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Abstract. Factors such as misalignment, pose variation and occlusion make robust face 

recognition a difficult problem. It is known that statistical features such as LBP are effective for 

local feature extraction, while the recently proposed sparse or collaborative representation 

based classification has shown interesting results in robust face recognition. In this paper, we 

propose a novel robust kernel representation model with statistical local features (SLF) for 

robust face recognition. First, multi-partition max pooling is used to enhance the SLF’s 

invariance to image registration error. Then, a kernel based representation model is proposed to 

fully exploit the discrimination information embedded in the SLF, and robust regression is 

adopted to effectively handle the occlusion in face images. Extensive experiments are 

conducted on benchmark face databases, including Extended Yale B, AR, Multi-PIE, FERET, 

FRGC and LFW, which have various variations of lighting, expression, pose and occlusions, 

demonstrating the promising performance of the proposed method. 
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1. Introduction 

Automatic face recognition (FR) is one of the most active and visible research topics in computer vision, 

machine learning and biometrics [11] due to its wide range of applications such as access control, video 

surveillance, and the like. After many years’ investigation, FR is still very challenging due to the low quality 

of face images [1], and the rich variations of facial images from the same or different subjects, e.g., lighting, 

expression, occlusion, misalignment, etc [11]. In order for different communities to benchmark and verify 

their FR methods, many large scale face databases, such as FERET [22-23], FRGC [35], LFW [24][32] and 

PubFig [25], have been established and used as evaluation platforms. 

Although facial images have a high dimensionality, their discriminative characteristics usually lie or can 

be extracted in a lower dimensional subspaces or sub-manifolds. Therefore, subspace and manifold learning 

methods have been dominantly used in appearance based FR [2-9][42]. Classical methods such as the 

Eigenface and Fisherface [2-3][42] mainly consider the global scatter of training samples and may fail to 

reveal the essential data structures nonlinearly embedded in the high dimensional space. The manifold 

learning methods were proposed to overcome this limitation [5-6], and the representative manifold learning 

methods include locality preserving projection (LPP) [7], local discriminant embedding (LDE) [8], 

unsupervised discriminant projection (UDP) [9], etc. In addition, kernel based subspace learning was also 

proposed for FR. For instance, Yang et al. [60] presented a Kernel Fisher discriminant framework for feature 

extraction and recognition; Zafeiriou et al. [4] proposed a robust approach to discriminant kernel-based 

feature extraction for face recognition and verification.  

The subspace or manifold learning methods only consider the holistic feature of face images, which are 

usually very sensitive to the variations of misalignment, pose, and occlusion. Recent researches have shown 

that local feature based methods [16-18][43-48][26] are very promising in object recognition, texture 

classification and uncontrolled FR. Gabor filters, which could effectively extract local directional features on 

multiple scales, have been successfully used in FR [17-18]. Compared to the holistic feature based 

approaches such as Eigenface [2] and FisherFace [3], Gabor filtering is less sensitive to image variations 

(e.g., illumination, expression). Another type of local feature widely used in FR is statistical local feature 

(SLF), such as histogram of local binary pattern (LBP) [43]. The main idea is that a face image can be seen 

as a composition of micro-patterns [26]. By partitioning the face image into several blocks, the statistical 
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feature (e.g., histogram of LBP) of these blocks is extracted, and finally the description of the image is 

formed by concatenating the extracted features in all blocks. Zhang et al. [45-46] proposed to use Gabor 

magnitude or phase map instead of the intensity map to generate LBP features. New coding technologies on 

Gabor features have also been proposed. In [47], Zhang et al. extracted and encoded the global and local 

variations of the real and imagery parts in multi-scale Gabor representation. Xie et al. [48] proposed local 

Gabor XOR patterns (LGXP), which utilizes XOR (exclusive or) to encode the local variation of Gabor 

phase, to fuse Gabor magnitude and phase information. These local pattern based statistical features have 

shown very promising results in large scale face databases, such as FERET [22-23] and FRGC [35]. 

Apart from the employed features, the employed classifier is also important to the performance of FR. 

Nearest Neighbor (NN), SVM and Hidden Markov Models are the widely used classifiers in face recognition 

[43][45-48][59][27]. Moreover, in order to better exploit the prior knowledge that face images from the 

same subject construct a subspace, nearest subspace (NS) classifiers [19][36-38][51][58] were also 

developed, which are usually superior to the popular NN classifier. Recently an interesting classifier, namely 

sparse representation based classification (SRC), was proposed by Wright et al. [10] for robust FR. In 

Wright et al.’s work, a testing image is sparsely coded on the whole training set by l1-norm minimization, 

and then classified to the class that yields the least coding residual. By assuming that the outlier pixels in the 

face image are sparse and by using an identity matrix to code the outliers, SRC shows good robustness to 

face occlusion and corruption. SRC has been attracting much interest and has been widely studied in the 

computer vision research community [28-31]. Very recently, Zhang et al. [33] indicated that the l1-norm 

sparsity may not be the key of the success of SRC, and they proposed the collaborative representation based 

classification (CRC), which uses l2-norm to regularize the coding coefficients instead of the time consuming 

l1-norm, for FR and achieved similar result to SRC but with much less time complexity. 

Although the statistical local features (SLF) and SRC/CRC have shown powerful abilities in the field of 

feature extraction and signal classification, few works have been proposed to integrate them together for 

better performance. Many works either use NN/NS/SVM as the classifier with SLF as inputs (e.g., NN in 

[43][45-48]) or use SRC/CRC to do classification with holistic features [10][31][33]. Although the methods 

[12-13] aim to combine LBP and sparse representation together, no effective representation model was 

proposed to deal with variations such as occlusion and misalignment, etc. 
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In this paper, we proposed a novel SLF based robust kernel representation (RKR) model for FR. First, we 

propose a multi-partition max pooling technology to enhance the invariance of local features to image 

registration error (e.g., misalignment). Second, we propose a robust kernel representation model, which not 

only uses kernel representation to fully exploit the discrimination information embedded in the local features, 

but also adopts a robust regression function as the measure to effectively handle the occlusion in facial 

images. Compared to the previous classification methods, e.g., NN with SLF features and SRC with holistic 

features, the proposed SLF based RKR model shows much stronger robustness to various face image 

variations (e.g., illumination, expression, occlusion and misalignment), as demonstrated in our extensive 

experiments conducted on benchmark face databases.  

The rest of the paper is organized as follows. Section 2 briefly reviews some related work. Section 3 

presents the proposed SLF based robust kernel representation algorithm. Section 4 presents the experimental 

results. Section 5 summarizes the paper. 

 

2. Related Work 

2.1. Statistical Local Feature 

The extraction of statistical local features (SLF) has three steps: feature map generation, pattern map coding, 

and histogram computing. The commonly used feature maps include original intensity map [43] and Gabor 

feature maps (e.g., magnitude [45], phase [46]). LBP [43][45-46], local XOR (exclusive or) operator [48] or 

others [47][49] could be adopted for pattern map coding. Finally the encoded pattern map is partitioned into 

non-overlapping blocks, in which the local histogram feature is computed. The descriptor of the input face 

image is the concatenation of all the histograms computed in each block. 

