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Evaluation of Segmentation Quality via Adaptive
Composition of Reference Segmentations

Bo Peng, Lei Zhang, Xuanqin Mou, and Ming-Hsuan Yang

Abstract—Evaluating image segmentation quality is a critical step for generating desirable segmented output and comparing
performance of algorithms, among others. However, automatic evaluation of segmented results is inherently challenging since image
segmentation is an ill-posed problem. This paper presents a framework to evaluate segmentation quality using multiple labeled
segmentations which are considered as references. For a segmentation to be evaluated, we adaptively compose a reference
segmentation using multiple labeled segmentations, which locally matches the input segments while preserving structural consistency.
The quality of a given segmentation is then measured by its distance to the composed reference. A new dataset of 200 images,
where each one has 6 to 15 labeled segmentations, is developed for performance evaluation of image segmentation. Furthermore, to
quantitatively compare the proposed segmentation evaluation algorithm with the state-of-the-art methods, a benchmark segmentation
evaluation dataset is proposed. Extensive experiments are carried out to validate the proposed segmentation evaluation framework.

Index Terms—image segmentation evaluation, segmentation quality, image segmentation dataset
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1 INTRODUCTION

IMAGE segmentation aims to localize object boundaries
in accordance to human visual interpretation. It is

inherently an ill-posed problem since there exist mul-
tiple plausible segmentations for the same input image
[46]. As numerous segmentation algorithms have been
developed in the past decades, quantitative evaluation of
segmentation results has become a crucial problem for
performance evaluation. In addition, proper parameter
values can be determined based on reliable quantitative
evaluation of image segmentation.

Evaluation methods of machine segmentation can be
categorized based on whether human labeled segmenta-
tions are used as references or not. In the first category,
one or more human labeled segmentations of an image
are used as references [4], [46], [28], [44], [45], [24]
to compute the degree of similarity (or difference) as
quality scores. While in the second category, criteria
of desired segmentations are defined (without using
labeled segmentations) and used to measure the quality
of input segmentations [6], [53], [38], [10]. The criteria
are usually generalized from common characteristics
or semantic information of objects (e.g., homogeneous
regions and smooth boundaries) although they may not
accurately describe complex objects in natural images.
In this work we focus on methods based on reference
segmentations labeled by humans.
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In most reference-based segmentation evaluation
methods [4], [46], [28], [44], [45], [24], each element
(e.g., a pixel, a region) in the given segmentation is
equally compared to its counterparts in all the labeled
segmentations, and the average is often used as the
quantitative score. However, human visual system tends
to focus on structural information from natural scenes
[50], and a good measure should take visual perception
into account. In addition, it is known that different
observers may pay attention to different regions in an
image [28], [29], and multiple human labeled segmenta-
tions reflect different levels of perceived details. Thus,
human labeled segmentations of an image are rarely
identical on the holistic scale, but more consistent in
terms of local structures. Consequently, evaluation of
image segmentation should rely more on local structures.
On the other hand, using more labeled segmentations as
references is likely to facilitate fair evaluation. However,
generating reference segmentations is time-consuming,
and in practice only a few human-labeled results are
available at our disposal. The limited number of labeled
results likely leads to certain bias on segmentation eval-
uation, and likewise the problem with object boundary
localization errors is exacerbated [28].

To address the above-mentioned problems, we pro-
pose a novel algorithm to evaluate segmentation quality
based on multiple segmentations labeled by humans1.
The main idea of this work is illustrated in Figure 1.
Given an input (Figure 1(a)), an image segmentation
(Figure 1(b)) is generated by an algorithm, which is
not identical to any of the labeled segmentations by
humans (Figure 1(d)). While the segments of the good
segmentation are different from the labeled segmenta-
tions on the holistic scale, they are similar in terms of

1. Preliminary results of this work are presented in [33].
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Fig. 1. An illustrative example between a machine segmentation and labeled segmentations by humans. (a) An input
image. (b) An image segmentation of (a). (c) Different parts (shown in different colors) of the segmentation in (b) are
similar to those segments labeled by humans in (d). In order to better evaluate image segmentation algorithms, it is
important to have a good reference segmentation composed from labeled segments by humans.

Fig. 2. Proposed evaluation framework based on adaptive composition of the reference segmentation.

local structures (i.e., the parts of Figure 1(b) are shown
in Figure 1(c) with different colors, and they are similar
to the segments labeled by humans in Figure 1(d)).
Motivated by this observation, we propose to construct a
reference segmentation which generalizes configurations
of the labeled segmentations while preserving structural
consistency. The underlying assumption of this work
is that if an image segmentation is good, it can be
composed by pieces of the labeled results.

Given an image, the composed reference segmentation
should locally match the input segmentation as much as
possible. Notice that in Figure 1(c), the matched regions
between the input segmentation and human labeled
results are in irregular shapes and thus the composition
process is data-driven. Figure 2 illustrates the main
steps of the proposed segmentation evaluation frame-

work. For an input segmentation, a composed reference
segmentation is adaptively constructed based on the
labeled segmentations in the dataset. The quality score
is computed based on the proposed similarity measure
between the pair of input segmentation and composed
reference segmentation.

The second contribution of this work is that a new
benchmark dataset is constructed for evaluating seg-
mentation quality. The developed dataset is motivated
by the Berkeley segmentation database (BSDS500) [29]
which contains 500 source images and each has 4 to
9 (5.4 on average) segmentations labeled by humans.
The proposed dataset consists of 200 source images and
most of them have 8 to 13 (10.7 on average) labeled
segmentations. In addition, the proposed dataset consists
of objects from more diverse categories.
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We note that in some existing large-scale databases
such as MS-COCO [25] and KITTI [19], the images
are labeled based on the given object categories, and
only one human labeled segmentation is provided for
each image. These datasets are developed for high-
level vision tasks, such as object detection, recognition,
and tracking. In contrast, the BSDS500 and proposed
datasets are not constrained to object categories and they
contain multiple pixel-wise labeled segmentations in an
image, which can be used for image segmentation and
boundary detection tasks considered in this work.

