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Sweat pores on fingerprints have proven to be discriminative features and have recently been
successfully employed in automatic fingerprint recognition systems (AFRS), where the extraction of
fingerprint pores is a critical step. Most of the existing pore extraction methods detect pores by using a
static isotropic pore model; however, their detection accuracy is not satisfactory due to the limited
approximation capability of static isotropic models to various types of pores. This paper presents a
dynamic anisotropic pore model to describe pores more accurately by using orientation and scale
parameters. An adaptive pore extraction method is then developed based on the proposed dynamic
anisotropic pore model. The fingerprint image is first partitioned into well-defined, ill-posed, and
background blocks. According to the dominant ridge orientation and frequency on each foreground
block, a local instantiation of appropriate pore model is obtained. Finally, the pores are extracted by
filtering the block with the adaptively generated pore model. Extensive experiments are performed on
the high resolution fingerprint databases we established. The results demonstrate that the proposed
method can detect pores more accurately and robustly, and consequently improve the fingerprint

recognition accuracy of pore-based AFRS.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Fingerprint is the most widely used biometric characteristic for
personal identification because of its uniqueness and stability
over time [1-3]. Most of the existing automatic fingerprint
recognition systems (AFRS) use the minutia features on finger-
prints, i.e. the terminations and bifurcations of fingerprint ridges
[4,14,23], for recognition. Although they can achieve good
recognition accuracy and have been used in many civil applica-
tions, their performance still needs much improvement when a
large population is involved or a high security level is required.
One solution to enhancing the accuracy of AFRS is to employ more
features on fingerprints other than only minutiae [11,22,24].

Generally, fingerprint features can be divided into three levels
[5]. Level 1 features (e.g. overall fingerprint ridge patterns) and Level
2 features (e.g. minutiae) have been extensively studied and they are
employed in most existing AFRS. Level 3 features, however, are
ignored in many AFRS even though they are also very distinctive and
have been used for a long time in the forensic community [15,16].
Level 3 features refer to ridge dimensional attributes such as ridge
contours and pores, which are fine details on ridges and require
high resolution imaging techniques to reliably capture [5]. Such
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requirements limit the use of Level 3 features in conventional AFRS.
Thanks to the advances in imaging techniques and the demand for
more secure biometric systems, recently researchers have been
paying more and more attention to using Level 3 features in AFRS.
Roddy and Stosz [6], and Parsons et al. [13] statistically analyzed the
discriminative power of pores and validated the effectiveness of pore
configuration in personal identification. The first AFRS using pores
was developed by Stosz and Alyea [7]. They combined minutiae and
pores to recognize persons. Subsequently, Kryszczuk et al. [8,9]
investigated the contribution of pores to fragmentary fingerprint
recognition and showed that the smaller the fingerprint fragments,
the greater the benefit of using pores. Recently, Jain et al. [10,11]
proposed a high resolution fingerprint recognition system which
uses features from all the three levels (i.e. ridge orientation fields,
minutiae, ridge contours, and pores).

A critical step in the pore based AFRS is the extraction of pores
from fingerprint images. Existing methods extract pores by using
skeleton-tracking-based [6-9] or filtering-based approaches
[10-13]. The skeleton-tracking-based approaches are quite time-
consuming and work well only with very high quality fingerprint
images [10,11]. The filtering-based approaches are more efficient
and more robust. They use static isotropic pore models to detect
pores. As we will see later, however, the pores on real fingerprint
images appear anisotropic and vary greatly in scale from
fingerprint to fingerprint and from region to region.

In this paper we will first propose a novel dynamic anisotropic
pore model which describes the pores more flexibly and accu-
rately than the previous models. With the proposed pore model,
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we will then develop an adaptive pore extraction method to
accurately and robustly extract pores. To evaluate the proposed
method, we established two sets of high resolution fingerprint
images and conducted extensive experiments on them. The results
demonstrated that the proposed pore model and pore extraction
method can detect pores more accurately and robustly than the
previous methods, and the extracted pore features can conse-
quently improve the recognition accuracy of pore based AFRS.

The rest of the paper is organized as follows. Section 2 reviews
the existing pore models and the pore extraction methods.
Section 3 introduces the proposed dynamic anisotropic pore
model. Section 4 presents the adaptive pore extraction method in
detail. Section 5 performs extensive experiments on pore
extraction and recognition by using the established high resolu-
tion fingerprint databases. Section 6 concludes the paper.

2. Review of existing pore extraction methods

Existing pore extraction methods can be classified into two
categories, skeleton-tracking-based methods and filtering-based
methods. All earlier works [6-9] are skeleton-tracking-based
methods. They first binarize and skeletonize the fingerprint image
and then track the fingerprint skeletons. A pore is detected when
certain criteria are met during the tracking. As pointed out in
[10,11], however, skeletonization is computationally expensive
and very sensitive to noise and it works well only on very high
resolution fingerprint images of high quality. For example, the
fingerprint images used in [6-9] are all at least 2000dpi. Recently
proposed approaches are filtering-based methods that detect
pores by using pore models to filter fingerprint images. Fig. 1
shows three typical isotropic pore models: Ray’s model [12], Jain’s
model [10,11], and the DoG (difference of Gaussian) model [13].