 
2.2. Sparse Representation or Collaborative Representation based Classifier 

Different from Nearest Neighbor (NN) and Nearest Subspace (NS) classifiers [19][36-38][51][58], which 

forbids representing the query sample across classes, the recently developed l1-regularized sparse 

representation [10] or l2-regularized collaborative representation [33] represents the query image by the 

training samples from all classes, which could effectively overcome the small-sample-size or overfitting 

problem of NN and NS. Let ,1 ,2 ,[ , ,..., ] i

i

m n
i i i i n

×= ∈ℜX s s s  denote the set of training samples of the ith object 
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class, where si,j, j=1,2,…,ni, is an m-dimensional vector stretched by the jth sample of the ith class2. Let 

m∈ℜy  be a query sample to be classified. The representation model of sparse representation based 

classifier (SRC) or collaborative representation based classifier (CRC) could be written as 

{ }2
0 2

ˆ arg min
pl

λ= − +α y Xα α α  (1)

where X=[X1, X2, …, Xc] and c is the number of classes; 
pl

⋅ is the lp-norm, and p=1 for SRC in [10], while 

p=2 for CRC in [33]. 

The classification of y is done by 

( ) ( ){ }2
ˆidentity arg min i ii

δ= −y y X α  (2)

where ( ) : inn
iδ ⋅ ℜ →ℜ  is the characteristic function that selects from α̂  the coefficients associated with 

the ith class [10]. It is shown in [33] that CRC has very competing accuracy with SRC in FR without 

occlusion but with much faster speed. In the case of occlusion or corruption, Robust-SRC [10] classifies the 

occluded face image y by 

( ) ( ){ }2
ˆ ˆidentity arg min i i e ei

δ= − −y y X Xα α  (3)

where  

[ ] [ ]{ }2
, 2 1

ˆ ˆ; arg min ;
ee e e eλ= − +y X Xα αα α α − α α α                       (4) 

and Xe is an occlusion dictionary to code the outliers. Xe is simply set as the identity matrix I in [10]. 

 
2.3. Robust Sparse Coding 

The representation model of Robust-SRC [10] is equivalent to 

1
min −y Xα α  s.t. 

1
σ≤α  (5)

which is actually a Maximum Likelihood Estimation (MLE) of α when the representation residual y-Xα 

follows Laplacian distribution. However, for the real occlusion and disguise in practical facial images, the 

representation residual rarely follows Laplacian model, making robust-SRC less effective to handle 

occlusions in FR. 

Yang et al. [31] proposed a robust sparse coding model to achieve robust face recognition with outliers. 

                                                           
2 More generally, si,j, j=1,2,…,ni, could be the feature vector extracted from the jth sample of the ith class. 
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Instead of using l1-norm to regularize the data fidelity term in the coding model, Yang et al. formulated the 

signal representation as an MLE-like estimator:  

( )1
min m

i ii
yρ

=
−∑ θ rα α  s.t. 

1
σ≤α  (6)

where ri is the ith row vector of X and yi is the ith element of y. This robust sparse coding could be efficiently 

solved by an iterative reweighted sparse coding algorithm. In each iteration, the original robust sparse 

coding model becomes 

( ) 21 2
12

min s.t. σ− ≤W y Xα α α  (7)

where W is a diagonal matrix with ( ) ( )( )2
, ` 1 expi i i iW e eω μ μδ= = + − , ei=yi-riα, μ and δ are two 

automatically updated scalar parameters in the weight function [31]. After the representation coefficient α̂  

is obtained, the weighted representation residual is used for classification, i.e., identity(y)=argmini||W1/2(y-

Xiδi(α̂ ))||2. 

 

3. Statistical Local Feature based Robust Kernel Representation 

3.1. Multi-partition max pooling (MPMP) 

Facial image misalignment caused by factors such as scaling, translation and rotation can make a lot of 

troubles in less-controlled face recognition system. Even using some advanced face detector (e.g., the Viola 

and Jones’ face detector [53]) to crop and align the query face image, there are still registration errors of 

several pixels, which will deteriorate much the FR performance [54]. Although there are some pre-

processing methods [55][52] to align the query face image to the well cropped training images, it is more 

interesting that we could improve the robustness of the feature extraction step to face misalignment. In this 

section, we propose a simple but very effective pooling technique to this end.   

Pooling techniques are widely used in object and image classification to extract invariant features. In 

general, there are two categories of pooling methods, sum pooling [50][57] and max pooling [39][56-57]. 

Denote by fi the ith feature vector in a pool, and by {f}j the jth element of the feature vector f. In the case of 

sum pooling, the output feature vector fs is computed by {fs}j={f1}j +{f2}j +…+{fn}j, while in the case of 

max pooling the output feature fm is {fm}j =max{|{f1}j| , |{f2}j| ,…, |{fn}j|}. A simple 1-D example with 

f1∈[0,1] and f2∈[0,1] is shown in Fig. 1. It can be seen that the domain of (f1, f2) with fm=1 is larger than the 



 

domain of (

experiment

variations. I

divides the 

 

In the pa

pattern. Th

image parti

4×4, we ado

pattern map

sizes in tota

capture mor

In the pro

where s=0, 

which is fu

features ge

coefficients

[39][50][56

used in face

of sliding b

feature (e.g

(f1, f2) with f

s in [39][56

In addition, 

images into 

Figu

aper we prop

e main diffe

tion and feat

opt a more fl

p (e.g., LBP

al. This kind

re spatial dis

oposed MPM

1, … , S. T

urther partitio

nerated in e

s of local pa

6], here we e

e recognition

boxes (e.g., t

., LBP). Her

fs=1, which i

-57] also sh

spatial discri

multi-scale r

ure 1: A simp

pose a multi-p

erences betw

ture generati

flexible partit

) can be ma

d of partition 

scrimination 

MP based sta

That is to say

oned into ps×

each partition

atches’ desc

extract a seq

n. As shown 

the red box 

re the size of 

indicates tha

ow that max

imination inf

regions (e.g.

ple 1-D examp

partition max

ween the prop

on. Differen

tion. As show

ade as 2×2, 3

could flexib

information

tistical local 

y, in the sth l

×qs sub-bloc

ned sub-blo

criptors, such

quence of sta

in the secon

shown in F

f the box is sm

7 

at max poolin

x pooling is 

formation ca

, 1×1, 2×2, a

ple for illustrat

 

x pooling (M

posed MPM

t from the pa

wn in the fir

3×3 and 4×4

bly set the nu

than the spa

feature (SLF

evel, the wh

cks. The poo

ck. Differen

h as SIFT o

atistical loca

nd row of Fig

ig. 2), and t

maller than t

ng is more r

more robust

an be introdu

and 4×4 for a

 

ting sum pool

MPMP) schem

MP and previo

artition of sp

st row of Fig

4, respectivel

umber of blo

atial pyramid

F) extraction

hole image is

oling technol

nt from the 

or raw inten

al features (S

g. 2, in each 

then compute

the block, an

robust to the 

t than sum p

uced by using

a total 21 reg

ling and max p

me for the st

ous max poo

patial pyrami

g. 2, for exam

ly, with 29 b

ocks in each 

d.  

n, we adopt S

s divided int

logy is opera

feature gene

nsity) in prev

SLF) which 

sub-block w

e the histogr

nd usually the

changes of f

pooling to im

g spatial pyra

gions in [39][

pooling. 

tatistical feat

oling method

d, such as 1×

mple, the par

blocks of thr

scale and is 

S+1 level blo

to Ps×Qs blo

ated on a ser

eration (e.g.,

vious works

are simpler 

we first create

ram of each 

e height and 

f1 or f2. The

mage spatial

amid, which

[56].) 

ture of local

ds lie in the

×1, 2×2, and

rtition of the

ree different

expected to

ock partition,

cks, each of

ries of local

, the coding

s of pooling

and widely

e a sequence

box’s local

width of the

 

l 

h 

 

 

d 

 

t 

 

 

f 

 

 

 

y 

 

 

 



8 
 

box are set as ratios (ratios < 1) times of those of the sub-block in the sth scale partition. In this paper, MPMP 

is defined as the one with the following setting: ps=2 and qs=2 for partition scale s=0 and 1; ps=1 and qs=1 

for s>1; ratios=1 for s=0; and ratios = 0.5 for other values of s. 