Another important contribution of this work is that a
dataset is constructed to quantitatively compare different
segmentation evaluation methods. The proposed evalu-
ation dataset is composed of 500 pairs of segmentations
generated by state-of-the-art segmentation algorithms
such as the efficient graph-based algorithm [16] and
mean-shift based method [11]. Each pair of segmentation
results is evaluated by human subjects. To the best of our
knowledge, this dataset is the largest segmentation eval-
uation set in the literature in terms of number of images,
diversity of objects, and number of human judgment per
segmentation.

2 RELATED WORK
In this work, a segmentation describes image regions
where pixels have similar properties (e.g., Figure 1 (b)).
These segmentations can be either generated by algo-
rithms or annotated by humans. A segmentation consists
of several segments (or regions) which are described by
their boundaries. We review the representative reference-
based segmentation evaluation methods. These methods
are designed to measure the similarity or difference be-
tween an input segmentation and labeled segmentations
based on regions, pixels, or boundaries.

2.1 Region-based methods
An image segmentation can be viewed as a collection of
connected but exclusive regions (or segments). Region-
based methods compute similarity measures in terms of
differences or affinities between two segmentations. For
example, the region-based measure in [22] uses the direc-
tional Hamming distance to compute discrepancy of two
segmentations. The Local Refinement Error (LRE) and
Global Consistency Error (GCE) [28] measure to which
degree the segmentations S1 and S2 agree with each
other. Let R(S, pi) be the set of pixels in segmentation
S that are in the same region as pixel pi, the LRE is
defined as:

E(S1, S2, pi) =
|R(S1, pi) \R(S2, pi)|

|R(S1, pi)|
, (1)

where | · | is the cardinality of a set, and \ denotes set
difference. The GCE is defined as:

GCE(S1, S2) =
1

N
min{

∑
i

E(S1, S2, pi),
∑
i

E(S2, S1, pi)}, (2)

where N is the total number of pixels in S1. While
the GCE measure accommodates refinements at different
granularities, this measure suffers from degenerate cases
(e.g., when there are few pixels in a segment) [29].

The Segmentation Covering (SC) [4] measures the sim-
ilarity between segmentations by weight averaging the
overlaps of regions in two segmentations. The covering
of a segmentation S2 by a segmentation S1 is defined by

C(S1 → S2) =
1

N

∑
R∈S1

|R| · max
R′∈S2

|R ∩R′|
|R ∪R′|

, (3)

where R and R′ are regions in S1 and S2, respectively.
Instead of using a single measure, multiple mea-

sures can be used to quantify segmentation quality.
The approach in [14] performs evaluation in a multi-
dimensional fitness (cost) space with multiple measures.
In [21], five instances of segmentation are defined, from
which the corresponding measures are designed for
evaluation.

By considering a region as a cluster of image pixels,
comparison of clusters can be used for segmentation
evaluation. Meila [30] proposed an information-theoretic
distance of clusters. For segmentations, this distance
can be interpreted as the average conditional entropy
of one segmentation given the other. The Variation of
Information (VOI) measure is defined as:

V OI(S1, S2) = H(S1|S2) +H(S2|S1), (4)

where H and I respectively denote the entropy and
mutual information of the given segmentation S1 and
human labeled segmentation S2. If two segmentations
are identical, the VOI value is zero. The upper bound of
VOI is finite and depends on the number of elements in
the segments. Since clustering has been extensively stud-
ied in machine learning, various measures of difference
[24] or similarity [47] between clusters can be adopted
for segmentation evaluation.

2.2 Pixel-based methods
Significant efforts have been made to design measures
for the pair-wise comparisons between a segmented im-
age and multiple human labeled segmentations [36], [17],
[44], [45], [46], [24]. The Probabilistic Rand Index (PRI)
[46] defines correctness of segmentations by a statistical
function. Suppose that I(lSi = lSj ) is a binary function
on the labels of each pair of pixels (xi, xj), the PRI is
defined as:

PRI(S, {Sk}) =
1(
N
2

) ∑
i,j,i 6=j

[I(lSi = lSj )pij + I(lSi 6= lSj )(1− pij)], (5)

where N is the number of pixels, {Sk} is the set of
labeled segmentations, and pij is the probability that the
labels of (xi, xj) are the same. In practice, the mean pixel
pair relationship in all labeled segmentations is used to
compute pij and the range of PRI is within [0, 1]. A score
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of zero indicates that the labeling of a test segmentation
is completely opposite to that of the labeled segmenta-
tion, while a score of 1 indicates that the labels of input
segmentation and labeled segmentations are the same
on every pixel pair. This measure accommodates region
refinements appropriately as it accepts refinements only
in regions that human observers find ambiguous. The
Normalized Probabilistic Rand (NPR) index [46] extends
the PRI measure and allows one to compare segmenta-
tions between different images. Specifically, it normalizes
PRI with the expected values of input images so that
NPR is zero-mean with larger range than PRI.

2.3 Boundary-based methods
Boundary-based quality measures have also been pro-
posed in recent years. The Boundary Displacement Error
(BDE) [18] defines the error of one boundary pixel as
the distance to the closest pixel in the other boundary
image. A near-zero mean and a small standard devia-
tion indicate good quality of the segmentation. The F-
measure can be applied to both region-based [3], [34]
and boundary-based [28] evaluation. In particular, a
precision-recall framework is introduced in [28], where
a combination of precision and recall leads to the F-
measure as below:

F =
PR

τR+ (1− τ)P
, (6)

where τ is a relative cost between precision P and recall
R. Other discrepancy methods in this category can be
found in [7], [31], [13], [42].