Ray et al. [12] proposed an approach to extracting pores from
fingerprint images based on the pore model in Fig. 1(a), which is a
modified 2-dimensional Gaussian function. They first calculated
an error map for the fingerprint image, with each entry in this
map being the sum of the squared errors between the pore model
and the local area surrounding the pixel. The error map is then
binarized such that only areas of high pore probability (i.e. low
error) are retained. In these areas, the pores are detected as the
local minima in a (2r,;,) x (2r,;) neighborhood. In [12], the authors
used unitary parameters r (the variance of the Gaussian) and r,, to
detect pores. However, the pore scales and ridge/valley widths
could vary greatly from one fingerprint to another fingerprint or
from one region to another region in the same fingerprint
(referring to Fig. 2 for examples). Moreover, Ray’s pore model is
isotropic, yet as we can see from Fig. 2 that the appearance of
open pores on real fingerprint images is not isotropic.

More recently, Jain et al. [10,11] proposed to use the Mexican
hat wavelet transform to extract pores based on the observation
that pore regions typically have a high negative frequency
response as intensity values change abruptly from bright to dark
at the pores. The Mexican hat wavelet actually serves as the pore
model, and its scale parameter is experimentally set for specific

a

datasets. Fig. 1(b) shows the Mexican hat wavelet. Obviously, it is
also isotropic. This pore model is also limited in that it cannot adapt
itself to different fingerprints or different regions on a fingerprint.

Another pore extraction method was proposed by Parsons et al.
[13]. Its basic idea is to use a band-pass filter to detect circle-like
features. In other words, the method assumes that pores appear as
circular objects on fingerprint images, and the pore is thus modeled
by the DoG filter. Fig. 1(c) shows this pore model. In [13], the
authors did not consider the variation of pore scales in fingerprint
images but simply used a unitary scale in their model. To deal with
the limitations caused by unitary scale, we have recently proposed
in [25] an adaptive DoG-based pore extraction method. It divides a
fingerprint image into blocks and defines for each block a DoG filter
according to the local ridge period on the block. One limitation of
the DoG-based methods is that the pore models are isotropic. The
underlying assumption that pores are circular features does not
hold well on real fingerprint images. In this paper, we will propose
another novel pore model and extraction method, which can well
solve the problems with existing pore models and extraction
methods. Next, we introduce the new pore model first.

3. Dynamic anisotropic pore model (DAPM)

Sweat pores reside on finger ridges and may be either closed or
open [15]. As can be seen in Fig. 2, a closed pore looks like an
isolated bright blob on the dark ridge, whereas an open pore,
which is perspiring, is connected with its neighboring bright
valleys. To investigate the spatial appearances of pores on
fingerprint images, we manually marked and cropped hundreds
of pores on many fingerprint images, including both open and
closed pores. We generalized three types of representative pore
structures, which are illustrated in Fig. 3. It can be seen that the
two open pores (b) and (c) are not isotropic. Along the ridge
direction, all the three types of pores appear with Gaussian-
shaped profiles. Furthermore, the width of Gaussian profile will
vary from one pore to another.

These observations clearly show that the previously proposed
pore models (refer to Section 2) are not accurate enough to model
the various pores because they are isotropic and static (i.e. using a
unitary scale). In order to represent the pores more accurately, we
propose here a new pore model which has two parameters to
adjust scale and orientation. When applying this model to a real
pore, these two parameters are adaptively determined according
to the local ridge features (i.e. ridge orientation and frequency).
Therefore, we name the proposed model as the dynamic
anisotropic pore model (DAPM), which is defined as follows:

i )= e(-2/20%) T
Po(i,j)=e cos (301) M
—30<i, j<30
.. 225 2 T 7
Py(i,j) = Rot(Py,0) = e~ /29%cos (gl)
i =icos(f)—jsin(0), j=isin(@)-+jcos(®) (2)

—30<i, j<30

Fig. 1. Three typical pore models: (a) Ray’s model [12], (b) Jain’s model [10,11], and (c) the DoG model [13], which are all isotropic.
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Fig. 2. Two fingerprint images with very different ridge and valley widths. A closed pore is marked on the left image and two open pores are marked on the right image.
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Fig. 3. The appearance of three typical pores on real fingerprint images. (a) is a closed pore, and (b) and (c) are open pores. (d)-(f) are the corresponding intensity profiles

across them along the ridge orientation. All the profiles are Gaussian-shaped.

Eq. (1) is the reference model (i.e. the zero-degree model) and
Eq. (2) is the rotated model. Here, o is the scale parameter which
is used to control the pore size. It can be determined by the local
ridge frequency. 0 is the orientation parameter which is used to
control the direction of the pore model. It can be estimated by the
local ridge orientation. Fig. 4 shows some example instances of
the proposed DAPM. With the proposed DAPM, next we present
an adaptive pore extraction method in Section 4.