Take the feature generation in one sub-block as an example. Denote by fi the feature vector (e.g., the 

histogram feature) extracted from the ith sliding box, and suppose that there are n feature vectors, f1, f2, …, fn, 

which are extracted from all possible sliding boxes in this sub-block, and then the final output feature vector, 

denoted by f, after max pooling is 

{f}j =max{|{f1}j|, |{f2}j|, … , |{fn}j}|} (8)

 

 

Figure 2: Illustration of the proposed multi-partition max pooling. 

 

Let’s suppose that the image is partitioned into B blocks in total. In each block, after extracting the 

MPMP based SLF of every sub-block, we concatenate the SLFs of all sub-blocks as the output feature vector. 

Denote by yi the output feature vector in the ith block. Then the concatenation of all feature vectors extracted 

from all blocks, i.e., y = [y1, y2, …, yB] could be taken as the descriptor of the image. The proposed MPMP 

based SLF could not only introduce more spatial information to LSF due to its use of multi-partition, but 

also enhance the robustness of LSF to image misalignment due to its use of max pooling.  

 

Multi-size-block partition on the pattern map (e.g., LBP) 

{f1, f2, … , fn} 

Slide the red box in the blue 
sub-block and extract 
feature fi from the i-th box max pooling 

f 

i-th sliding box 

Original image 
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3.2. Robust kernel representation 

How to measure the similarity of two features is an important issue in pattern classification. The commonly 

used classifiers, such as the linear SVM, NN and NS classifiers [19][36-38][51][58], as well as the SRC and 

CRC classifiers [10][33], often adopt the l2-norm to measure the distance (i.e., Euclidean distance). Apart 

from l2-norm based measurement, kernel methods have become increasingly popular for pattern 

classification, especially face recognition [4][60]. The kernel trick could map the non-linearly separable 

features into a high dimensional feature space, in which features of different classes can be more easily 

separated by linear classifiers. From the view of kernel representation, l2-norm measurement, which could be 

regarded as a linear kernel, is effective to solve the linearly separable problem. For SLF, more specifically 

the local histogram feature, it has been shown that histogram intersection and Chi-square distances are more 

powerful than l2-norm distance in classification [26][43-48]. Therefore, more discriminant information 

embedded in SLF could be exploited if the histogram intersection kernel [34] or Chi-square kernel could be 

adopted in the l2-norm distance based classifiers such as SRC and CRC. However, directly applying these 

kernels to SLF based representation may not be robust to facial occlusions. In this section, we propose a new 

model, namely robust kernel representation, to improve the robustness of SLF based face representation and 

classification. 

Suppose that there exists a kernel function ( ) ( ) ( ), ,j k j kκ φ φ=ν ν ν ν , where 〈⋅〉 is the inner product 

operator, and : d hφ ℜ →ℜ  is a feature mapping function, which maps the feature vectors νj and νk to a 

higher dimensional feature space. For a matrix 1 2= , , , p q
q

×⎡ ⎤∈⎣ ⎦ ℜZ z z z , we define KZZ as a q×q matrix 

with { } ( ),
,j kj k

κ=ZZK z z  and kZν as a q×1 vector with { } ( ),jj
κ=Zk zν ν . Denote by 

( ) ( ) ( )1 , , qφ φ φ⎡ ⎤= ⎣ ⎦Z z z , we could have  

( ) ( )Tφ φ=ZZK Z Z ; ( ) ( )Tφ φ=Ζνk Z ν  (9)

After the MPMP based SLF extraction on the query image, B blocks of multiple partitions are obtained, 

and B sub-feature vectors, denoted by y1, y2, …, yB, are extracted. Similarly, for each of the training samples, 

we can extract the sub-feature vectors, and let’s denote by Ai the matrix formed by all the sub-feature vectors 

of the ith block from all training samples. Take the ith block as an example, the kernel representation of yi 

over the matrix Ai could be formulated as 
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( ) ( ) 2

2
min i i iφ φ−y A
α

α  s.t. 
p

i l
σ≤α  (10)

where αi is the coding coefficient vector in the high dimensional feature space mapped by the kernel 

function φ. If we enforce that αi = αj for different blocks i≠j, i.e., we assume that the different blocks yi 

extracted from the same test sample have the same representation over their associated matrix Ai, then kernel 

representation of the query image by combining all the block features could be written as 

( ) ( ) ( ) ( ) ( ) ( )
2

1 2 1 2 2
min ; ; ; ; ; ;B Bφ φ φ φ φ φ⎡ ⎤ − ⎡ ⎤⎣ ⎦ ⎣ ⎦y y y A A A
α

α  s.t. 
pl

σ≤α  (11)

where α is the coding coefficient vector of the query sample. The above model seeks the regularized 

representation for a mapped feature under the mapped basis in the high dimensional space.  

In the kernel representation model Eq. (11), the l2-norm is used to measure the representation residual. 

Such a kernel representation is effective when there are no outliers in the query image. However, in FR the 

facial occlusion and facial disguises (e.g., sunglasses and scarf) can often appear in the query face image. In 

such case, the block in which outliers appear will have a big representation residual, reducing the role of 

clean blocks in the final classification. In short, the representation model in Eq. (11) is very sensitive to 

outliers [31].  

In order to make the kernel representation robust to block occlusion and disguises, we propose to adopt 

some robust fidelity term in the modeling. Denote by e = [e1, e2, …, eB] the representation residual vector, 

where ei is the kernel representation residual of the ith block, i.e., ( ) ( ) 2

2i i ie φ φ= −y A α . We assume that 

ei is independent from ej if i≠j since they represent the representation residuals of different blocks.  

The proposed robust kernel representation can then be formulated as 

min ( )ρ e
α

 s.t. 
pl

σ≤α  (12)

where ( )1
( ) B

ii
eρ ρ

=
=∑e  and the cost function ρ(⋅) is expected to be insensitive to the outliers in the query 

sample. Usually, we require that ρ(0) is the global minimal of ρ(x) and ρ(x1)> ρ(x2) if |x1|>|x2|. Without loss 

of generality, we let ρ(0)=0. 