2.4 Evaluation with multiple references
While all the measures introduced above can be used
for evaluating the segmentation quality, little attention
has been paid to how to effectively utilize the multiple
human labeled segmentations. Most existing methods
compute the quality score by each of the reference
segmentations and output the average. For example,
the methods based on Mutual Information [49], Mean
Square Error [51], Segmentation Covering [4], Probabilis-
tic Rand Index [36] and Recall Curves [28] holistically
compare an input segmentation with a collection of
references, and compute the average matching result as
the final score. On the other hand, the method based
on Precision Curves [28] computes the fraction of a
segmentation that matches any of the references for
evaluation. Since the human visual system (HVS) tends
to perceive local structures of an image, these measures
may not be appropriate for perceptual evaluation of
segmentation quality.

3 COMPOSING REFERENCE SEGMENTATIONS

Numerous methods have been proposed to process im-
ages based on composite pieces [39], [2], [27], [9], [12],
[23]. When there is no image in the template set that is

holistically similar to an input image, Russell et al. [39]
use a composition of templates for scene segmentation.
The composition of figure-ground segments of an image
[27], [9], [12], [23] can generate plausible segmentation
on multiple scales. The approach of combining parts
from different photographs into one single composite
picture [2], [5] can be applied to many editing tasks,
such as relighting, extended depth of field, panoramic
stitching, detection of saliency, etc. In this work, we
propose to compose a reference segmentation based on
labeled segmentations for evaluating a given segmenta-
tion. Each composed reference is not only adaptive to
a given segmentation, but also structurally consistent to
the labeled segmentations. The composition is carried
out on the segmentation maps instead of the original
image. To the best of our knowledge, the proposed
framework is the first one that generalizes and infers
the labeled segmentations for evaluation.

3.1 Proposed algorithm

Image segmentation can be considered as a labeling
problem. Consider a set of human labeled segmentations
G = {G1, G2, . . . , GK} of an image X = {x1, x2, . . . , xN},
where Gi = {gi1, gi2, . . . , giN} denotes a set of labels for
each pixel in X , i = 1, . . . ,K, and N is the number
of pixels in the image. Let S = {s1, s2, . . . , sN} be
a given segmentation of X , where sj is the label of
xj , j = 1, . . . , N . For image segmentation, labels are
values that indicate the class a pixel belongs to, e.g.,
a binary value as the boundary or the non-boundary.
Refer to Figure 2, to examine the similarity between
S and G, we compute the similarity between S and a
new reference segmentation G∗, G∗ = {g∗1 , g∗2 , . . . , g∗N},
which is generated from G based on S. We construct
G∗ by putting together pieces from G, i.e., each piece
g∗j ∈ {g1j , g2j , . . . , gKj }. Clearly, one primary challenging
factor is how to reduce the artifacts in the process of
selecting and fusing image pieces. The pieces of the
composed reference should be integrated seamlessly to
maintain consistency of image contents. Our principle
is that each one of g∗j should be most similar to its
counterpart in S with the structural consistency con-
straints across multiple labeled segmentations. Once G∗

is constructed, the quality of segmentation S is evaluated
by computing the similarity between S and G∗.

A reference segmentation G∗ is a geometric ensemble
of local pieces from the set G. We use an optimistic
strategy to choose the element g∗j , by which S will match
G as much as possible. To construct a reference segmen-
tation G∗, we introduce a labeling set L = {lgj |lgj ∈
{1, . . . ,K}}. For each g∗j , lgj indicates the reference index
where it is selected from. G∗ is generated by firstly
computing the labeling set {lg1 , lg2 , ..., lgN }, then g∗j is set
to be boundary or non-boundary according to the value
of gli. Figure 3 illustrates how to construct a reference
segmentation G∗ for part of a segmentation (in the red
rectangle). Given two human labeled segmentations G1
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and G2, the labeling set L = {lG1
= 1, lG2

= 2} is
computed based on S. Then, we assign elements of G∗ to
the class label at the corresponding location in G1 or G2.
This leads to the maximum similarity match between S
and G∗.

Fig. 3. An example to compose a reference segmentation
for segmentation S with labeled segmentations G1 and
G2. The optimal labelings lG1

, lG2
of G1 and G2 generate

a reference segmentation G∗, which matches S closely.

For multiple references, the labeling set can be an arbi-
trary finite set, e.g., L = {1, 2, . . . ,K}. Let l = {lg|lg ∈ L}
denote a labeling, i.e., label assignments to all elements
in G∗. We formulate the labeling problem in terms of
energy minimization, and seek for the labeling l that
minimizes the energy. We propose an energy function
that follows the Potts model [35]:

E(l) =
∑
j

D(lgj )+λ·
∑

{gj ,gj′}∈M

u{gj ,gj′}·T (lgj 6= lgj′ ). (7)

The first part D(lgj ) of this energy function is the data
term, which penalizes the decision of assigning lgj to
element g∗j , and can be considered as the measure of dif-
ference. Suppose that the normalized distance between a
reference G and segmentation S is ∆d(sj , gj), we define:

D(lgj ) = ∆d(sj , gj). (8)

The second part u{gj ,gj′} · T (lgj 6= lgj′ ) of (7) indicates
the cost of assigning different labels to the pair of
elements {gj , gj′} in G∗. In (7), M is a neighborhood
system, and T is an indicator function:

T (lgj 6= lgj′ ) =

{
1 if lgj 6= lgj′
0 otherwise.

