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This paper discusses the alignment of high resolution partial fingerprints, which is a crucial step in partial
fingerprint recognition. The previously developed fingerprint alignment methods, including minutia-based
and non-minutia feature based ones, are unsuitable for partial fingerprints because small fingerprint
fragments often do not have enough features required by these methods. In this paper, we propose a new
approach to aligning high resolution partial fingerprints based on pores, a type of fingerprint fine ridge
features that are abundant on even small fingerprint areas. Pores are first extracted from the fingerprint
images by using a difference of Gaussian filtering approach. After pore detection, a novel pore–valley
descriptor (PVD) is proposed to characterize pores based on their locations and orientations, as well as
the ridge orientation fields and valley structures around them. A PVD-based coarse-to-fine pore matching
algorithm is then developed to locate pore correspondences. Once the corresponding pores are deter-
mined, the alignment transformation between two partial fingerprints can be estimated. The proposed
method is compared with representative minutia based and orientation field based methods using the
established high resolution partial fingerprint dataset and two fingerprint matchers. The experimental re-
sults show that the PVD-based method can more accurately locate corresponding feature points, estimate
the alignment transformations, and hence significantly improve the accuracy of high resolution partial
fingerprint recognition.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Automatic fingerprint recognition systems (AFRS) have been
nowadays widely used in personal identification applications such
as access control [1,2]. Roughly speaking, there are three types of
fingerprint matching methods: minutia-based, correlation-based,
and image-based [2,38]. In minutia-based approaches, minutiae (i.e.
endings and bifurcations of fingerprint ridges) are extracted and
matched to measure the similarity between fingerprints [13–17].
These minutia-based methods are now the most widely used
ones [1,2]. Different from the minutia-based approaches, both
correlation-based and image-based methods compare fingerprints
in a holistic way. The correlation-based methods spatially correlate
two fingerprint images to compute the similarity between them
[20], while the image-based methods first generate a feature vec-
tor from each fingerprint image and then compute their similarity
based on the feature vectors [24,35–38]. No matter what kind of
fingerprint matchers are used, the fingerprint images usually have
to be aligned when matching them. Later in this section, we will
discuss more about the fingerprint alignment methods.
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In order to further improve the accuracy of AFRS, people are now
exploring more features in addition to minutiae on fingerprints. The
recently developed high resolution fingerprint scanners make it pos-
sible to reliably extract level-3 features such as pores. Pores have
been used as useful supplementary features for a long time in foren-
sic applications [8,39]. Researchers have also studied the benefit of
including pores in AFRS and validated the feasibility of pore based
AFRS [3,4,7,9,10,34]. Using pores in AFRS has two advantages. First,
pores are more difficult to be damaged or mimicked than minutiae
[34]. Second, pores are abundant on fingerprints. Even a small fin-
gerprint fragment could have a number of pores (refer to Fig. 1).
Therefore, pores are particularly useful in high resolution partial fin-
gerprint recognition where the number of minutiae is very limited.
In this paper, we focus on the alignment of high resolution partial
fingerprints and investigate the methods for high resolution finger-
print image processing.

1.1. High resolution partial fingerprint

In a live-scan AFRS, a user puts his/her finger against the prism
and the contact fingerprint region will be captured in the resulting
image. A small contact region between the finger and the prism will
lead to a small partial fingerprint image. On such small fingerprint
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Fig. 1. An example of high resolution partial fingerprint. It has only five minutiae as marked in (a), but hundreds of pores as marked in (b).

region, there could be very limitedminutiae available for recognition.
A natural way to solve the partial fingerprint recognition problem is
to make full use of other fine fingerprint features abundant on the
small fingerprint fragments. Sweat pores are such kind of features
and high resolution fingerprint imaging makes it possible to reliably
extract the sweat pores on fingerprints [39].

Most existing high resolution fingerprint recognition methods
use full-size fingerprint images which capture large fingerprint ar-
eas. However, to capture the full fingerprints, high resolution fin-
gerprint images should have much bigger sizes than conventional
low resolution fingerprint images. As a result, much more compu-
tational resources are required to process the images. Considering
the increasing demand of AFRS on mobile devices and other small
portable devices, small fingerprint scanners and limited computa-
tional resources are very common [5]. Consequently, the algorithms
for aligning and matching partial fingerprint images are becoming
important. Therefore, this paper, different from previous study of
high resolution fingerprint recognition, uses high resolution partial
fingerprint images to study the partial fingerprint image alignment
problem and a feasible algorithm will be proposed.

Although somemethods have been proposed to construct full fin-
gerprint templates from a number of partial fingerprint images [11],
it is expensive or even impossible to collect sufficient fingerprint
fragments to construct a reliable full fingerprint template. Moreover,
some errors (e.g. spurious features) could be introduced in the con-
struction process. Thus, it is meaningful and very useful if algorithms
can be developed for aligning and matching partial fingerprints to
partial fingerprints.

Some researchers have studied the problem of matching a partial
fingerprint to full template fingerprints. In [5], Jea and Govindaraju
proposed a minutia-based approach to matching incomplete or par-
tial fingerprints with full fingerprint templates. Their approach uses
brute-force matching when the input fingerprints are small and few
minutiae are presented, and uses secondary feature matching oth-
erwise. Since this approach is based on minutiae, it is very likely to
produce false matches when there are very few minutiae, and it is
not applicable when there are no minutiae on the fingerprint frag-
ments. Kryszczuk et al. [3,4] proposed to utilize pore locations to
match fingerprint fragments. Using high resolution fingerprint im-
ages (approx. 2000dpi in [3,4]), they studied how pores might be
used in matching partial fingerprints and showed that the smaller
the fingerprint fragments, the greater the benefits of using pores. In
their method, Kryszczuk et al. aligned fingerprints by searching for
the transformation parameters which maximize the correlation be-
tween the input fingerprint fragment and the candidate part on the
full fingerprint template. Very recently, Chen and Jain [6] employed
minutiae, dots, and incipient ridges, to align and match partial fin-
gerprints with full template fingerprints.