Obviously, if we define the cost as ( ) ( )2
i ie eρ =  (i.e., 2

2
( )ρ =e e ), the robust kernel representation in 

Eq. (12) will be reduced to the normal kernel representation in Eq. (11). However, as shown in Fig. 3, this 

simple setting of ρ(x) will make the representation very sensitive to outliers because the cost (i.e., ρ(ei)) of 
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those representation residuals corresponding to outliers are often very big. We can also set ( )i ie eρ =  (i.e., 

1
( )ρ =e e ). As can be seen in Fig. 3, ( )i ie eρ =  is much less sensitive to outliers than ( ) ( )2

i ie eρ =  

since the absolute value of an outlier’s representation residual is less significant than its square. However, 

with ( )i ie eρ =  Eq. (12) is difficult to solve because |ei| is not differentiable, while |ei| is not bounded with 

ei, making ρ(ei) not robust enough to large outliers. Intuitively, if we can find a function ρ(ei) such as the 

blue curve in Fig. 3, which is differentiable and bounded when |ei| is big, then a good instantiation of the 

robust kernel representation in Eq. (12) can be implemented. 

 
Figure 3: Three typical settings of the cost function ρ(ei). 

 

3.3. Solution of the robust kernel representation 

After doing Taylor expansion of ρ(e) in the neighborhood of e0, an approximation of ρ(e) could be written as 

( )ρ e =
0

21 2

2

1
2

b+ eW e  
(13)

where 
0

be  is a scalar constant determined by e0, W is a diagonal matrix and its ith diagonal element is 

( ) ( ), 0, 0, 0,i i i i ie e eω ρ′= =W , ρ′ is the derivative of ρ, and e0,i is the ith element of e0. According to the 

property (i.e., ρ(x1)> ρ(x2) if |x1|>|x2|) of ρ, we could see that Wi.i is a positive scalar. Clearly, ω(⋅) can be 

viewed as a weight function applied to e. A good weight function should be robust to outliers, i.e., ω(ei) has 

big value when |ei| is small (e.g., blocks without outliers), and small value when |ei| is big (e.g., blocks with 

outliers). The widely used logistic function can be chosen as the weight function:  
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( ) ( )( )21 1 expi ie eω μ μδ= + −  (14)

The above weight function could effectively assign the outliers with big representation residual low weights, 

and assign inliers with small representation residual high weights (here the weight value is normalized to the 

range of [0, 1]). It should be noted that the weight values of each testing sample are estimated online, and 

there is not a training phase of them. The corresponding cost function ρ to the weight function in Eq. (14) 

will be differentiable and bounded, as the blue curve shown in Fig. 3. 

With the above development, the original robust kernel representation in Eq. (12) could be approximated 

by 

21 2

2
min W e
α

 s.t. 
pl

σ≤α  (15)

After some derivation, Eq. (15) could be rewritten as 

( ) ( ) 2

1 2
min B

i i ii
ω φ φ

=
−∑ y A

α
α  s.t. 

pl
σ≤α  (16)

where ωi is computed by Eq. (14) with ( ) ( ) 2
0 2i i ie φ φ= −y A α ，and α0 is an known coding coefficient 

vector. Here μ and δ are scalar parameters, which could be set as a constant value or automatically updated. 

μδ is usually set as 8 to make the weight close to 1 when ei=0, δ is set as the ⎣τB⎦ largest elements of the set 

{ 2
ie | i=1,…, B}, where ⎣τB⎦ outputs the largest integer smaller than τB, and τ is discussed in the section 4.1. 

With the defined kernel matrix KZZ and kernel vector kZν in Eq. (9), Eq. (16) could be re-written as 

( )1 1 1
ˆ arg min , 2

i i i i

B B BT T
i i i i ii i i
kω ω ω

= = =
= + −∑ ∑ ∑A A A yy y K k

α
α α α α  s.t. 

pl
σ≤α  (17)

From Eq. (17) we can see that the weighted-sum kernel terms, including ( )1
,B

i i ii
kω

=∑ y y , 
1 i i

B
ii

ω
=∑ A AK , 

and 
1 i i

B
ii

ω
=∑ A yk , could exploit the discrimination information in the mapped higher dimensional feature 

space; at the same time, the weight ωi can effectively remove the outliers’ effect on computing the coding 

vector. The coding vector α is regularized by lp-norm. In this paper, we discuss two important cases: p=1 for 

sparse regularization and p=2 for non-sparse regularization. When p=1, l1-norm minimization methods such 

as the efficient feature-sign search algorithm [40] could be used to solve the sparse coding problem of Eq. 

(17). When p=2, a closed-form solution of Eq. (17) could be derived as 

( ) 1

1 1
ˆ

i i i i

B B
i ii i

ω λ ω
−

= =
= +∑ ∑A A A yK I kα , where λ is the Lagrange multiplier. 
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Because the approximation of ( )ρ e (i.e., Eq. (13)) is the Taylor expansion of ρ(e) in the neighborhood 

of e0, the solving of robust kernel representation (Eq. (12)) is an iterative and alternative process: the weight 

value (i.e., ωi in Eq. (17)) is estimated via Eq. (14) with known coding coefficient, and then the coding 

coefficient is computed via Eq. (17) with known weight value. After getting the solution α̂  after some 

iterations, the classification of the query sample is done via 

{ },1
identity( ) min B

i i jij
ω ε

=
= ∑y  (18)

where ( ) ( ) 2

, , 2
ˆi j i i j jε φ φ= −y A α  is the ith-block kernel representation residual associated with the jth class, 

,1 ,2 ,, , ,i i i i c⎡ ⎤= ⎣ ⎦Α Α Α Α  with Ai,j being the sub-matrix of Ai associated with the jth class, and 

[ ]1 2ˆ ˆ ˆ ˆ= ; ; ; cα α α α  with ˆ jα  being the representation coefficient vector associated with the jth class. From 

Eq. (18) it can be seen that the classification criteria is based on a weight sum of kernel representation 

residuals, which utilizes both the discrimination power of kernel representation in high dimensional feature 

space and the insensitiveness of robust representation to outliers. In addition, the kernel representation 

residual, εi,j, could be rewritten as ( )
, , ,, ˆ ˆ ˆ, 2

i j i j i j i

T T
i j i i j j jkε = + −A A A yy y K kα α α . 

 
3.4 The algorithm 

The whole algorithm of the proposed statistical local feature based robust kernel representation (SLF-RKR) 

is summarized in Table 1. It includes three steps. The first step extracts the SLF using the proposed MPMP. 

The second step performs robust kernel representation, and the last step performs classification. Given the 

feature type (e.g., histogram of LBP) and the partition parameters of MPMP (e.g., S, ratios, Ps and Qs), the 

algorithm of SLF-RKR could be run. The second step is an iterative process. By experiments, we found that 

this process converges fast. For instance, when there is no occlusion, only 2 or 3 iterations are needed, and 

when there is occlusion in the query image, about 10 iterations can lead to a good solution. We denote by 

SLF-RKR_l1 and SLF-RKR_l2 the implementations of SLF-RKR model with l1-norm regularization and l2-

norm regularization, respectively. 