(9)

The smoothness term of (7) encourages the elements
in the same region to have the same labels, and thus the
consistency of neighboring structures can be preserved.
It is expected that separation of regions incurs higher
cost on the elements which appear in fewer labeled
segments and lower cost otherwise. We define u{gj ,gj′}
as:

u{gj ,gj′} = min{∆dj ,∆dj′}, (10)

where ∆dj is the average distance between g∗j and
{g1j , g2j , . . . , gKj }.

The optimization problem in (7) is NP-hard and we
adopt the expansion moves and swap moves algorithm
[8] to solve it. The algorithm computes the minimum
cost multi-way cuts on a defined graph. Nodes in the
graph connect to their neighbors by n-links and each is
assigned a weight u{gj ,gj′} defined in the energy function
(7). Suppose that we have K labeled segmentations, then
K virtual nodes are created in the graph. Each graph
node connects to the K virtual nodes by t-links. We
weight the t-links as D(lgj ) to measure the similarity
between the graph nodes and the virtual nodes. The K-
way cuts divide the graph into K parts, and generate a
one-to-one correspondence to the labeling of the graph.

The parameter λ in (7) controls the relative importance
of the data and smoothness terms. If λ is small, only
the data term matters and the label of each element
is independent of other elements. If λ is large, all the
elements have the same label.

In the proposed algorithm, we use L labels, where
each label corresponds to one reference segmentation, to
compose G∗. While it is NP-hard to compute the exact
minimum of the proposed formulation, there are several
justifications for using this approach rather than using
a binary label (boundary or non-boundary) to compose
reference segmentations.

Although an object boundary may be considered as
an entity for binary labeling, it is an extremely thin elon-
gated structure. The optimization process for a binary la-
beling model will have a bias toward shorter boundaries
(known as the “shrinking bias”), which makes it difficult
to label thin elongated structures [48]. Introducing reg-
ularizer terms into energy functions [20], [41] or using
connectivity constraints [43], [48], however, will lead to
higher-order cost functions or require user guidance for
boundary connection. Although the proposed model is
non-convex, we experimentally show that it is insensi-
tive to initialization and parameter λ (See Section 6.1),
and our approach generates stable evaluation results for
image segmentation.

3.2 Distance ∆d

The distance ∆d in (8) and (10) needs to be defined
before we minimize the labeling energy function (7).
Although many distance measures have been proposed
in the literature, it is not a trivial task to select a suitable
measure to compare the machine segmentation with the
human-labeled segments. Due to the localization errors
from human labeling process, boundaries or regions of
the same object may not be fully overlapped in different
labeled segmentations. This is an inherent issue for hu-
man labeled segmentations. In particular, the boundary
based measures are more sensitive to the dissimilarity of
segmentations than the region based measures. Figure
4 shows an example of boundary distortions among
different human labeled segmentations. If directly com-
paring the corresponding pixels, the distance will be
over-penalized by slightly different boundaries in the



IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Fig. 4. An example of inconsistent boundaries among
different human-labeled segmentations from the Berkeley
Segmentation Dataset [29]). The whiter pixels indicate
that more human subjects mark them as boundary.

labeled segmentations. Since the HVS is insensitive to
such minor inconsistency, to compare the segmentations
faithfully, the pixel-based distance measure should be
able to accommodate some geometric inconsistency of
boundaries.

In [28], this problem is addressed by matching the
boundaries with a predefined threshold instead of pre-
cise correspondence. In [40], Sampat et al. propose a
structural similarity index in the complex wavelet do-
main. This index is based on the fact that the relative
phase of complex wavelet coefficients preserve the struc-
tural information of local image patterns well, while
rigid translation of image structures leads to constant
phase shift. In addition, this index does not require
precise correspondence between pixels, and it is robust
to small geometric distortions. We use the principle of
this index to define a pixel-based distance, which uses
the complex Gabor transform coefficients instead of the
steerable complex wavelet transform coefficients. The
coefficients are computed by convolving a segmentation
with 24 Gabor kernels on 3 scales and along 8 directions.
With the outputs of these Gabor filters, the similarity
index between two segmentations is defined by

H(cx, cy) =
2
∑N

i=1 |cx,i||c∗y,i|+ α∑N
i=1 |cx,i|2 +

∑N
i=1 |cy,i|2 + α

·

2|
∑N

i=1 cx,ic
∗
y,i|+ β

2
∑N

i=1 |cx,ic∗y,i|+ β
, (11)

where cx and cy are the complex Gabor coefficients of
two segmentations x and y, respectively; |cx,i| is the
magnitude of a complex Gabor coefficient, and c∗ is the
conjugate of c; and α as well as β are small positive
constants for computational stability. It is easy to see that
the maximum value of H is 1 if cx and cy are identical.
Therefore, we define the distance ∆d as

∆d(cx, cy) = 1−H(cx, cy), (12)

where H(cx, cy) is the average value of H(cx, cy) ob-
tained by 24 Gabor filters. With the distance ∆d de-
fined in (12), we optimize (7) and obtain the composed
reference G∗ for the given segmentation S. Figures 5
and 6 show some composed reference segmentations.
Given the segmentations (labeled in green), the reference
segmentations (labeled in red) are adaptively composed
from multiple labeled segmentations (labeled in black).

4 MEASURING SEGMENTATION QUALITY
Once the composed reference G∗ for the given segmen-
tation S is obtained, the problem of measuring seg-
mentation quality becomes the problem of computing
image similarity. To compute the similarity (or distance)
between S and the reference G∗, we propose a measure
based on the pixel based distance used in composing the
references.

