the output of the second MLP layer with a
1×1×chns filters, where chns is the number of feature maps
in the previous layer. In this paper, we adopt an element-wise
cross channel (EWCC) classifier since it does improve the
tracking performance than a typical convolutional layer.The
proposed EWCC layer can preserve much spatial information
than a typical convolutional operation in [25]. Forth, we uti-
lize a deconvolutional layer to increase the size of probability
map to better locate the target object, similar to [25]. We de-
fine the EWCC layer as follows:

P (i, j) =

chns∑
ch=1

M(i, pj, ch, n)�W (i, j, ch), (3)

where � is the element-wise multiplication, P is the low-
resolution probability map, M is the feature maps from the
second MLP layer, and W is the classifier weight. P , M ,
and W are with the same spatial size. Here, i, j, ch and n
are the index for spatial rows, columns, feature channels and
samples, respectively. For online tracking, n always equals to
1. The Backpropagation procedures of the new EWCC layer
are given below in Eq. (4) and Eq. (5).

∂P (i, j)

∂M(i, j, ch, n)
= ∆(i, j, ch)�W (i, j, ch), (4)

∂P (i, j)

∂W (i, j, ch)
=

N∑
n=1

∆(i, j, ch)�M(i, j, ch, n) (5)

where ∆ is the gradients from successive deconvolutional
layer, and N is the training batch size. With above formula-
tions, our tracker can be trained in an end-to-end manner.

Fig. 2. Illustration of the tracker trained using different off-
sets. The results shown in left and right columns are obtained
by using the tracker trained under the offset o = 1 and o = 6
respectively (Best viewed in color and magnification).

3.3. Tracker training

We employ logistic loss to train our tracker and define labels
on the high-resolution probability map as:

yn =

{
+1, if ||u− c|| ≤ R/r
−1, if otherwise (6)

where u is the center of bounding box on the probability map.
Eq. (6) indicates that on this map, the samples are considered
to be positive if they are within radius of R/r. R is set by
user before training and fixed across all training epochs. Also,
we weight the score map by the positive and negative samples
to eliminate class imbalance issue as [18].

A set of videos from ALOV300++ [26] is used for tracker
training. In this dataset, the ground truth bounding boxes are
annotated in every 5th frames of each video. We augment the
data by generating intermediate bounding boxes for the unan-
notated frames using KCF tracker [6]. The data augmentation
can help us learn a more robust tracker. Note that even by
this data augmentation, our training set is still half of the ones
used in [17]. In the training phase, we observe that directly
feeding two successive frames always leads tracker failure, e-
specially in fast motion pattern. To handle this problem, we
propose a simple, yet effective sampling strategy to train our
tracker. To be specific, in each batch for training, we first
sample N/2 reference frames {tn, n = 1, 2, ..., N/2}, and
then get another N/2 frames with random numbers ranged
between [tn − o, tn + o], where o is a hyper-parameter that
controls the smoothness of tracking and it is defined by user.
When o is set to 1, the training phase degrades into the one
just using two successive frames. Figure 2 shows the differ-
ent results obtained using o = 1 and o = 6 for training and
demonstrates the effectiveness of our sampling method.

4. EXPERIMENTS

In this section, we first briefly introduce the employed dataset-
s and the implementation details. Second, we conduct an in-
depth studies on our tracker. Finally, we compare our tracker
with other state-of-the-art methods.