The time complexity of SLF-RKR mainly lies in MPMP based SLF extraction and solving the robust 

kernel representation. According to the characteristics of histogram feature, we can adopt the integral image 

method [53] to speed up MPMP based SLF extraction. For each pixel in a sub-block, only 2 additions are 
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needed in computing integral image and 3 additions are needed in computing histogram bin value. So the 

computing of each histogram bin for this sub-block needs 3hw(1-ratio)2 additions and 1 max operation, 

where h and w are the height and width of the sub-block, and ratio is the parameter of the sliding box. For 

the robust kernel representation, in the case of FR without occlusion, the weight ωi in each block could be 

fixed as 1. Since the matrix inverse in the closed-form solution (i.e., ( ) 1

1 1
ˆ

i i i i

B B
i ii i

ω λ ω
−

= =
= +∑ ∑A A A yK I kα ) 

of SLF-RKR_l2 could be computed offline, SLF-RKR_l2 with ωi=1 has time complexity of O(n2), where n is 

the number of training samples. The solution to SLF-RKR_l1 with ωi=1 can be obtained by standard sparse 

coding. The time complexity of l1-norm sparse coding with an m×n dictionary is about O(m2n1.5) [62], while 

the l1-norm minimizers such as the efficient feature-sign search algorithm [40] used in this paper can have a 

much faster speed in practice. Therefore for FR without occlusion, SLF-RKR_l2 with ωi=1 is much faster 

than SRC [10], while the time complexity of SLF-RKR_l1 with ωi=1 is similar to that of SRC [10]. 

For FR with occlusion or disguise, the weight ωi in each block needs to be updated online. In this case, 

the time complexity of SLF-RKR_l2 will increase to about T times of that of SLF-RKR_l2 with ωi=1, where 

T is the total number of iterations to update ωi. For SLF-RKR_l1 with updated weight, the step a) (i.e., 

weighted kernel representation with p=1) is an iterative process itself, and the steps b), c) and d) could be 

operated in each iteration of step a). Overall, the time complexity of SLF-RKR_l1 with updated weight is 

almost the same as that of SLF-RKR_l1 with ωi=1, since the former has almost the same solving procedure 

as the latter with only an additional step to update weight in each iteration. In FR with occlusion/disguise, 

SRC needs an additional occlusion matrix to code the occlusion, and thus its time complexity is very high. 

The running speed of SLF-RKR is very fast. Under the programming environment of Matlab version 

R2011a in a desktop of 1.86HHz CPU with 2.99G RAM, the running time of SRC (executed by the fast l1-

norm minimizer such as feature-sign search algorithm [40] or Dual ALM [61]) and SLF-RKR is compared 

in Table 2. In the experiment of AR database with 7 training samples per class (refer to Section 4.2 for the 

detailed experimental setting), the average running time of SLF-RKR_l2 and SLF-RKR_l1 is 0.0418 second 

and 0.1806 second, respectively; while the average running time of SRC is 0.1239 second. In the experiment 

of Extended Yale B with 50% occlusion (refer to Section 4.4 for the detailed experimental setting), the 

average running time of SLF-RKR_l2 and SLF-RKR_l1 is 0.8073 second and 0.8439 second, respectively, 

which are much less than that of SRC (1.8800 seconds). 
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Table 1: Algorithm of statistical local feature based robust kernel representation (SLF-RKR). 
 

Statistical Local Feature based Robust Kernel Representation (SLF-RKR) 

1. Extract statistical local features via multi-partition max pooling. 

2. Robust kernel representation: 

Initialize the weight in each block as 1: 1iω = . 

While not converge, Do 

a). Weighted kernel representation:  

( )1 1 1
ˆ arg min , 2 s.t.

i i i i p

B B BT T
i i i i i li i i
kω ω ω σ

= = =
= + − ≤∑ ∑ ∑A A A yy y K k

α
α α α α α  

b). Compute the reconstruction residual in each block: 

( ) ( ) ( )22
2

ˆ ˆ ˆ ˆ, 2
i i i i

T T
i i i i ie kφ φ= − = + −A A A yy A y y K kα α α α  

c). Estimate the weight value as 

( )( )21 1 expi ieω μ μδ= + − , 

where μ=8/δ, δ =ψ1(e)⎣τB⎦, ⎣τB⎦ outputs the largest integer smaller than τB, and ψ1(e)k is the kth 

largest element of the set { 2
je , j=1,…,B} [31]. 

d). Checking convergence condition: 

( ) ( )( ) ( )( )2 21 1t t t
i i ii i

ω ω ω γ− −− <∑ ∑ , 

where γ is a small positive scalar and ( )t
iω  is the weight value of block i in iteration t. 

End While 

3. Do classification: 

( ){ }, , ,1 1 1
ˆ ˆ ˆidentity min , 2

i j i j i j i

B B BT T
i i i j i j j ii i ij
kω ω ω

= = =
= + −∑ ∑ ∑A A A yy y K kα α α  

where Ai,j is the sub-matrix of Ai associated with the jth class and ˆ jα  is the representation coefficient vector 
associated with the jth class. 

 

Table 2: Average running time (second) of SLF-RKR and SRC. 

Method AR database Extended Yale B with 50% occlusion 
SLF+SRC 0.1239 1.8800 
SLF-RKR_l1 0.1806 0.8439 
SLF-RKR_l2 0.0418 0.8073 

 

4. Experimental Results 

In this section, we present experimental results on benchmark face databases to illustrate the effectiveness of 

our method. In section 4.1, we discuss the parameter setting. In section 4.2 we present the experimental 

results on Extended Yale B [58][20] and AR [21] databases captured in controlled environments. In section 

4.3 we demonstrate the robustness of SLF-RKR to pose variation and misalignment. Then in section 4.4, we 
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test FR against block occlusion and real disguise. Finally, the comprehensive evaluations on large-scale face 

databases, including FERET [22-23], FRGC [35] and LFW [32], are presented in section 4.5. 

4.1 Parameter setting 

The proposed SLF-RKR consists of two main procedures: feature extraction and robust kernel representation. 

If no specific instruction, the parameters of SLF-RKR are set as what shown in Table 3. In feature extraction, 

the histogram of LBP encoded on the raw image is used as the SLF, and the number of histogram bins for 

each sub-block is set to 16. In the proposed MPMP based SLF extraction, we set S=0, P0=5, and Q0=4 for 

FR with well aligned images. For FR with registration error (e.g., misalignment and pose), we set S=3, and 

(Ps, Qs)={(5,4), (3,2), (4,2), (2,1)} for s={0, 1, 2, 3}. In the procedure of robust kernel representation, the 

histogram intersection kernel [34] (i.e., ( ) { }, ,, min ,j k j l k ll
κ ν ν=∑ν ν  with νj,l and νk,l the lth entry of νj and 

νk, respectively) is used as the kernel function. In the online updating of weights, we set τ=0.6 for FR with 

occlusion and τ=0.8 for FR without occlusion. The Lagrange multiplier λ of SLF-RKR_l1 (refer to Eq. (17)) 

is set as 0.005, while the Lagrange multiplier λ of SLF-RKR_l2 is usually set as a larger value (e.g., 0.1) for 

l2-norm regularization is weaker than l1-norm regularization. 

 
Table 3: Parameter setting of SLF-RKR. 

Procedure  parameter setting 

Feature 
extraction 

MPMP P0=5, Q0=4 when S=0; 
(P0,Q0)=(5,4), (P1,Q1)=(3,2), 
(P2,Q2)=(4,2), (P3,Q3)=(2,1) when S=3. 

histogram bin number 16 

Robust kernel 
representation 

kernel function histogram intersection kernel 
weight update τ=0.6 for occlusion; τ=0.8 for non-occlusion 
Lagrange multiplier λ=0.005 (SLF-RKR_l1); λ=0.1(SLF-RKR_l2 ) 

 

4.2 Face recognition on Extended Yale B and AR 

We first evaluate the performance of the proposed algorithm on two representative face image databases 

captured in controlled environment: Extended Yale B [58][20] and AR [21]. The original SRC with holistic 

Eigenface feature [10] is used as the baseline method, and we then apply the proposed MPMP based SLF 

feature to SRC [10], CRC [33], Linear Regression for Classification (LRC) [38], histogram intersection 

kernel based Support Vector Machine (HISVM) and Nearest Neighbor (NN) with histogram intersection as 

its similarity measurement, and compare them with SLF-RKR. 
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1) Extended Yale B Database: The Extended Yale B database consists of 2,432 frontal-face images of 38 

individuals (each subject has 64 samples), captured under various laboratory-controlled lighting conditions 

[58][20]. For each subject, Ntr samples are randomly chosen as training samples and 32 of the remaining 

images are randomly chosen as the testing data. Here the images are normalized to 96×84 and the 

experiment for each Ntr runs 10 times. 