When the pixel-based distance defined in (12) is used
to construct a reference G∗, some geometric inconsisten-
cy of local boundaries in S has been factored in. When
the distance ∆d(sj , g

∗
j ) between sj and g∗j is obtained, the

distance for the whole segmentation can be computed by
the average of all ∆d(sj , g

∗
j ). However, the confidence of

g∗j should also be considered since less weight should
be given to those ambiguous structures, even if they
are very similar. Thus, we introduce Rsj as the empirical
global confidence of g∗j with respect to G. For example,
we can estimate Rsj as the similarity between g∗j and
{g1j , g2j , . . . , gKj } and define it as

Rsj = 1−∆dj , (13)

where ∆dj is the average distance between g∗j and {g1j ,
g2j , . . . , gKj }. In (13), Rsj achieves the highest value
1 when the distance between g∗j and {g1j , g2j , . . . , gKj }
is zero and achieves the lowest value zero when the
situation is reversed. Since Rsj is a positive factor for
describing the confidence, the similarity between sj and
g∗j should be normalized to [−1, 1] such that the high
confidence works reasonably for both of the good and
bad segmentations. If there are K instances in G and
all of them contribute to the construction of G∗, we
can decompose S into K disjointed set {S0, S1, . . . , SK}.
Finally, we define the pixel-based quality measure as

Qp(S,G) =
1

N

K∑
i=1

∑
sj∈Si

(1− 2∆d(sj , g
∗
j )) ·Rsj . (14)

The proposed quality measure is related to the accu-
mulated sum of the similarities computed from each
element of S. The minimum value of ∆d(sj , g

∗
j ) is 0

when sj is identical to g∗j of a reference segmentation.
If all the labeled segmentations in G are identical, Rsj

is 1 and Qp(S,G) has the maximum value. Note that the
measure is determined by both ∆d(sj , g

∗
j ) and Rsj . If S

is only similar to G∗ without high consistency among
the labels {g1j , g2j , . . . , gKj }, the value of Rsj is low and
hence the absolute value of Qp(S,G) is also low. This
issue may arise for images with complex contents, where
perceptual interpretation of image contents is likely to be
different.

The scores of the proposed measure with the com-
posed reference (Qp) and by averaging over multiple
references (Q) are illustrated in Figures 5 and 6. In Figure
5, there are two input human labeled segmentations for
each image, and the remaining three human labeled seg-
mentations are used to compose the reference segmen-
tation. Obviously, these human labeled segmentations
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(a) Qp1=0.81, Qp2=0.80, Q1=0.73, Q2=0.69

(b) Qp1=0.69, Qp2=0.74, Qp1=0.56, Qp2=0.55

Fig. 5. Examples of composed references for human labeled segmentations. For each example, the first row shows the
original image, two human labeled segmentations (labeled in green) of it and the corresponding composed reference
segmentations G∗ (labeled in red). The second row shows the human labeled segmentations used to compose the
reference segmentations. The images are from the Berkeley Segmentation Dataset [29].

(a) Qp1=0.50, Qp2=0.39, Q1=0.39, Q2=0.36

(b) Qp1=0.52, Qp2=0.56, Q1=0.49, Q2 =0.49

Fig. 6. Examples of composed references for machine segmentations. For each example, the first row shows the
original image, two machine segmentations (labeled in green) of it and the corresponding composed reference
segmentations G∗ (labeled in red). The second row shows human labeled segmentations used to compose the
reference segmentations. The images are from the Berkeley Segmentation Dataset [29].
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have good quality. As expected, the proposed measure
rates them with good scores, which are higher than those
by the averaging approach (i.e., Qp > Q). In Figure
6, there are two input segmentations generated by the
Mean Shift algorithm [11] for each image, and all the five
human labeled segmentations are used to compose the
reference segmentation. One can see that the two input
segmentations have visually very different quality, and
the proposed measure generates scores with larger dis-
crepancy than the averaging approach (i.e., |Qp1−Qp2| >
|Q1−Q2|). In Figure 6(b), the first segmentation is worse
than the second one and the proposed measure reflects
this (i.e., Qp1 < Qp2). However, the averaging scores of
human labeled segmentations suggest otherwise.

5 DATASETS

To assess the performance of a segmentation algorithm,
it is crucial to develop a dataset with multiple labeled
segmentations and human evaluation scores of each im-
age. Although several image segmentation datasets have
been developed [29], [3], [1], [26], there are some limita-
tions in terms of number of labels and subject scores. In
this work, we develop a new image segmentation dataset
and a novel segmentation evaluation dataset with subject
scores. These two datasets are available at http://www4.
comp.polyu.edu.hk/∼cslzhang/ISE/ISE.htm.

5.1 Image segmentation dataset
Several image segmentation datasets have been con-
structed in past decades. The Weizmann segmentation
dataset [3] contains 200 images with labeled foreground
(with one or two objects) and background segments.
Achanta et al. [1] develop a saliency segmentation
dataset with 1000 images. The salient objects in each
image are manually segmented based on the salient
regions drawn by Liu et al. [26]. However, only one
labeled segmentation is generated for each image.

The Berkeley Segmentation Database (BSDS500) [29]
is large and representative which has been used in
numerous vision problems. It contains 500 source images
with 4 to 9 human labeled segmentations per image.
Nevertheless, some of the labeled object contours can
be delineated more precisely with greater details. Fur-
thermore, the number of labeled results per image can
be extended to cover a wide range of visual perception
differences.