One drawback of most of the above approaches in aligning frag-
mental fingerprints is that they are mainly based on the features

which are probably very few (e.g. minutiae) or even do not exist
(e.g. dots and incipient ridges) on small fingerprint fragments (refer
to Fig. 1). When the template fingerprints are also small fingerprint
fragments, it will become difficult to get correct results due to the
lack of features. In [3,4], Kryszczuk et al. proposed a correlation-
based blind searching approach to fragmental fingerprint alignment.
As we will show later, however, this method has limited accuracy
because it has to discretize the transformation parameter space.

1.2. Fingerprint alignment

Fingerprint alignment or registration is a crucial step in finger-
print recognition. Its goal is to retrieve the transformation parame-
ters between fingerprint images and then align them for matching.
Some non-rigid deformation or distortion could occur in fingerprint
image acquisition. It is very costly to model and remedy such dis-
tortions in fingerprint registration, and they can be compensated to
some extent in subsequent fingerprint matching. Thus, the majority
of existing fingerprint alignment methods considers only translation
and rotation, although some deformable models [18,19] have been
proposed. According to the features used, existing fingerprint align-
ment methods can be divided into two categories, minutia based
and non-minutia feature based methods. Minutia based methods are
now themost widely used ones [12–17,21,22,25,32,38]. Non-minutia
feature based methods [20,23,24,26–29] include those using image
intensity values, orientation fields, cores, etc. One problem in apply-
ing these methods to partial fingerprints is that the features required
by them could be very few on the fragments. Consequently, they will
either lead to incorrect results or be not applicable.

There are roughly two kinds of methods for estimating alignment
transformations. The first kind of methods quantizes the transforma-
tion parameters into finite sets of discrete values and searches for the
best solution in the quantized parameter space [3,4,20–22,26–29].
The alignment accuracy of these methods is thus limited due to the
quantization. The second kind of methods first detects correspond-
ing feature points (or reference points) on fingerprints and then
estimates the alignment transformation based on the detected corre-
sponding points [12–17,23–25,32]. Most of such methods make use
of minutiae as the feature points. As discussed before, however, it is
problematic to align partial fingerprints based on minutiae because
of the lack of such features on the fingerprint fragments.

1.3. Partial fingerprint alignment based on pores

Following the second kind of alignment methods, we need to
find some reference points other than minutiae on fingerprints for
the purpose of aligning partial fingerprints. One possible solution is
to use sufficiently densely sampled points on ridges as such refer-
ence points. However, it is hard, or even impossible, to ensure that
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identical points are sampled on different fingerprint images, and a
too dense sampling of points will make the matching computation-
ally prohibitive. On the contrary, sweat pores (as well as minutiae)
are unique biological characteristics and are persistent on a finger
throughout the life. Compared with minutiae, they are much more
abundant on small partial fingerprints. Therefore, the pores can serve
as reliable reference points in aligning partial fingerprint images. Al-
though pore shapes and sizes are also important and biophysically
distinctive features [8], they cannot be reliably captured on finger-
print images because they are greatly affected by the pressure of the
fingertip against the scanner. On the other hand, the pore statuses
can change between open and close from time to time. Therefore, in
general only the locations of pores are used in recognizing the pores
and the fingerprints [39].

Considering the plenty of pores on partial fingerprints, in this pa-
per we introduce, to the best of our knowledge, for the first time an
approach to aligning partial fingerprints based on the pores reliably
extracted from high resolution partial fingerprint images. This ap-
proach, by making use of the pores on fingerprints as reference fea-
ture points, can effectively align partial fingerprints and estimate the
transformation between them evenwhen there is a small overlap and
large translation and rotation. We first propose an efficient method
to extract pores, and then present a descriptor of pores, namely the
pore–valley descriptor (PVD), to determine the correspondences be-
tween them. The PVD describes a pore using its location and ori-
entation, the ridge orientation inconsistency in its neighborhood,
and the structure of valleys surrounding it. The partial fingerprints
are first matched based on their PVDs, and the obtained pore cor-
respondences are further refined using the global geometrical rela-
tionship between the pores. The transformation parameters are then
calculated from the best matched pores. The experiments demon-
strate that the proposed PVD-based alignment method can effec-
tively detect corresponding pores and then accurately estimate the
transformation between partial fingerprints. It is also shown that the
proposed alignment method can significantly improve the recogni-
tion accuracy of partial fingerprint recognition.

The rest of this paper is organized as follows. Section 2 presents
methods for extracting pores and valleys and defines the pore–valley
descriptors (PVD). Section 3 presents the PVD-based fingerprint
alignment method in detail. Section 4 performs extensive experi-
ments to verify the effectiveness of the proposed method. Section 5
concludes the paper.

2. Feature extraction

The fingerprint features, including pores, ridges and valleys, will
be used in the proposed method. The extraction of ridge orientations
and frequencies and ridge maps has been well studied in the litera-
ture [1,2]. In this paper, we use the classical methods proposed by
Jain et al. [13,30] to extract ridge orientations, frequencies and ridge
maps. Because ridges and valleys are complementary on fingerprints,
it is a simple matter to get skeleton valley maps by thinning the
valleys on the complement of ridge maps. To extract pores, we di-
vide the fingerprint into blocks and use Gaussian matched filters to
extract them block by block. The scales of Gaussian filters are adap-
tively determined according to the ridge frequencies on the blocks.
After extracting orientation fields, valleys, and pores, we can then
generate the pore–valley descriptor for each pore. Next we describe
the feature extraction methods in detail.

2.1. Ridge and valley extraction

The considered partial fingerprint image has a higher resolution
(approx. 1200dpi in this paper) than the conventional fingerprints
(about 500dpi) so that level-3 features such as pores can be reliably

extracted from them. To extract ridges and valleys, it is not necessary
to directly work on images of such a high resolution. In order to save
computational cost, we smooth the image and down-sample it to half
of its original resolution, and use the method in [30] to calculate the
ridge orientations and frequencies. Based on local ridge orientations
and frequencies, a bank of Gabor filters are used to enhance the
ridges on the fingerprint. The enhanced fingerprint image is then
binarized to obtain the binary ridge map.