4.1. Datasets and Implementations

Training Set. We train our tracker using a collection of an-
notated videos from ALOV300++ [26] dataset. We remove 7
videos which are overlapped with the VOT14 dataset, remain-
ing 307 videos for tracker training. In this dataset, the ground
truth bounding boxes are labeled for approximately every 5
frames of each video. We augment the dataset as described
in Section 3.3. After data augmentation, our training set con-
sists of 65,410 images, belonging to 251 different object cate-
gories. Note that, even with our augmentation, the total num-
ber of training images is still less than 147,903 as used in GO-
TURN [17]. Moreover, the ImageNet Detection [21] database
was utilized in [17] to help the model capturing more diverse
object appearance. Compared with [17], our tracker achieves
competitive results on the public benchmarks. We split these
videos into 250 for training and 57 for validation to fine-tune
hyper-parameters. After choosing the hyper-parameters, we
retrain our tracker using all 307 videos.
Testing Set. Our goal is to learn a generic tracker like GO-
TURN [17]. We firstly conduct experiments on the VOT 2014
Challenge [2] database which is a popular benchmark that
consists of 25 videos in total. We also compare our work
with GOTURN on the OTB [1] dataset, where 9 videos over-
lapped with the training set are also removed. The results of
GOTURN are obtained by their published code 1. We report
two popular metrics [1] for evaluations: the Precision and the
Area Under the Curve (AUC) for the success plot. We use a
score 20 pixels as threshold for Precision [1].
Implementation Details. We build our tracker based on
VGG-F network [27]. The representation power of VGG-F
is similar to AlexNet [7], utilized in GOTURN [17]. For the
network, we remove all fully-connected layers and add two
MLP layers on the top of Conv5 activations, followed by an
EWCC classifier and a deconvolutional layer as described in
Section 3.2. For tracker training, to construct a batch for each
iteration, we first randomly sample a video, and then select
16 frames using our sampling strategy. The frame offset is
6 for tracker learning. The weights of two MLP and EWCC
are generated using a Gaussian distribution, and the weight of
deconvolutional (DeConv) layer is initialized with a bilinear
kernel. The upsampling factor for DeConv is 4. We execute
50 epochs in total and 1000 iterations per epoch. The opti-
mization is achieved by Stochastic Gradient Descent (SGD)
with momentum technique. The learning rate is logarithmi-
cally decreased from log(−2) to log(−4). Table 1 presents

1https://github.com/davheld/GOTURN

Table 1. Illustration of additional layers used in our tracker.
All shapes are formulated as [h, w, chns, num], where h,
w, chns and num represent the spatial rows, columns, the
channels and the number of filters, respectively.

Layer Name Input Size Weight Size Output Size
MLP1 [13, 13] [1, 1, 256, 128] [13, 13, 128]
MLP2 [13, 13] [1, 1, 128, 128] [13, 13, 128]
EWCC [13, 13] [1, 1, 128, 1] [13, 13]
DeConv [13, 13] [8, 8] [56, 56]

Table 2. The parameters for the off-line training. All param-
eters are selected by the method described in Section 4.1

Frame Offset (o) Batch Size (N) Search Radius (k)
6 16 2.5

Positive Radius (R) Epoch Iteration Per Epoch
16 50 1000

Learning Rate Range Momentum Rate Weight Decay
[log(−2), log(−4)] 0.9 5e-6

additional layer settings in our tracker, and Table 2 shows al-
l parameters used in the training phase. After learning, we
employed our tracker online without any model updating.

4.2. Results

A series of experiments were carried out to investigate the
performance of the proposed tracker. We first present the re-
sults obtained by training our tracker under different settings,
and then show the comparisons between our method and oth-
er related works. Examples of visual tracking results can be
found in the supplementary file.

In-depth studies. Table 3 shows the results of differen-
t model variants. For fairly comparisons, we fix all other set-
tings the same, including the additional layers and the hyper-
parameters used in optimization. We can find that our full
model achieves the best performance among all our variant
models. As presented in Table 3, the model initialized from a
pre-trained CNN contributes most to our performance, which
is also demonstrated in other high-level recognition problem-
s [19, 20]. Besides, weight updating in Deconv layer also
improves the tracker’s performance. In addition, Table 3 il-
lustrates that our specially designed classifier leads to a big
improvement and demonstrates that the element-wise cross
channel classifier does preserve more spatial information than
traditional convolutional layers, which share all spatial cues
in its weights [25]. Moreover, the results obtained by our
full model with two different frame offset settings are listed
in Table 3 demonstrating the importance of our sampling s-
trategy. According to above analysis, we adopt the following
implementations in the rest of comparisons, including model
initialized with pre-trained CNNs, DeConv weight updating,

Table 3. Qualitative results of the comparisons on VOT14
dataset. SR and Prec stand for the success rate and precision,
respectively. Results from compared methods are obtained
using the authors’s published codes. Speeds achieved by CPU
and GPU are marked with C and G.