The FR results, including mean recognition accuracy and standard variance, of all the competing methods 

are listed in Table 4. The proposed SLF-RKR achieves the best performance, with more than 2% 

improvement over all the others when Ntr is small (e.g., 5, and 10). When 20 training samples are selected, 

an accuracy of 99.5% is achieved by SLF-RKR. It could also be seen that those methods based on 

collaborative representation (e.g., SLF-RKR, SLF+CRC, SLF+SRC and original SRC) are more powerful 

than other kinds of linear representation methods (e.g., SLF+LRC, SLF+NN). 

 
Table 4: Face recognition results (%) on Extended Yale B database. 

Ntr 5 10 20 
Original SRC [10] 80.0±0.82 91.4±0.70 97.3±0.49 
SLF+NN 59.7±1.70 76.8±1.30 89.7±0.87 
SLF+LRC 59.0±1.70 78.9±1.80 93.3±0.83 
SLF+HISVM 72.0±2.20 91.6±0.18 99.0±0.32 
SLF+CRC 83.0±1.90 95.5±0.88 99.2±0.32 
SLF+SRC 82.8±1.80 95.5±0.91 99.3±0.30 
SLF-RKR_l1 85.6±1.80 97.4±0.76 99.5±0.18 
SLF-RKR_l2 85.8±1.80 97.5±0.73 99.5±0.18 

 

2) AR database: The AR database consists of over 4,000 frontal images from 126 individuals [21]. For 

each individual, 26 pictures were taken in two separate sessions. As in [10], in the experiment we chose a 

subset of the dataset consisting of 50 male subjects and 50 female subjects. For each subject, the seven 

images with illumination change and expressions from Session 1 were used for training, and the other seven 

images with only illumination change and expression from Session 2 were used for testing. The size of 

original face image is 83×60. The recognition rates of all the competing methods versus different number 

training samples are listed in Table 5. In each test we selected the first Ntr training samples as the training 

data set. We could see that SLF-RKR achieves the highest recognition rates, followed by SLF+SRC and 

SLF+CRC. In all cases with less than 6 training samples, at least 2% improvement of SLF-RKR over other 

methods could be achieved. In this experiment, original SRC gets the worst results for that the holistic 
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features (e.g., Eigenfaces) has much less discrimination information than the statistical local feature (e.g., 

histogram of LBP) in dealing with variations of expression and time. 

 

Table 5: Face recognition results (%) on the AR database. 

Ntr 2 3 4 5 6 7 
Original SRC [10] 67.0 70.1 77.9 87.4 93.7 93.1 
SLF+NN 88.1 88.7 92.3 97.0 98.0 98.3 
SLF+LRC 83.3 82.7 85.0 90.0 93.7 94.3 
SLF+HISVM 86.7 87.0 90.6 94.1 96.6 96.6 
SLF+CRC 87.9 87.4 88.0 93.9 98.3 98.3 
SLF+SRC 87.6 88.0 89.9 95.7 98.7 98.8 
SLF-RKR_l1 90.1 91.0 92.4 97.0 99.4 99.4 
SLF-RKR_l2 90.6 91.1 92.0 97.4 99.4 99.4 

 

Apart from LBP, recently Tzimiropoulos et al. [63] utilized image gradient orientation as local feature to 

perform subspace learning for face recognition. The results in [63] show that image gradient orientation 

could lead to better performance than LBP. For example, with image gradient orientation feature, the 

recognition rate could be 95.65% on Extended Yale B by using 5 training samples per subject, while the 

recognition rate could be 98.66% on AR by using the first 4 training samples of session 1 per subject. From 

Table 4 and Table 5, we can see that the recognition rate of the proposed SLF-RKR could achieve 99.5% on 

Extended Yale B and 99.4% on AR by using LBP as its SLF. This clearly shows that the use of robust kernel 

representation significantly increases the recognition rates. Further improvement could be achieved for SLF-

RKR if image gradient orientation is used to design the statistical local feature. In addition, in this 

experiment the l1-norm regularization and l2-norm regularization in SLF-RKR lead to little difference in the 

recognition rates, but the later has much less time complexity.  

 
4.3 Robustness to misalignment and pose 

In this section, we test the robustness of the proposed method to local deformation, including image 

misalignment introduced by face detector and pose variation. Here the number of histogram bin in each sub-

block is set to 30. 
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Table 6: Face recognition rates (%) on the MPIE databases with misalignment. The numbers in round brackets show 
the recognition rates of SLF-RKR without MPMP. 

 
Session  Session 2 Session 3  Session 4 
Original SRC 33.6 36.3 35.3 
SLF+NN 66.0 67.0 64.7 
SLF+LRC 60.8 60.4 58.1 
SLF+HISVM 67.6 66.6 64.3 
SLF+CRC 77.1 74.7 74.0 
SLF+SRC 80.2 77.3 77.4 
SLF-RKR_l1 84.5(81.4) 83.3(80.2) 82.6(79.0) 
SLF-RKR_l2 84.3(79.5) 82.1(78.4) 80.8(75.0) 

 

 
1) Large-scale Multi-PIE database: The CMU Multi-PIE database [41] contains images of 337 subjects 

captured in four sessions with simultaneous variations in pose, expression, and illumination. In the 

experiments, all the 249 subjects in Session 1 were used. For the training set, we used the 7 frontal images 

with illuminations {0,1,7,13,14,16,18} and neutral expression. For the testing sets, 10 typical frontal images 

of even-number illuminations taken with neutral expressions from Session 2 to Session 4 were used. Here 

the training samples are cropped and normalized to 90×72 based on the coordinates of manually located eye 

centers; while the testing samples are automatically detected using Viola and Jone’s face detector [53] 

without manual intervention, and thus there are often some misalignments in the testing samples. 

Table 6 lists the results of all the competing methods. It can be seen that the proposed SLF-RKR achieves 

the highest recognition rates, with at least 4%, 5% and 3% improvements than all the other methods in 

Session 2, Session 3 and Session 4, respectively. The original SRC with Eigenfaces gets the worst 

recognition rates, much lower than SLF+SRC. This validates that SLF is robust to misalignment to some 

extent. Collaborative representations (e.g., CRC and SRC) combined with SLF could have about 10% 

improvements over other kinds of classifiers (e.g., HISVM, LRC and NN). In addition, SLF-RKR_l1 slightly 

outperforms SLF-RKR_l2 in this experiment. In order to show the effectiveness of MPMP, we also give the 

recognition rate of SLF-RKR without the step of MPMP in Table 6. One can see that even without MPMP, 

SLF-RKR_l1 still outperforms SLF+SRC by 1.9% in average, while SLF-RKR_l2 outperforms SLF+CRC by 

2.3%. It can also be observed that the improvement introduced by MPMP is over 3% in each session, which 

clearly show the effectiveness of the proposed MPMP in dealing with misalignment. 