On fingerprints, valleys and ridges are complementary to each
other. Therefore, we can easily get the binary valley map as the
complement of the binary ridge map. In order to exclude the effect of
background on complement calculation, the fingerprint region mask
[30] is employed to filter out the background if any. The binary valley
map is then thinned to make all valleys be single-pixel lines. On the
resulting skeleton valley map, there could be some false and broken
valleys due to scars and noise. Thus we post-process it by connecting
valley endings if they are very close and have opposite directions,
and by removing valley segments between valley endings and/or
valley bifurcations if they are very short or their orientations differ
much from the local ridge orientations. Finally, we up-sample the
obtained ridge orientation and frequency images, binary ridge map
and skeleton valleymap to the original resolution. Fig. 2(b) shows the
skeleton valley map extracted from the original fingerprint fragment
in Fig. 2(a).

2.2. Pore extraction

Referring to Figs. 1 and 2(a), on the fingerprint images captured
using an optical contact fingerprint sensor, ridges (valleys) appear as
dark (bright) lines, whereas pores are bright blobs on ridges, either
isolated (i.e. closed pores) or connected with valleys (i.e. open pores).
In general pores are circle-like structures and their spatial distribu-
tions are similar to 2-D Gaussian functions. Meanwhile, the cross-
sections of valleys are 1-D Gaussian-like functions with different
scales. To be specific, valleys usually have bigger scales than pores.
Based on this observation, we use two 2-D Gaussian filters, one with
a small scale and the other with a large scale, to enhance the image.
The difference between their outputs can then give an initial pore
extraction result. This procedure is basically the DoG (difference of
Gaussian) filtering, which is a classic blob detection approach. The
difficulty here is how to estimate the scales of the Gaussian filters.

Considering that the scale of either pores or valleys is usually not
uniform across a fingerprint image and different fingerprints could
have different ridge/valley frequencies, we partition the fingerprint
into a number of blocks and estimate adaptively the scales of Gaus-
sian filters for each block. Take a block image IB as an example. Sup-
pose the mean ridge period over this block is p. It is a good measure
of the scale in its corresponding fingerprint block. Thus, we set the
standard deviations of the two Gaussian filters to k1p and k2p, re-
spectively (0<k1<k2 are two constants). The outputs of them are

F1 = Gk1p ∗ IB, F2 = Gk2p ∗ IB (1)

G�(x, y) = 1√
2��

e−(x2+y2)/2�2 − mG, |x|, |y| �3� (2)

where `∗' denotes convolution andmG is used to normalize the Gaus-
sian filter to be zero-mean. Note that the settings of k1 and k2 should
take into consideration the ridge and valley widths and the size of
pores. In our experiments, we empirically chose the values for them
based on the fingerprint database we used. The filtering outputs F1
and F2 are further normalized to [0, 1] and binarized, resulting in B1
and B2. The small scale Gaussian filter Gk1p will enhance both pores
and valleys, whereas the large scale filter Gk2p will enhance valleys
only. Therefore, subtracting B2 from B1, we obtain the initial result
of pore extraction: PB = B1 − B2.
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Fig. 2. (a) Original fingerprint image; (b) extracted skeleton valley map; Gaussian filtering output (c) at a small scale and (d) at a large scale; (e) difference between (c) and
(d); (f) extracted pores after post-processing (pores are marked by red circles). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

To remove possible spurious pores from the initial pore extrac-
tion result PB, we apply the following constraints to post-process the
result. (1) Pores should reside on ridges only. To implement this con-
straint, we use the binary ridge map as a mask to filter the extracted
pores. (2) Pores are circle-like features. We require that for a true
pore, the eccentricity of its region should be less than a threshold.
From Figs. 2(e) and (f), it can be seen that this operation can success-
fully remove the spurious pores caused by valley contours, i.e. those
line-shaped features in Fig. 2(e). (3) Pores should be within a range of
valid sizes. We measure the size of a pore by counting the pixels in-
side its region. In our experiments, we set the size between 3 and 30.
(4) The mean intensity of a true pore region should be large enough
and its variance should be small. Otherwise, the detected pores are
viewed as false ones caused by noise. Finally, we get the extracted
pore image. Figs. 2(c)–(f) illustrate the pore extraction process of the
fingerprint in Fig. 2(a). It is worth mentioning that some other meth-
ods based on similar assumption (i.e. pores are circle-like features)
have also been proposed in the literature [10,40]. Compared with
those methods, the pore extraction method proposed here takes into
consideration the varying pore scales and thus has better pore ex-
traction accuracy according to our experiments. Since it is out of the
scope of this paper, we do not make further discussion on this topic
here due to the limit of space.

2.3. Pore–valley descriptors

In order to use pores to align fingerprints, a descriptor is needed
to describe the pore features so that the correspondences between
pores can be accurately determined. A good descriptor should be

invariant to the deformations of rotation and translation, which are
very common when capturing fingerprints. Most previous studies
on pore based fingerprint recognition [3,4,9,10] describe a pore sim-
ply by its location because they compare the pores on two finger-
prints with the alignment between the two fingerprints known or
estimated beforehand. However, if the alignment is not given, it is
not sufficient to tell one individual pore from others by using only
the location feature. Thus, it is necessary to employ some other in-
formation which can be useful in distinguishing pores. According to
recent work on minutia-based fingerprint recognition methods, the
ridge and valley structures and the ridge orientation field surround-
ing minutiae are also very important in minutia matching [14,17].
Thus in this section we describe pores by using the neighboring val-
ley structures and ridge orientation field. We call the resulting de-
scriptor the pore–valley descriptor (PVD).