In order to better evaluate segmentation algorithms,
we construct a new segmentation dataset of 200 images
where each one is labeled by 6 to 15 persons. We develop
a platform that facilitates drawing object boundaries in
an image (See Figure 7). Two functions to label image
segmentations are provided, either manually or with
software aids. As hand tremors often lead to unsmooth
segmentation on object boundaries for users with no pri-
or training on digital art, we use the livewire algorithm
[15] to facilitate the labeling process. This tool allows a
user to initialize a starting point on the boundary and

the subsequent point is selected interactively based on
the shortest path to best fit the object of interest. For
boundaries in the blurred regions or complex objects,
users are suggested to use manual segmentations to
minimize errors via the interactive process. Compared
to the process with all manual labels, these two modules
help to generate accurate boundaries with less effort.

Fig. 7. User interface of the developed image segmenta-
tion tool.

To construct the segmentation library, we ask 45
subjects to segment images. Each subject is randomly
assigned 50 to 150 images, and is asked to segment
each image into 3 to 100 pieces. In order to reduce
ambiguous interpretations caused by image contents,
subjects are asked to pay more attention to low level
features (e.g., color, textures) and pay equal attention to
all objects in the scenes. Figure 8 shows some sample
segmented images in the developed dataset. Note that
the segmentations are labeled with different levels of
details that correspond to different visual perception.

Fig. 8. Sample images and the labeled segmentations in
the developed dataset.

The statistics of the proposed dataset and the BSDS500
database are summarized in Table 1. Although the num-
ber of source images in the proposed dataset is smaller
than that of the BSDS500 database, each image in our
dataset is labeled by more human subjects. By using the

http://www4.comp.polyu.edu.hk/~cslzhang/ISE/ISE.htm
http://www4.comp.polyu.edu.hk/~cslzhang/ISE/ISE.htm
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developed toolkit, the segmentation time in our dataset
is much shorter than that with the BSDS500 database.
This largely reduces the efforts of human subjects and
allows them to focus on drawing boundary details of
objects. Figure 9 shows the characteristics of labeled seg-
mentations in the two datasets. In the BSDS500 dataset,
most images have 5 to 6 labeled segmentations by hu-
mans while most images in our developed dataset are
labeled by 8 to 13 subjects.

TABLE 1
Summary of the BSDS500 and proposed datasets.

Dataset BSDS500 Our Dataset
# images 500 200
# labeled segmenta-
tions/image

4-9 6-15

(5.4 on average) (10.7 on average)
Image type Natural images Natural images
Software supported Yes Yes
# subjects 30 45
Time/segmentation 5-30 mins 2-4 mins
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Fig. 9. Distribution of labeled segmentations in the pro-
posed and BSDS500 datasets

5.2 Segmentation evaluation dataset
Several meta-measures [28], [34] have been proposed
to compare the performance of a pair of segmentation
algorithms based on a segmentation dataset with hu-
man labeled results. Nonetheless, these measures are
limited for quantitatively evaluating the segmentation
algorithms. In [32], 10 different segmentations per image
(from a set of 80 images) labeled as “good” or “bad” are
used to select parameters for segmentation algorithms.
An evaluation dataset consisting of 199 pairs of human
and machine segmentations are constructed [54], where
the human segmentations are indicated as “good” ones.
In addition, results for another set of 249 pairs are
presented. However, the number of segmentation pairs
or the diversity of machine segmentations is limited. Fur-
thermore, none of these datasets is publicly accessible.

In this work, we design and develop a novel dataset
for evaluating segmentation evaluation algorithms. The
proposed benchmark dataset contains 500 pairs of seg-
mentations and the corresponding evaluation results
by human subjects. The first 200 pairs (Part A) are
generated by using 200 images from our segmentation

dataset (in Section 5.1), while the other 300 pairs of
segmentations (Part B) are generated by 300 images
selected from the BSDS500 dataset [29]. As differen-
t segmentation algorithms exploit different properties,
we generate diverse segmentation results by using the
efficient graph-based (EG) algorithm [16], mean-shift
(MS) approach [11], compression-based texture merging
(CTM) [52] algorithms as well as texture and boundary
encoding-based segmentation (TBES) method [37].

As these algorithms are developed based on various
criteria, the segmentation results are different and di-
verse. Table 2 shows the parameter settings of the 4
algorithms used to generate the segmentations (the pa-
rameter settings are not the same as those in the original
settings). With these parameters, each algorithm gener-
ates diverse results ranging from over-segmentation to
under-segmentation.

TABLE 2
Parameter settings of the four algorithms for generating

segmentations in our evaluation dataset.

Algorithms Parameter values
EG [16] K = {600, 800, 1000, 1400, 1800}
MS [11] hr = {7, 11, 15, 19, 23}, hs = 7, minR = 150.
CTM [52] ε = {0.1, 0.2, 0.3, 0.4, 0.5}
TBES [37] Nsp = 200. ε = {50, 100, 200, 300, 400}

After inspecting and removing the results with poor
segmentations with little semantic meaning, we obtain
17 segmentations for each image. Next, 10 human sub-
jects are asked to select the best 3 and the worst 3
segmentations from these segmentations. Based on the
consensus of human evaluation, a candidate group of
good segmentations is constructed (and likewise for the
bad segmentations). For each image, we randomly select
one segmentation from the group of good results and
pair it with a segmentation randomly selected from the
group of bad segmentations. We form the segmentation
pairs to ensure that the quality difference in each pair
is not too small to tell by human subjects. It should be
noted that machine segmentations generally have much
lower quality than human segmentations, and thus in
our dataset there are few pairs in which one segmen-
tation is clearly better than the other. This ensures the
level of difficulty to distinguish the quality of different
segmentations. In addition, since the segmentations in
each pair may be produced by different algorithms, the
results are more diverse. Finally, 500 pairs of segmenta-
tions are generated in the evaluation dataset. Figure 10
shows some example pairs in our dataset.