2) FERET pose database: In this experiment we use the FERET pose dataset [22-23], which includes 

1,400 images from 198 subjects (about 7 each). This subset is composed of the images marked with ‘ba’, 

‘bd’, ‘be’, ‘bf’, ‘bg’, ‘bj’, and ‘bk’. Some sample images of one person are shown in Fig. 4. Four tests with 
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4.4 Robustness to occlusion and disguise 

Facial occlusion and disguise are very challenging issues in FR. One interesting property of SRC [10] is its 

robustness to face occlusions. In this section, we test the performance of SLF-RKR to various occlusions, 

including block occlusion and real disguise. In SLF-RKR, the robustness to occlusion mainly comes from its 

iterative reweighed kernel robust representation. In this section the weight W in each block is automatically 

updated. The state-of-the-art methods to deal with face occlusion, including the robust version of SRC [10] 

(i.e., using l1-norm to characterize the representation residuals), kernel version of SRC (KSRC) [28] (i.e., 

using RBF kernel to map the original feature to a higher dimensional feature space), kernel version of CRC 

(KCRC), and Robust Sparse Coding (RSC) [31], are employed to compare with SLF_RKR. 

1) FR with random block occlusion: In the database of Extended Yale B [58][20], we chose Subsets 1 and 

2 (717 images, normal-to-moderate lighting conditions) for training, and Subset 3 (453 images, more 

extreme lighting conditions) for testing. Similar to the settings in [10], we simulate various levels of 

contiguous occlusion, from 0% to 60%, by replacing a randomly located square block of each testing image 

with an unrelated image, as illustrated in Fig. 5, where (a) shows a face image with 30% block occlusion and 

(b) shows a face image with 40% block occlusion. Here the location of occlusion is randomly chosen for 

each image and is unknown to each algorithm, and the image size is normalized to 96×84. 

Table 8 lists the FR results versus various levels of occlusions. Here λ of SLF-RKR_l1 is set as 0.1. From 

Table 8, we can see that almost all methods could correctly classify all the testing samples when occlusion 

level is from 0% to 20%. However, when occlusion percentage is larger than 20%, the advantage of SLF-

RKR over other methods becomes significant. For instance, when occlusion is 50%, SLF-RKR could 

achieve at least 94% recognition accuracy, compared to at most 87.4% for other methods. For SLF-RKR_l1, 

when there is 60% block occlusion, it can still achieve a recognition rate of over 84%. This clearly 

demonstrates the effectiveness of the proposed SLF-RKR method to deal with face occlusion. In addition, 

both KCRC and KSRC could get better performance than CRC, but worse performance than SRC and SLF-

RKR. This is because the l1-norm fidelity term of the robust version of SRC can deal with outliers to some 

extent; however, the RBF kernel is sensitive to signal’s outliers. 
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 (a)    (b) 

Figure 5: The examples of face images with occlusion: (a) 30% block occlusion; (b) 40% block occlusion. 
 

 

Table 8: Face recognition rates (%) of different methods under different levels of block occlusion. 

Occlussion 0% 10% 20% 30% 40% 50% 60% 
Robust SRC[10] 100 100 99.8 98.5 90.3 65.3 27.8 
RSC [31] 100 100 100 99.8 96.9 87.4 60.8 
SLF+NN 100 100 100 98.9 96.0 85.9 57.4 
SLF+LRC  100 100 98.9 96.0 89.8 69.5 35.3 
SLF+HISVM 100 99.6 98.7 97.8 90.3 77.5 52.3 
SLF+CRC 100 99.8 98.7 93.6 85.4 61.8 33.6 
SLF+KCRC 100 100 99.1 96.9 88.5 66.4 34.7 
SLF+SRC 100 100 99.8 98.0 95.1 82.3 50.6 
SLF+KSRC 100 99.8 98.0 94.9 88.5 67.3 36.0 
SLF-RKR_l1 100 100 99.6 99.6 99.6 96.7 84.8 
SLF-RKR_l2 100 100 99.6 99.6 98.5 94.0 77.9 

 

2) FR with disguise: A subset of 50 males and 50 females are selected from the AR database [21]. For 

each subject, 7 samples without occlusion from session 1 are used for training, with all the remaining 

samples with disguises for testing. These testing samples (including 3 samples with sunglass in Session1, 3 

samples with sunglass in Session 2, 3 samples with scarf in Session 1 and 3 samples with scarf in Session 2 

per subject) not only have disguises, but also have variations of time and illumination. Here the image size is 

normalized to 83×60. Table 9 lists the FR results on the four test sets with disguise. It can be seen that in the 

two tests of Session 1, the proposed methods achieve 100% recognition accuracy, much higher than the 

state-of-the-art results reported in literature, for examples, 83.3% (Sunglass-S1) and 48.7% (Scarf-S1) for 

original SRC, and 94.7% (Sunglass-S1) and 91.0% (Scarf-S1) for RSC. In the two tests of Session 2, the 

improvement of SLF-RKR over all the other methods is at least 6%, which clearly shows the superior 

classification ability of SLF-RKR. The SLF-RKR_l1 is slightly better than SLF-RKR_l2 in the tests of 

Session 2, which again shows that l1-norm regularization could introduce more discrimination into the 

coding coefficients but at the price of speed. For large-scale database, SLF-RKR_l2 can be a good candidate 

to balance the recognition accuracy and running speed. In addition, like in the experiments of FR with block 

occlusion, one can see that KCRC and KSRC have lower recognition rates than SLF-RKR and SRC since 

the standard RBF kernel is not robust to outliers. 
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Table 9: Face recognition rates (%) on the challenging datasets with real disguise. 

 Sunglass-S1 Scarf-S1 Sunglass-S2 Scarf-S2 
Robust SRC [10] 83.3 48.7 49.0 29.0 
RSC [31] 94.7 91.0 80.3 72.7 
SLF+NN 98.7 98.0 82.3 88.7 
SLF+LRC 96.7 92.0 68.7 68.7 
SLF+HISVM 97.0 95.7 70.3 78.7 
SLF+CRC 99.7 98.7 80.3 86.7 
SLF+KCRC 100 98.3 82.7 88.0 
SLF+SRC 100 99.0 85.0 90.7 
SLF+KSRC 100 98.3 84.0 86.7 
SLF-RKR_l1 100 100 93.0 97.6 
SLF-RKR_l2  100 100 91.3 96.0 

 
 

4.5 Face recognition on large-scale face database 

Finally, we verify the performance of SLF-RKR on three large scale face databases: FERET [22-23], FRGC 

[35] and LFW [32]. To demonstrate the effectiveness of SLF-RKR, we also report the results of KSRC and 

KCRC with RBF kernel. Considering that SLF-RKR_l2 has similar recognition accuracy to SLF-RKR_l1 but 

has much lower time complexity, in this section we only report the results of SLF-RKR_l2. We update the 

weight of SLF-RKR_l2 and set the number of histogram bin in each sub-block as 30. 