The basic attribute of a pore is its location (X,Y), which is defined
as the column and row coordinates of the center of its mass. In this
paper, for the purpose of alignment, we introduce the orientation
feature � for a pore. It is defined as the ridge orientation at (X,Y).
Referring to Fig. 3, in order to sample the valley structures in the
pore's neighborhood, we establish a local polar coordinate system
by setting the pore's location as origin and the pore's orientation
as the polar axis pointing to the right/bottom side. The polar angle
is set as the counterclockwise angle from the polar axis. A circular
neighborhood, denoted by Np, is then chosen. It is centered at the
origin with radius being Rn = knpmax, where pmax is the maximum
ridge period on the fingerprint and kn is a parameter to control the
neighborhood size. Some radial lines are drawn starting from �1=0◦

with a degree step �s until �m = m · �s, where m = �360◦/�s� is the
total number of radial lines.



1054 Q. Zhao et al. / Pattern Recognition 43 (2010) 1050 -- 1061

0

90

L1,2
L1,1

L9,5

n9 = 5

L9,1

n1 = 2

Fig. 3. Illustration of a pore–valley descriptor with kn = 4 and �s = 22.5◦ .

For each line, we find where it intersects with valleys in the
neighborhood. These intersections together with the pore give rise to
a number of line segments. We number these segments from inside
to outside and calculate their lengths. As shown in Fig. 3, a degree
of 22.5 is taken as the step and hence 16 lines are employed. Taking
the 0◦ and 180◦ lines as examples, the former has two segments
and the latter has five segments. The ridge orientation field in the
pore's neighborhood is another important feature. We define the
ridge orientation inconsistency (OIC) in Np as follows to exploit this
information:

OIC(Np) = 1
|Np|

∑
(i,j)∈Np

{[cos(2 · OF(i, j)) − mcos]
2

+ [sin(2 · OF(i, j)) − msin]
2} (3)

where OF is the ridge orientation field, |Np| denotes the number of
pixels in Np, mcos = ∑

(i,j)∈Np
cos(2 · OF(i, j))/|Np| and msin = ∑

(i,j)∈Np

sin(2 · OF(i, j))/|Np|. With the above-mentioned features, we define
the PVD as the following feature vector �:

� = [X,Y ,�,OIC(Np),
�

S 1,
�

S 2, . . . ,
�

S m] (4)

�

S k = [nk, Lk,1, Lk,2, . . . , Lk,nk ], k = 1, 2, . . . ,m (5)

where nk is the number of line segments along the kth line, and Lk,n
is the length of the nth segment (1�n�nk) along the kth line.

The OIC component and the sampled valley structure features in
the proposed PVD are invariant to rotation and translation because
they are calculated in circular neighborhood of the pore which is in-
trinsically rotation-invariant and they are defined with respect to the
local coordinate system of the pore. The OIC component is a coarse
feature which captures the overall ridge flow pattern information in
the neighborhood of a pore on a very coarse level. It will be used as
an initial step to roughly match the pores. The sampled valley struc-
ture features are fine features. They will be used as the second step to
accurately match pores. The pore locations and orientations will be
used to double check pore correspondences. Finally, the transforma-
tion between fingerprints will be estimated based on the locations
and orientations of their corresponding pores. In the next section,
we will present the proposed PVD-based alignment algorithm.

3. PVD-based partial fingerprint alignment

This paper aims to align partial fingerprints by using pores. To
this end, we need to first identify pore correspondences on finger-
prints. However, even a small fingerprint fragment can carry many

1

2

1P2

2P2

d21

2

1
P1

2
P1

d1�1

�1

�2

�2

Fig. 4. Illustration of the relevant measures used in pore correspondence double
checking.

pores (hundreds in the 6.24×4.68mm2 fragments used in our ex-
periments), making it very time consuming to match pores in pairs
directly using their surrounding valley structures (i.e. the segment
lengths recorded in the PVD). Therefore, a coarse-to-fine matching
strategy is necessary. The OIC components in the PVD can serve for
the coarsematching. Given two pores, we first compare their OIC fea-
tures. If the absolute difference between their OIC features is larger
than a given threshold Toic, they will not be matched; otherwise,
proceed to the next fine matching step.

Coarse matching will eliminate a large number of false matches.
In the subsequent fine matching, we compare the valley structures
in the two pores' neighborhoods. According to the definition of PVD,
each pore is associated with several groups of line segments which
capture the information of its surrounding valleys.We compare these
segments group by group. When comparing the segments in the
kth group, where there are n1k and n2k segments in the two pores'
descriptors, we first find the common segments in the group, i.e. the

first
�
n k = min{n1k ,n2k} segments. The dissimilarity between the two

pores is then defined as

m∑
k=1

⎛
⎜⎝

�
n k∑
n=1

|L1k,n − L2k,n|
�
n k

+ (n1k − n2k)
2

n1k · n2k

⎞
⎟⎠ (6)

The first term in the formula calculates the mean absolute difference
between all common segments in each group, and the second term
is to penalize the missing segments. The smaller the dissimilarity
is, the more similar the two pores are. After comparing all possible
pairs of pores which pass coarse matching, each pair of pores is
assigned with a dissimilarity calculated by (6). They are then sorted
ascendingly according to the dissimilarities, producing the initial
correspondences between the pores.

The top K initial pore correspondences (i.e. those with the small-
est degree of dissimilarity) are further double checked to get the
final pairs of corresponding pores for alignment transformation es-
timation. The purpose of double checking is to calculate the sup-
ports for all pore correspondences based on the global geometrical
relationship between the pores. At the beginning of double check-
ing, the supports to all pore correspondences are initialized to zero.
Fig. 4 illustrates the relevant measures we use.

Assume {P11, P12} and {P21, P22} are two pairs of corresponding pores
among the top ones. To check them, we compare (1) the distances,
denoted by d1 and d2, between the pores on the two fingerprints;
and (2) the angles, denoted by {�1

1,�
1
2} and {�2

1,�
2
2}, between their

orientations and the lines connecting them. If both the distance dif-
ferences and the angle differences are below the given thresholds Td
and T�, i.e.

|d1 − d2| � Td, |�1
1 − �1

2| � T�, |�2
1 − �2

2| � T� (7)
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the supports for these two correspondences are increased by 1; oth-
erwise, the support for the correspondence with higher dissimilarity
is decreased by 1, whereas the support for the other one stays the
same. After checking all the top K correspondences two by two, those
with a non-negative support are taken as the final pore correspon-
dences. If none of the correspondences has non-negative support,
the two fingerprints cannot be aligned.