Compared Models AUC (SR) Prec@20 Speed (fps)
KCF [6] 0.421 0.547 C392
DSST [28] 0.401 0.553 C43
GOTURN [17] 0.461 0.610 C5 G153
No Pre-trained CNNs 0.304 0.369
No Deconv Updating 0.387 0.501
No EEWC 0.403 0.511
Full Model (o = 1) 0.401 0.481
Full Model (o = 6) 0.427 0.563 C38 G148

EEWC layer, and sampling with frame offset 6.

Comparison with other methods. In the upper part of Ta-
ble 3, we also show the comparisons to other related works.
Our tracker achieves competitive results with other methods.
Our tracker is slightly worse than GOTURN [17] in preci-
sion and success rate. A main reason may be that our track-
er does not model the object’s sizes as GOTURN, which is
useful for visual tracking. We leave this issue for further s-
tudies. On the other hand, our tracker only has about 9 mil-
lion parameters, which is significantly lighter than the 113
million parameters in GOTURN. The speed of our tracker is
approaching the DSST method when running on a CPU de-
vice, which is much faster than GOTURN. To the best of our
knowledge, our proposed tracker is the fastest deep architec-
ture based tracker when running on a single CPU. In Table 3,
we do not include any other deep architecture based trackers
like [11, 12, 13, 15] because they were not aiming at learn-
ing a generic object tracker. In comparisons to other popular
trackers like KCF [6] and DSST [28], our tracker achieves
better performance. Note that, even equipped with deep C-
NNs, our tracker is trained in an off-line fashion and it does
not update online as KCF and DSST. A possible improvement
of our proposed tracker is to explore an efficient online update
method to adapt the weights to tracked objects.

We also conduct another experiment on the OTB50 [1]
dataset. The 9 videos overlapped with the training set are
removed. In this dataset, our tracker achieves similar behav-
iors as compared with GOTURN (SR: 0.389 v.s. 0.445 and
Prec@20: 0.539 v.s. 0.646), and it runs in a faster speed.

5. CONCLUSIONS

In this paper, we presented a novel generic tracker that can run
at a high speed in both GPU and CPU devices. Our tracker
is adopts pair-based inputs for CNN frameworks. The pro-
posed tracker is light-weight, achieved by early fusion at im-
age pixel domain. This strategy allows our network to directly

learn the temporal appearance of tracked objects. The experi-
ments conducted on public tracking dataset demonstrated the
effectiveness of our proposed tracker. Another merits of our
method is that the training stage needs less annotated videos.
We hope our findings could arouse further researches in gen-
eral object trackers.

6. REFERENCES

[1] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang, “Online object
tracking: A benchmark,” in CVPR, 2013, pp. 2411–2418.

[2] Matej Kristan, Roman Pflugfelder, Aleš Leonardis, Jiri Matas,
Luka Čehovin, Georg Nebehay, Tomáš Vojı́ř, and Gustavo et al.
Fernández, “The visual object tracking vot2014 challenge re-
sults,” in ECCVW, 2015, pp. 191–217.

[3] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas,
“Tracking-learning-detection,” PAMI, vol. 34, no. 7, pp. 1409–
1422, 2012.

[4] Sam Hare, Amir Saffari, and Philip HS Torr, “Struck: Struc-
tured output tracking with kernels,” in ICCV. IEEE, 2011, pp.
263–270.

[5] Kaihua Zhang, Lei Zhang, and Ming-Hsuan Yang, “Real-time
compressive tracking,” in ECCV. Springer, 2012, pp. 864–877.