In this work, 70 subjects with little or no research
experience in image segmentation are asked to evaluate
the 500 pairs of segmentations. We note that one may
misjudge the segmentation quality when a segmenta-
tion contains too many regions. Instruction is given to
subjects that all segmented regions should have approxi-
mately equal importance in evaluation. We evenly divide
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Fig. 10. Sample pairs in the segmentation evaluation
dataset.

the 500 segmentations pairs into 10 groups. Each time
one subject is only asked to evaluate one group (each
one evaluates no more than 4 groups).

The consistency of the evaluation results is measured
by the confidence rate, which is defined as the percent-
age of subjects making the same judgment for the same
pair. The distribution of confidence rates is plotted in
Figure 11. The confidence rate reflects the level of diffi-
culties in evaluating the pair of segmentations. Figure 11
shows that more than 50% of the evaluations have the
confidence rate over 0.8. About 10% of the evaluations
have the confidence rate between 0.5 and 0.6, which
correspond to the difficult pairs for comparisons.
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Fig. 11. Distribution of confidence rates on the proposed
segmentation evaluation dataset.

6 EXPERIMENTAL RESULTS

We evaluate the proposed segmentation quality measure
Qp in comparison with existing measures based on
PRI [46], VOI [30], GCE [28], SC [4], BDE [18] and F-
measure [28]. Among the evaluated methods, the PRI
and our proposed measure work with multiple labeled
segmentations. The other measures operate on each la-

beled reference individually, and the average results are
reported.

All experiments are carried out on a desktop computer
with an Intel Core 2 Duo 3.00 GHz CPU and 4GB
memory. The run time of the proposed measure consists
two parts: 24.6±6.0 seconds for composing the reference
G∗ and 10.7± 1.1 seconds for computing the score Qp.

6.1 Sensitivity analysis
In Section 3, the energy function (7) is defined to
construct the reference segmentation, yet, the value of
parameter λ should be chosen before implementing the
algorithm. Meanwhile, the initial labeling of graph cut
algorithm [8] is randomly decided in the optimization.
Experiments in [8] have shown that varying the initial
labelings does not significantly change the final result.
In this section, we perform extensive experiments to test
the effects of λ and initial labeling on the final evaluation
score.

In all our experiments in Sections 6.2 and 6.3, we fix λ
to be 800. Therefore, we evaluate the effect of λ within a
moderate range around 800, more specifically, [500,1200]
with an interval of 50. We carry out experiments to
analyze the standard deviations of our measure Qp

on each of the 1,000 segmentations in the evaluation
database (Part A and Part B). The initial labeling of graph
cut is set randomly, then the mean values and standard
deviations of Qp with respect to the 15 different values
of λ are computed. Figure 12 shows the results sorted in
an ascending order of the mean value of Qp.

200 400 600 800 1000
−1

−0.5

0

0.5

1

Segmentation

Q
p

Fig. 12. Means and standard deviations of Qp for 1,000
segmentations in our evaluation database. Error bars
show the standard deviations with respect to λ, where λ is
set within the range of [500, 1200] with an interval of 50.
The results are sorted in an ascending order of means.

As shown in Figure 12, there are 963 of the 1,000
segmentations with deviation smaller than 0.05. Only
1 segmentation has deviation larger than 0.1 and the
deviation is 0.106. Since Qp is a number between -1 and
1, the results show that our measure is insensitive to the
change of λ within a large range.

To evaluate the effect of initial labeling on the final
evaluation score, we carry out the proposed algorithm
50 times with random initialization of labeling. Figure 13
shows the plot of the means and standard deviations of



IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

Qp for the 1,000 segmentations where λ is fixed to be 800.
For 973 of the 1,000 segmentations, the deviation of Qp

is less than 0.05, and the largest deviation is 0.078. These
results show that Qp does not change much by varying
the initial labelings. Therefore, we carry out experiments
using the proposed algorithm with random initialization.
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p

Fig. 13. Means and standard deviations of Qp for 1,000
segmentations in our evaluation database. Error bars
show the standard deviation of Qp with respect to 50 ran-
dom initial labelings. The results are sorted in ascending
order of means.

6.2 Evaluation with meta-measure
By verifying different hypotheses on the evaluation out-
puts, meta-measures [28], [34] have been proposed to
compare the goodness of the segmentation evaluation
measures. For example, one hypothesis is that a good
measure should be able to discriminate two pairs of hu-
man segmentations, one pair from the same image while
another pair from different images. More specifically,
the quality score of a human segmentation evaluated
by segmentations from the same image should be better
than that evaluated by segmentations from a different
image. Based on this principle, a meta-measure [28] is
defined to count the number of human segmentation
pairs coming from the same images which are misjudged
as less similar than other pairs from different images.
Pont-Tuset and Marques [34] further extended this meta-
measure to discriminate machine segmentations from
different images.

We evaluate the proposed measure using an approach
similar to that in [28], [34]. The meta-measure is defined
as the percentage of human labeled segmentations from
the same images that are determined as more similar
than the machine segmentations from different images.
Namely, the meta-measure is used to compare each
human labeled segmentation of a certain image with
two other groups of segmentations: (i) human labeled
segmentations of the same image and (ii) machine seg-
mentations of a different image. The rationale is that
the evaluation score generated by case (i) should be
better than that by case (ii), and we use the percentage
of comparisons that agree with this principle as the
meta-measure result. This comparison incorporates the
discriminations of segmentations from the same and the

different images, and segmentations created by different
sources (human labeled and machine generated).

Fig. 14. Distributions of Qp for segmentations of the
same images (in blue) and different images (in red) on
the BSDS500 and proposed datasets, respectively.