If some corresponding pores are found, we can then estimate
the transformation between the two fingerprints. Here, we consider
rotation and translation (since all the fingerprints are captured by
the same type of scanner, we assume that the scaling factor is one)
as follows:[
X̃2

Ỹ2

]
=

[
cos � − sin �

sin � cos �

] [
X2

Y2

]
+

[
�X

�Y

]
= R

[
X2

Y2

]
+ t (8)

where (X2,Y2) are the coordinates of a pore on the second fingerprint
and (X̃2, Ỹ2) are its transformed coordinates in the first fingerprint's
coordinate system,

R =
[
cos � − sin �

sin � cos �

]

is the rotation matrix and

t =
[
�X

�Y

]

is the translation vector. Our goal is to estimate the transformation
parameters (�,�X,�Y), where � is the rotation angle and �X and
�Y are the column and row translations, respectively.

If there is only one pair of corresponding pores found on the
two fingerprints, we directly estimate the transformation parameters
by the locations and orientations of the two pores, (X1,Y1,�1) and
(X2,Y2,�2), as follows:

� =
{

�1 if abs(�1)� abs(�2)

�2 else
(9)

�X = X1 − X2 cos � + Y2 sin � (10)

�Y = Y1 − X2 sin � − Y2 cos � (11)

where �1 = �1 − �2 and �2 = sgn(�1) · (|�1| − �).
If there are more than one pairs of corresponding pores, we em-

ploy the method similar to [31] to estimate the rotation and transla-
tion parameters based on the locations of the corresponding pores.
Let {(Xi

1,Y
i
1)|i=1, 2, . . . ,C} and {(Xi

2,Y
i
2)|i=1, 2, . . . ,C} be C pairs of cor-

responding pores. We determine R and t by minimizing

1
C

C∑
i=1

∥∥∥∥∥
[
Xi
1

Yi
1

]
− R

[
Xi
2

Yi
2

]
− t

∥∥∥∥∥
2

(12)

where `‖ · ‖' is the L2-norm. Following the proof in [31], it is easy to
show that

t =
[
X̄1

Ȳ1

]
− R

[
X̄2

Ȳ2

]
(13)

where X̄j = (
∑C

i=1X
i
j)/C, Ȳj = (

∑C
i=1Y

i
j )/C, j = 1, 2. Let

B = 1
C

[∑C
i=1(X

i
1 − X̄1)(Xi

2 − X̄2)
∑C

i=1(Y
i
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and its singular value decomposition be B = UDV , then R = VUT and
� = arcsin(R21), where R21 is the entry at the second row and first
column of R.

4. Experiments

In general, the feature of pores can only be reliably extracted
from fingerprints with a resolution of at least 1000dpi [39]. So far
there is no such free fingerprint image database available in the pub-
lic domain. Therefore, we established a set of high resolution partial
fingerprint images by using a custom-built fingerprint scanner of
approximate 1200dpi (refer to Fig. 5 for example images). With the
established high resolution partial fingerprint image dataset, we
evaluate the proposed fingerprint alignment method in compari-
son with a minutia-based method and an orientation field-based
method. Next in Section 4.1 we first introduce the collected dataset
of high resolution partial fingerprint images; in Section 4.2 we inves-
tigate the two parameters involved in the method; Section 4.3 com-
pares the proposed method with the minutia based method in corre-
sponding feature point detection; Section 4.4 compares the proposed
method with the orientation field based method in alignment trans-
formation estimation; in Section 4.5 we compare the three methods
in terms of fingerprint recognition accuracy; finally, in Section 4.6
we analyze the computational complexity of the method.

4.1. The high resolution partial fingerprint image dataset

We first collected 210 partial fingerprint images from 35 fingers
as the training set for parameter selection and evaluation, and then
collected 1480 fingerprint fragments from 148 fingers (including the
fingers in the training set) as the test set for performance evaluation1.
The data were collected in two sessions (about two weeks apart).
Most of the participants are students and staff in our institute, whose
ages are between 20 and 50 years old. In the training set, there are
three images captured from each finger in each session; whereas in
the test set, each finger has five images scanned in each of the two
sessions.

The resolution of these fingerprint images is approximately
1200dpi and their spatial size is 320 pixels in width and 240 pix-
els in height. Therefore, they cover an area of about 6.5mm by
4.9mm on fingertips. When capturing the fingerprint images, we
simply asked the participants to naturally put their fingers against
the prism of the scanner without any exaggeration of fingerprint
deformation. As a result, typical transformations between different
impressions of the same finger in the dataset include translations
with tens of pixels and rotations by around 8◦. The maximal trans-
lations and rotations are, respectively, about 200 pixels and 20◦.
Hence, the minimal overlap between a finger's different impres-
sions is about one fourth of the fingerprint image area. In subse-
quent experiments, we will give representative examples of these
cases.

4.2. The neighborhood size and sampling rate of directions

The proposed alignment method uses the valley structures in the
neighborhood of pores. The valley structures are sampled along a
number of different directions, determined by the degree step �s.
Here we refer to �s as the sampling rate of directions. Obviously, the
neighborhood size and sampling rate are two critical parameters in
the proposed alignment method. We set the neighborhood size as
kn times the maximum ridge period. Intuitively, a small kn or large
�s will cost less computational resource but will make the resulting
PVDs less discriminative, whereas a large kn or small �s will lead
to more noise-sensitive and costly PVDs. We evaluated the effect of
kn and �s on the accuracy of corresponding feature point detection
using 50 pairs of fingerprints which were randomly chosen from the

1 Example fingerprint images are available on our website: http://www4.comp.
polyu.edu.hk/∼biometrics/.

http://www4.comp.polyu.edu.hk/~biometrics/
http://www4.comp.polyu.edu.hk/~biometrics/
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Fig. 5. Example of fingerprint images used in the experiments. Their quality indexes are (a) 0.8777, (b) 0.7543, (c) 0.6086, and (d) 0.5531 according to the frequency domain
quality index defined in [33].