[6] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge
Batista, “High-speed tracking with kernelized correlation fil-
ters,” PAMI, vol. 37, no. 3, pp. 583–596, 2015.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Im-
agenet classification with deep convolutional neural networks,”
in NIPS, 2012, pp. 1097–1105.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in ICLR, 2015.

[9] Hanxi Li, Yi Li, and Fatih Porikli, “Robust online visual track-
ing with a single convolutional neural network,” in ACCV.
Springer, 2014, pp. 194–209.

[10] Hao Guan, Xiangyang Xue, and An Zhiyong, “Online
video tracking using collaborative convolutional networks,” in
ICME. IEEE, 2016, pp. 1–6.

[11] Martin Danelljan, Gustav Hager, Fahad Shahbaz Khan, and
Michael Felsberg, “Convolutional features for correlation filter
based visual tracking,” in ICCVW, 2015, pp. 58–66.

[12] Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan
Yang, “Hierarchical convolutional features for visual tracking,”
in ICCV, 2015, pp. 3074–3082.

[13] Yuankai Qi, Shengping Zhang, Lei Qin, Hongxun Yao, Qing-
ming Huang, and Jongwoo Lim Ming-Hsuan Yang, “Hedged
deep tracking,” in CVPR, 2016.

[14] Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu,
“Visual tracking with fully convolutional networks,” in ICCV,
2015, pp. 3119–3127.

[15] Hyeonseob Nam and Bohyung Han, “Learning multi-domain
convolutional neural networks for visual tracking,” in CVPR,
2016.

[16] Ran Tao, Efstratios Gavves, and Arnold W M Smeulders,
“Siamese instance search for tracking,” in CVPR, 2016.

[17] David Held, Sebastian Thrun, and Silvio Savarese, “Learning
to track at 100 fps with deep regression networks,” in ECCV,
2016.

[18] Luca Bertinetto, Jack Valmadre, João F Henriques, Andrea
Vedaldi, and Philip HS Torr, “Fully-convolutional siamese net-
works for object tracking,” in ECCV. Springer, 2016, pp. 850–
865.

[19] Carl Doersch, Abhinav Gupta, and Alexei A Efros, “Unsuper-
vised visual representation learning by context prediction,” in
ICCV, 2015, pp. 1422–1430.

[20] Karen Simonyan and Andrew Zisserman, “Two-stream convo-
lutional networks for action recognition in videos,” in NIPS,
2014, pp. 568–576.

[21] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, A-
ditya Khosla, Michael Bernstein, et al., “Imagenet large scale
visual recognition challenge,” IJCV, vol. 115, no. 3, pp. 211–
252, 2015.

[22] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas
Leung, Rahul Sukthankar, and Li Fei-Fei, “Large-scale video
classification with convolutional neural networks,” in CVPR,
2014, pp. 1725–1732.

[23] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman,
Ning Zhang, Eric Tzeng, and Trevor Darrell, “Decaf: A
deep convolutional activation feature for generic visual recog-
nition.,” in ICML, 2014, pp. 647–655.

[24] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan,
and Stefan Carlsson, “Cnn features off-the-shelf: an astound-
ing baseline for recognition,” in CVPRW, 2014, pp. 806–813.

[25] Jonathan Long, Evan Shelhamer, and Trevor Darrell, “Fully
convolutional networks for semantic segmentation,” in CVPR,
2015, pp. 3431–3440.

[26] Arnold WM Smeulders, Dung M Chu, Rita Cucchiara, Simone
Calderara, Afshin Dehghan, and Mubarak Shah, “Visual track-
ing: An experimental survey,” PAMI, vol. 36, no. 7, pp. 1442–
1468, 2014.

[27] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Re-
turn of the devil in the details: Delving deep into convolutional
nets,” in BMVC, 2014.

[28] Martin Danelljan, Gustav Häger, Fahad Khan, and Michael
Felsberg, “Accurate scale estimation for robust visual track-
ing,” in British Machine Vision Conference, Nottingham,
September 1-5, 2014. BMVA Press, 2014.