We evaluate all the human segmentations in the B-
SDS500 and our proposed segmentation datasets. The
same amount of machine segmentations are randomly
created by the EG, MS, CTM and TBES methods for
each image in the databases. Each human segmentation
is evaluated by the rest of human segmentations of the
same image, as well as the same number of machine
segmentations from a different image. Let Dsame and
Ddiff be the distributions of scores in case (i) and case
(ii), respectively. Figure 14 shows the distributions for
the two types of segmentations using the Qp measure.
The meta-measure is computed as the percentage of
comparisons outside the overlap between Dsame and
Ddiff (the percentage of overlap is reported as Bayes
risk in [28]). Table 3 shows the meta-measure results
for different segmentation quality evaluation measures.
On both databases, the proposed measure performs
favorably better than other measures, which demon-
strates the effectiveness of using composed references
for evaluation. Except for the F -measure, all the other
measures obtain higher scores on the proposed dataset
than the BSDS500 database, which suggests the merits
of using more reference segmentations for segmentation
evaluation.

6.3 Evaluation with proposed segmentation dataset
We first use an example to illustrate the effectiveness
of the proposed measure for assessing segmentation
quality. Figure 15 shows 5 segmentations of a given
image generated by the EG method [16] with different
parameters. In this experiment, 10 subjects are asked to
rank the segmentation results. Most participants agree
that the best segmentation is Figure 15(d) since it p-
reserves the main structure of the object with minimal
number of misclassified boundaries, followed by (c), (e),
(a) and (b). The quality scores measured by different
methods are shown on the right side in Figure 15. These
plots indicate that the proposed measure matches human
perception best, while other measures either do not
reflect the best segmentation (i.e., F-measure) or do not
well differentiate the best segmentation and the others
(i.e., PRI and BDE). The values of the SC measure are in
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TABLE 3
Evaluation results with the meta-measure.

Measures PRI GCE VOI BDE F -measure SC(S → G) SC(G→ S) QP

BSDS500 0.911 0.929 0.967 0.921 0.882 0.962 0.956 0.984
Proposed dataset 0.959 0.981 0.991 0.947 0.838 0.974 0.979 0.994

Fig. 15. Quality scores of the segmentations in a ∼ e by the EG algorithm [16] using different measures, i.e., GCE,
PRI, SC(S → G), BDE, Fb (F-measure on boundary) and Qp.

TABLE 4
Evaluation results by different measures.

Measures PRI GCE VOI BDE F-measure SC(S → G) SC(G→ S) Ave(Qp) Min(Qp) Max(Qp) QP

Part A Correct No. 156 156 148 146 146 133 147 165 160 164 168
(200 pairs) Rate (%) 0.78 0.78 0.74 0.73 0.73 0.67 0.74 0.83 0.80 0.82 0.84

Part B Correct No. 241 143 182 237 232 165 215 120 137 118 251
(300 pairs) Rate (%) 0.80 0.48 0.61 0.79 0.77 0.55 0.72 0.4 0.46 0.39 0.83

a relatively small range, which do not reflect the differ-
ences of segmentations well. In contrast, the proposed
measure is effective for modeling segmentation quality
as it adaptively evaluates image structures on different
levels.

We then quantitatively examine the segmentation
measures using the proposed evaluation dataset present-
ed in Section 5.2. In addition, we evaluate three oth-
er measures: Qp based on average Ave(Qp), minimum
Min(Qp), and maximum Max(Qp) of human annotated
scores. Table 4 shows the number of correct evaluations
(i.e., the ones which are consistent with human judg-
ments) for all evaluated measures. On both Part A and
Part B of our dataset, the proposed measure by using
reference (Qp) outperforms existing measures. For GCE,
VOI, Ave(Qp), Min(Qp) and Max(Qp), the performance
on Part A and Part B varies significantly. When the
number of labeled segmentations per image is small
(e.g., Part B), there is a significant decline in the number
of correct evaluations. The PRI, BDE and F-measure
measures have opposite trends on the two parts but with
less variation. The proposed measure has the highest
correction rate and comparable results on both sets,
which can be attributed to the composition of references

with the proposed evaluation measure.
Another important factor is whether a measure is

effective when it is difficult to evaluate a segmentation
pair. We compare the false evaluation rates with respect
to the confidence rate of human subjects (See Figure
11 for distribution of confidence rate). Figure 16 shows
the results where we uniformly quantize the confidence
rate into 5 bins, and count the falsely evaluated pairs in
each bin. When the confidence rate is low (i.e., less than
80%), Qp has lower false evaluation rates than the others.
When the confidence rate is high (e.g., in the range
between 0.9 and 1), the advantages of our measures are
not significant. This can be explained by the fact that
if a segmentation is clearly good or bad (which usually
results in high confidence in subject evaluation), the task
is easier and many existing measures perform well.

7 CONCLUSIONS

We proposed a framework for evaluating segmentation
quality with multiple human labeled segmentations to
take into account both local structure and global consis-
tency of segmentations. To achieve this goal, a reference
segmentation was adaptively constructed for a given
segmentation and used in conjunction with the proposed
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Fig. 16. False evaluation rate of segmentation pairs under
different confidence levels.

measures to compute quality score. In addition, we pre-
sented a segmentation dataset and segmentation evalua-
tion dataset to facilitate quantitative quality assessment.
The segmentation dataset contains images with more
labeled segmentations than BSDS, which is important for
objective evaluation. The evaluation dataset is diverse in
segmentation quality and contains extensive subjective
evaluation results. Both datasets are publicly available
to the research community. Extensive experiments on the
proposed datasets and the BSDS dataset demonstrate the
effectiveness of our framework in evaluating segmenta-
tion quality.
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