Table 1
Accuracies (%) of corresponding pore detection on 50 pairs of fingerprints under
different settings of kn and �s .

M1/M2 (%) �s

15◦ 18◦ 20◦ 22.5◦ 30◦ 45◦

kn
3 32/45.2 44/51.6 50/57.5 50/58.2 46/52.5 40/49.1
3.5 52/60.1 62/75.2 74/80.2 78/82.5 70/69.6 58/62.5
4 66/74.6 80/80.5 96/95.1 98/94.7 94/88.5 80/78.2
4.5 76/80.2 84/86 88/90.5 86/89.1 80/78.1 72/70.6
5 54/49 62/56.7 66/60.5 60/61.7 54/59.2 52/52.1

training set. Each pair is from the same finger but taken at different
sessions. These fingerprints show different quality. Some example
images are shown in Fig. 5.

We used two measures to evaluate the accuracy: the percentage
of correct top one pore correspondence (M1) and the average per-
centage of correct correspondences among the top five pore corre-
spondences (M2). Let N be the total number of pairs of fingerprint
images, and NT1 the number of pairs of fingerprints on which the
top one pore correspondence is correct. We also counted the num-
ber of correct pore correspondences among the top five correspon-
dences on each pair of fingerprints. Denote by Ni

T5 the number of
correct pore correspondences among the top five correspondences
on the ith pair of fingerprints. Then the two measures M1 and M2
are defined as

M1 = NT1/N (15)

M2 = 1
N

N∑
i=1

Ni
T5/5 (16)

We investigated several combinations of different values for kn
and �s, i.e. kn ∈ {3, 3.5, 4, 4.5, 5} and �s ∈ {15◦, 18◦, 20◦, 22.5◦, 30◦, 45◦}.
Table 1 lists the results on the 50 pairs of fingerprints. From the re-
sults, we can see that the best accuracy is obtained at a sampling
rate of �s = 20◦ or 22.5◦, and no significant difference is observed

between these two different sampling rates. With respect to the
neighborhood size, it appears that kn = 4 is a good choice. Further-
more, it was observed that neither too small nor too large neighbor-
hoods can produce the best accuracy. In our following experiments,
considering both the accuracy and the computational cost, we set
kn =4 and �s =22.5◦. Note that the settings of these two parameters
should be dependent on the resolution of fingerprint images and the
population from which the fingerprint images are captured. If a dif-
ferent fingerprint image dataset is used, the above training process
has to be done again by using a subset of the fingerprint images in
that dataset.

4.3. Corresponding feature point detection

Detecting feature point correspondences is an important step in
the proposed alignment method as well as in many state-of-the-
art minutia-based methods. The optimal alignment transformation
is estimated based on the detected corresponding feature points
(i.e. pores or minutiae). Considering the significance of correspond-
ing feature point detection, we carried out experiments to compare
the proposed method with a representative minutia-based method
[32] in terms of corresponding feature point detection accuracy. In
the experiments, we used 200 pairs of partial fingerprints randomly
chosen from the training set for evaluation. In each pair, the two
fingerprints are from the same finger but were captured at different
sessions.

Fig. 6 shows some example pairs of fingerprint fragmentswith the
detected corresponding minutiae (left column) or pores (right col-
umn). When there are more than five pairs of corresponding minu-
tiae or pores, we show only the first five pairs. In Figs. 6(a) and (b),
both methods can correctly find the top five feature point corre-
spondences. However, when the fingerprint quality changes between
sessions, for example because of perspiration, the minutiae based
method will tend to detect false minutiae and hence false minutia
correspondences. In Fig. 6(c), broken valleys occur on the second
fingerprint. As a result, the detected two minutia correspondences
are incorrect. Instead, the proposed PVD-based method is more ro-
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Fig. 6. Examples of corresponding feature point detection results using minutia based (left column) and PVD based (right column) methods.

Table 2
Accuracies of corresponding feature point detection by the two methods.

M1 (%) M2 (%)

Minutia based method [32] 40 35.1
PVD based method 98 95.5

bust and can correctly detect the corresponding pores as shown in
Fig. 6(d).

The fingerprint fragments in Fig. 6(e) have large deformation
and small overlap. Consequently, few (fewer than 10) minutiae
can be found in their overlapping region. In this case, the minutia-
based method fails again because there lack sufficient minutiae.
Actually, even when two partial fingerprints overlap much, there
could still be very few minutiae available on them because of the
small fingerprint areas. As can be seen in Fig. 6(g), some false
correspondences are detected on the two fragments due to insuffi-
cient minutiae. In contrast, as shown in Figs. 6(f) and (h), the results
by the proposed PVD-based method on these partial fingerprints
are much better.

We calculated the two measures, M1 and M2, for the two meth-
ods on all the 200 pairs of partial fingerprints. The results are listed
in Table 2. It can be seen that the minutia-based method works
poorly whereas the proposed PVD-based method can detect the
corresponding feature points with a very high accuracy, achiev-
ing significant improvements over the minutia-based method. This
demonstrates that the PVD-based alignment method can cope with

various fingerprint fragments more accurately than the minutia
based method, largely thanks to the abundance and distinctive-
ness of pores on fingerprints. Since the alignment transformation
estimation is based on the detected corresponding feature points,
it is obvious that the PVD-based method will also estimate the
alignment transformation more accurately than the minutia-based
method. Next, we compare the PVD-based method with an orien-
tation field-based method in terms of alignment transformation
estimation accuracy.