1) FERET database: The FERET database [22-23] is often used to validate an algorithm’s effectiveness 

because it contains many kinds of image variations. By taking Fa subset as a gallery, the probe subsets Fb 

and Fc were captured with expression and illumination variations (the images in Fc were captured by a 

different camera). Especially, Dup1 and Dup2 consist of images that were taken at different times. For some 

people, more than two years elapsed between the gallery set and Dup1 or Dup2 set. 

The image size is normalized to 150×130. Table 10 lists the FR results of competing methods. Because 

each subject in the gallery set has only one training sample, the LRC is equivalent to NN so that we only 

report the result of NN classifier. The proposed SLF-RKR_l2 achieves the best performance in all tests. 

Especially, it achieves much higher performance than the competitors on Dup 1 and Dup 2. The proposed 

RKR has 7.5% and 5.1% average improvement over CRC and SRC, respectively. Standard kernel (e.g., RBF) 

could improve the performance of CRC and SRC, but still 6.1% and 3.5% lower than SLF-RKR_l2 in 

average. It is also interesting that the collaborative representation based classifiers (e.g., SRC, CRC, KSRC, 

KCRC, and RKR) still have much higher recognition rates than NN and HISVM in the case that each subject 

has only one training sample.  

 
 
 



24 
 

Table 10: Face recognition rates (%) on FERET database. 
 

Method  Fb Fc Dup1 Dup2 
SLF+NN 94.6 50.5 59.7 45.7 
SLF+HISVM 95.3 54.6 61.8 41.9 
SLF+CRC 98.1 85.1 74.4 60.3 
SLF+KCRC 98.2 87.1 75.1 63.2 
SLF+SRC 98.2 85.6 77.7 66.2 
SLF+KSRC 98.3 88.6 78.3 68.8 
SLF-RKR_l2 99.2 89.2 81.9 77.8

 

Another widely used statistical local feature is the histogram of LBP encoded on the Gabor magnitude 

[45]. In addition, the block based Fisher’s linear discriminant (BFLD) proposed in [48] has shown powerful 

ability to extract the discriminative low-dimensional feature in each block. Therefore, here we compare the 

proposed SLF-RKR (using Gabor magnitude based SLF) with the state-of-the art methods on FERET 

database. The feature dimensionality extracted by BFLD in each block is set to 400 and Gaussian kernel 

( ) { }2 2

2
, exp 2j k j kκ ξ= − −ν ν ν ν  is used in SLF-RKR. The results of SLF-RKR_l2, SLF+NN, SLF+SVM 

and other state-of-the-art methods are listed in Table 11. It shows that the proposed SLF-RKCR_l2 not only 

outperforms SLF+NN and SLF+SVM in all cases, but also has better performance than the best methods 

reported in literature. Especially, SLF-RKCR_l2 has recognition accuracies of 96.3% and 94.4% in Dup1 

and Dup2, respectively, which may be the best results so far. 

 
 

Table 11: Face recognition rates (%) of SLF-RKR and other state-of-the-art methods on the FERET database. 
 

Method Fb Fc Dup1 Dup2 
SLF+NN 99.7 98.5 92.8 91.0 
SLF+SVM 99.7 98.5 92.8 91.0 
Tan’s [14] 98.0 98.0 90.0 85.0 
Zou’s [15] 99.5 99.5 85.0 79.5 
Xie’s [48] 99.0 99.0 94.0 93.0 
SLF-RKR_l2  99.7 99.5 96.3 94.4 

 

2) FRGC 2.0: FRGC version 2.0 [35] is a large-scale face databases designed with uncontrolled indoor 

and outdoor settings. We use the subset (352 subjects having no less than 15 samples in the original target 

set) of Experiment 4, which is the most challenging dataset in FRGC 2.0 with large lighting variations, 

ageing and image blur. Some examples are shown in Fig. 6. The selected target set contains 5,280 samples, 

and the query set has 7,606 samples. The image is normalized to 168×128. The feature dimensionality 

extracted by BFLD in each block is set to 220 and Gaussian kernel is used in SLF-RKR. 
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Three tests with 5, 10 and 15 target samples for each subject are made in the experiments. The 

recognition rates of SLF+NN, SLF+LRC, SLF+HKSVM, SLF+CRC, SLF+SRC, SLF+KCRC, SLF+KSRC, 

and the proposed SLF-RKR are listed in Table 12. Again, SLF-RKR performs the best, though the 

improvement is not significant since there are no occlusion, misalignment and pose variations in the query 

set. 

 

     
(a) (b) 

Figure 6: Samples of FRGC 2.0. (a) and (b) are samples in target and query sets, respectively. 

 

Table 12: Face recognition result (%) with Gabor magnitude based SLF on the FRGC database. 
 

Method 5 10 15 
SLF+NN 0.948 0.966 0.974 
SLF+SVM 0.676 0.742 0.797 
SLF+LRC 0.951 0.969 0.977 
SLF+CRC 0.946 0.967 0.976 
SLF+KCRC 0.942 0.965 0.973 
SLF+SRC 0.948 0.970 0.977 
SLF+KSRC 0.952 0.974 0.980 
SLF-RKR_l2 0.955 0.976 0.981 

 

3) LFW: Labeled Faces in the Wild (LFW) [32] is a large-scale database of face photographs designed 

for unconstrained FR with variations of pose, illumination, expression, misalignment and occlusion, etc. 

Some examples are shown in Fig. 7. Two subsets of aligned LFW [24] are used in the experiments. In subset 

1 (LFW6) which consists of 311 subjects with no less than 6 samples per subject, we use the first 5 samples 

as training data and the remaining samples as testing data. In subset 2 (LFW11) which consists of 143 

subjects with no less than 11 samples per subject, we use the first 10 samples as training data and the 

remaining samples as testing data. 

 

  
(a) (b) 

Figure 7: Samples of LFW. (a) and (b) are samples in training and testing sets, respectively. 
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Table 13 lists the FR results of competing methods with the MPMP based SLF. The image is normalized 

to 127×116. We can see that SLF-RKR still achieves the best performance. Compared with the second best 

method, SLF+KCRC/SLF+KSRC, the improvements of SLF-RKR are about 6% in LFW6 and 3% in 

LFW11, respectively, which clearly demonstrates the powerful classification ability of the proposed robust 

kernel representation. 

 
Table 13: Face recognition rates (%) on the LFW database. 

 
Method SLF+ 

NN 
SLF+ 
LRC 

SLF+ 
HISVM 

SLF+ 
SRC 

SLF+ 
KSRC 

SLF+ 
CRC 

SLF+ 
KCRC 

SLF-
RKR_l2 

LFW6 0.302 0.338 0.443 0.535 0.555 0.540 0.549 0.619 
LFW11 0.459 0.529 0.630 0.755 0.779 0.768 0.788 0.819 

 

 

5. Conclusion 

In this paper, we proposed a statistical local feature based robust kernel representation (SLF-RKR) model for 

face recognition. A robust representation model to image outliers (e.g., occlusion and real disguise) was built 

in the kernel space, and a multi-partition max pooling technology was proposed to enhance the invariance of 

local pattern feature to image misalignment and pose variation. We evaluated the proposed method on 

different conditions, including variations of illumination, expression, misalignment and pose, as well as 

block occlusion and disguise occlusion. One big advantage of SLF-RKR is its high face recognition rates 

and robustness to various occlusions. The extensive experimental results demonstrated that SLF-RKR is 

superior to state-of-the-arts and has great potential to be applied in practical face recognition systems. 
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