4.4. Alignment transformation estimation

After obtaining the pore correspondences on two fingerprints,
we can then estimate the alignment transformation between them
based on the corresponding pores. To quantitatively evaluate the
performance of the proposed method in alignment transformation
estimation, we need some ground truth fingerprint fragment pairs.
To this end, we randomly chose 10 pairs of fingerprints from the test
set (each pair was captured from the same finger but in two differ-
ent sessions), and manually computed their transformations as the
ground truth. Becausewe consider only translation and rotation here,
we need at least two pairs of corresponding feature points on a pair of
fingerprints to calculate the transformation between them. There-
fore, we first manually marked two pairs of corresponding feature
points on each of the 10 pairs of fingerprints. Based on the coor-
dinates of the two pairs of corresponding feature points, we then
directly computed the transformation between the pair of finger-
prints by solving a set of equations. The obtained ground truth on
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Table 3
Alignment transformation ground truth and estimation results by the two methods.

Index of fingerprint pair Ground truth OF based method [27] PVD based method

�Y �X � �Y �X � �Y �X �

01 −56 23 11.01 −11 3 −2.00 −61 33 13.27
02 90 33 −15.95 43 51 −1.00 93 26 −16.89
03 100 −181 −2.87 −8 72 −31.02 91 −176 2.93
04 −11 −8 −3.16 −1 1 0.00 −11 −6 −1.98
05 90 8 4.19 100 0 1.00 89 6 3.88
06 69 −74 −5.44 23 −21 0.00 72 −78 −9.33
07 78 −137 −3.45 45 −24 0.00 76 −142 −6.40
08 −87 2 0.96 −74 1 −1.00 −93 7 2.23
09 −73 39 −4.40 −69 47 −3.00 −79 50 −0.60
10 19 −4 −11.25 −4 −2 −1.00 12 −1 −8.61

Fig. 7. Three of the 10 chosen pairs of fingerprint fragments. (a, b), (c, d), and (e, f) are the first three pairs of fingerprints listed in Table 3.

the 10 pairs of fingerprints is given in Table 3. The first three pairs
of fingerprints are shown in Fig. 7. From Table 3, we can see that
these chosen fingerprint pairs display translations from less than 10
pixels to about 180 pixels and rotations from less than 5◦ to more
than 10◦. In our experiments, we have observed that typical transfor-
mations in the dataset are translations by tens of pixels and rotations
by around 8◦. In this part, we compared our proposed method with
the steepest descent orientation field (OF) based alignment method
[27] in terms of alignment transformation estimation accuracy using
the chosen fingerprint pairs.

Table 3 lists the estimation results by the OF based method (the
step sizes of translation and rotation are set as one pixel and 1◦,
respectively) and the proposed method on the chosen fingerprint
pairs. Fig. 8 illustrates the aligned fingerprint images by overlaying
the first image with the transformed second image in the pair shown
in Fig. 7. Obviously, the PVD-based method estimates the transfor-
mation parameters much more accurately and it does not have the
initialization and quantization problems, which will affect greatly
the performance of OF based method. Moreover, there is no guar-
antee that the OF based method will always converge to the global
optimal solution. In fact, it can be easily trapped at local minima, for
example the third pair of fingerprints which has small overlap (refer
to the last column in Figs. 7 and 8). In Table 4, we list the average
absolute errors of the two methods over the chosen 10 fingerprint
pairs. These results clearly demonstrate that the PVD-based method
can recover the transformation between partial fingerprints more
accurately.

4.5. Partial fingerprint recognition

We have also evaluated the proposed alignment method in par-
tial fingerprint recognition by setting up a simple partial fingerprint
recognition system as shown in Fig. 9. In this system, the align-
ment transformation is first estimated between an input fingerprint
image and a template fingerprint image by using one of the three
methods: minutia-based method, orientation field based method,
and the proposed PVD based method. As for the matcher, we em-
ployed two different approaches. The first one is a minutia and pore
based matcher (called MINU-PORE matcher). It matches the minu-
tiae and pores on the fingerprints, and then fuses the match scores
of minutiae and pores to give a similarity score between the fin-
gerprints. The second approach is an image-based matcher called
GLBP matcher based on Gabor and local binary patterns (LBP), re-
cently proposed by Nanni and Lumini [38]. Note that the purpose
of the experiments here is to compare the contributions of the
three different alignment methods to a fingerprint matcher. There-
fore, we did not do any optimization on the matchers but consid-
ered only the relative improvement between the three alignment
methods.

The MINU-PORE matcher we implemented works as follows. The
minutiae and pores on the input fingerprint image are transformed
into the coordinate system of the template fingerprint according
to the estimated transformation. Minutiae and pores on the two
fingerprint images are then matched separately. Two minutiae are
thought to be matched if the difference between their locations and
the difference between their directions are both below the given
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Fig. 8. Alignment results of PVD based method (a, c, e) and OF based method (b, d, f) on the fingerprint pairs shown in Figs. 7(a, b), (c, d), and (e, f).

Table 4
Average absolute errors (AAE) by the two methods.

AAE (�Y) AAE (�X) AAE (�)

OF based method [27] 33.9 48.5 8.5
PVD based method 4.2 5.4 2.5

FT FT 

FI
Feature Extraction Alignment Matcher 

Registered Fingerprint Database 

Fig. 9. The simple partial fingerprint recognition system used in the experiments.
FI and FT denote the input and template fingerprints, respectively.

thresholds (15 pixels for location differences and 30◦ for direction
differences in our experiments). As for two pores, if the difference
between their locations is below a given threshold (15 pixels in
our experiments), they are matched. The minutia matching score is
defined as the ratio between the number of matched minutiae to the
total number of minutiae, and the pore matching score is defined
similarly. The final matching score is obtained by fusing the minutia
and pore matching scores using the summation rule.

By using the MINU-PORE matcher on the test set, we conducted
the following matches. (1) Genuine matches: each of the finger-
print images in the second session was matched with all the fin-
gerprint images of the same finger in the first session, resulting in
3700 genuine match scores. (2) Imposter matches: the first finger-
print image of each finger in the second session was matched with
the first fingerprint images of all the other fingers in the first ses-
sion, resulting in 21,756 imposter match scores. Based on the ob-
tained match scores, we calculated the equal error rate (EER) of
each of the three alignment methods: 29.5% by the PVD based align-
ment method, 38.66% by the minutia based alignment method, and
41.03% by the OF based alignment method. The receiver operating

characteristic (ROC) curves of the three methods are plotted in Fig.
10. It can be clearly seen that the proposed PVD based alignment
method makes much improvement in EER, specifically 23.69% over
the minutia based method and 28.1% over the OF based method.

As for the GLBP matcher, we first transform the input fingerprint
image into the coordinate system of the template fingerprint image
according to the estimated alignment transformation, then extract
the Gabor-LBP feature vectors from the transformed input fingerprint
image and the template fingerprint image (we directly took the con-
figuration parameters from [38]), and finally calculate the Euclidean
distance between the Gabor-LBP feature vectors of the input finger-
print image and the template fingerprint image. By using the GLBP
matcher, we carried out the same matching scheme as in the MINU-
PORE matcher. As a result, the PVD-based alignment method leads
to the EER of 34.85%, the minutia based alignment method 39.98%,
and the OF based alignment method 45.11%. Fig. 11 shows the cor-
responding ROC curves. Compared with the other two methods, the
proposed PVD based alignment method achieves 12.83% and 22.74%
improvement in EER, respectively. In all the experiments, it is ob-
served that matching errors are largely caused by inaccurate align-
ments. This validates that the proposed alignment method is more
suitable for partial fingerprints and can significantly improve the ac-
curacy of partial fingerprint recognition. Although the EER obtained
here is relatively high, this is because the recognition of partial fin-
gerprint images is itself very challenging due to the limited features.

4.6. Computational complexity analysis

The proposed PVD based alignment method has the following
main steps for each pair of fingerprint images to be aligned: (A) ridge
orientation and frequency estimation; (B) ridge and valley extrac-
tion; (C) pore extraction; (D) PVD generation; (E) PVD comparison;
(F) pore correspondence refinement; and (G) transformation estima-
tion. The first two steps (A) and (B) are common to most automatic
fingerprint recognition systems. The last step (G) involves a singu-
lar value decomposition of a 2×2 matrix, which can be implemented
very efficiently. We have implemented the method by using Matlab
and executed it on a PC with a 2.13GHz Intel(R) Core(TM) 2 6400
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Fig. 10. The ROC curves of the MINU-PORE matcher by using the three alignment
methods.

Fig. 11. The ROC curves of the GLBP matcher by using the three alignment methods.

CPU and RAM of 2GB. It takes about 0.02ms to estimate the trans-
formation from a set of corresponding feature points. The step (F),
pore correspondence refinement, needs to calculate some Euclidean
distances and angles, which can also be done in about 0.02ms. The
step (C), pore extraction, is a little bit more time-consuming. The
pore extraction method we used in this paper is a filtering based ap-
proach, which extracts pores by some linear filter operations. In our
experiments, it takes about 2 s to extract the pores from a fingerprint
image.

The most time-consuming steps are PVD generation (step (D))
and comparison (step (E)). Although it does not take much time to
generate the PVD for one pore (about 0.02 s) or to compare the PVD
of two pores (about 0.02ms), processing the whole set of pores on
fingerprints takes more time because of the large quantity of pores.
With regard to the fingerprint images used in our experiments, there
are averagely around 500 pores on a fingerprint fragment. There-
fore, it takes in average about 10 and 5 s, respectively, to generate
the PVD for the pores on a fingerprint fragment and to compare the

PVD on two fingerprint fragments. Considering that we did not op-
timize the code and that the Matlab code itself has low efficiency,
we expect that the computational cost can be much reduced after
optimization and the speed can be significantly improved by us-
ing languages like C/C++. Compared with the proposed method, the
minutia based method is more efficient, taking usually less than 1 s
for either extracting or matching the minutiae (but using C/C++ im-
plementation). As for the OF based method, the time needed to align
two fingerprints depends on a number of factors, such as the amount
of transformation between the fingerprints, the initial estimation of
the transformation, and the step sizes used in the search process.
Therefore, it is difficult to draw a conclusion on its efficiency. In our
experiments, the OF based method can sometimes converge in less
than 1 s, but sometimes converge after more than 1min. Generally
speaking, the proposed method achieves much higher alignment ac-
curacy than the other two approaches with an acceptable computa-
tional cost.

5. Conclusions and discussion

A new approach was proposed in this paper to aligning partial
high resolution fingerprints using pores. After pore detection, a novel
descriptor, namely pore–valley descriptor (PVD), was defined to de-
scribe pores based on their local characteristics. Then a coarse-to-fine
pore matching method was used to find the pore correspondences
based on PVD. With the detected corresponding pores, we estimated
the alignment transformation between the fingerprint fragments. To
evaluate the performance of the proposed PVD based high resolution
partial fingerprint alignment method, we established a set of partial
fingerprint images and used them to compare the proposed method
with state-of-the-art minutia-based and orientation field-based fin-
gerprint alignment methods. The experimental results demonstrated
that the PVD-based method can more accurately detect the corre-
sponding feature points and hence estimate better the alignment
transformation. It was also shown in our experiments that the accu-
racy of partial fingerprint recognition can be significantly improved
by using the PVD based alignment method.

One important issue in high resolution fingerprint recognition
is the stability of pores. Despite that not all pores will appear in
the fingerprint images of the same person but captured at different
times, we experimentally found that usually there will be enough
corresponding pores that can be detected on the fingerprint images
from the same person. It is interesting and very important to fur-
ther investigate the statistical characteristics of pores on fingerprint
images.

Although the PVD based alignment method proposed in this pa-
per is designed for high resolution partial fingerprint recognition, it
is not limited to partial fingerprints. It can also be applied to full fin-
gerprint images. One problem may be the expensive computational
cost caused by the large amount of pore features. One solution could
be to perform coarse registration first by using OF based schemes
and then apply the PVD based method for a fine estimation of the
alignment transformation. It also deserves to do more investigation
of the discriminative power of pores.
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