4. Adaptive pore extraction

Pore extraction is essentially a problem of object detection.
Generally, given a model of an object, we can detect the object by
using the model as a matched filter. When convoluting an image
with a matched filter describing the desired object, strong
responses will be obtained at the locations of the object on the
image. The techniques of matched filters have been successfully
used in many applications, for example, vessel detection on
retinal images [17]. In this section, we will first estimate the
parameters in the DAPM to instantiate the pore model, and then

discuss the important implementation issues in using the
instantiated pore models to extract pores. Finally, the adaptive
pore extraction algorithm will be presented.

4.1. DAPM parameter estimation

The matched filters for pore extraction can be generated by
instantiating the pore models. In order to instantiate the DAPM in
Egs. (1) and (2), it is necessary to initialize two parameters,
orientation 6 and scale o. As for the orientation parameter 0, an
intuitive way is to set it as the local fingerprint ridge orientation. To
estimate the ridge orientation field on the fingerprint, we first
smooth the fingerprint image by using a smoothing kernel and then
calculate the gradients along the x and y directions by using some
derivative operator (e.g. the Sobel operator). Let G(i,j) and G,(i,j) be
the gradients at the pixel (i,j), and the squared gradients be
Gx(1,J)=G(1,]) x Gx(1,J), Gu(1,J)=Gx(i,J) x Gy(i,j), and Gyy(i,j)=Gy(i,
J) x Gy(i,j). The squared gradients are then smoothed by using a
Gaussian kernel, resulting in G, Gxy, and Gyy. The ridge orientation
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at (i,j) is estimated by

3
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which is in the range of [0, z]. For more details on fingerprint ridge
orientation field estimation, please refer to [18].

With regard to the scale parameter o, if we can estimate the
range of pore scales, we can then use a bank of multi-scale matched
filters to detect the pores; however, this is very time-consuming.
Therefore, we estimate and use the maximum valid pore scale when
designing the matched filters in this paper. As shown in Section 2,
the pores are located on ridges. Consequently, the pore scales should
be restricted by the ridge widths. This motivates us to associate the
maximum pore scale with the local fingerprint ridge period by a
ratio, i.e. 0=1/k, where 7 is the local ridge period (or the reciprocal
of local ridge frequency) and k a positive constant. In this paper, we
empirically set k=12. The local ridge frequency is estimated in a
local window by using the projection-based method in [19].

4.2. Implementation issues

With the estimated parameters 6 and ¢ in Section 4.1, an adaptive
pore model can be instantiated for each pixel and then we can apply
it as a matched filter to extracting pores from the fingerprint image.
However, there will be two problems if directly applying the matched
filters in a pixel-wise way. Next, we discuss these issues in detail and
present the solutions to practical implementation.

The first problem is the computational cost. Obviously, it will
be very expensive to calculate the DAPM in a pixel-wise way.
Noting that in a local region on the fingerprint, the ridges run
nearly parallel with each other, and the intervals between them
vary slightly, we could therefore calculate a common DAPM in a
local region to detect pores. The second problem is that on some

a
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parts of a fingerprint image it is difficult to get an accurate
estimate of the local ridge orientation and frequency, which is
needed in order to initialize an accurate instance of DAPM. For
example, on the image shown in Fig. 5(a), the region highlighted
by the red circle is mashed and no dominant orientation can be
obtained. The sharp change of ridge orientation at the singular
points of a fingerprint will also raise difficulties in estimating the
ridge orientation and frequency surrounding the singular points.

To deal with these issues, we propose a block-wise approach to
implementing the matched filters for pore extraction. This approach
defines three kinds of blocks on fingerprint images: well-defined
blocks, ill-posed blocks, and background blocks. Well-defined and ill-
posed blocks are both foreground fingerprint regions. On a well-
defined block, it is able to directly estimate a dominant ridge
orientation and a ridge frequency. On an ill-posed block, there is not a
dominant ridge orientation but the ridge frequency can be estimated
by interpolation of the frequencies on its neighboring blocks.

The block partition and classification is performed in a
hierarchical way. First, a large block size is applied to the image.
For each block B, the following structure tensor is calculated

1 Ju Ji2
=—> VBVB = 4
J NBiEZB o {121 ]22] “
where Np denotes the number of pixels in the block,

VB; = ((&B;/ax),(@B;/ay))" is the gradient vector at pixel i, and ‘T
represents the transpose operator. The structure tensor J contains
information of ridge orientation in the block and the eigenvalues
of J can be used to measure the consistency of ridge orientation.
Specifically, we use the orientation certainty (OC) defined as
follows [20]:
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Fig. 5. (a) A fingerprint image. The ridge orientation and frequency cannot be accurately estimated on the region marked by the red circle. (b) The partition result. The
dominant ridge orientations of the well-defined blocks are shown by the green lines. (For interpretation of the references to color in the figure legend, the reader is referred

to the web version of this article.)
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where 4; and /; are the two eigenvalues of 2 x 2 structure tensor J
and we assume A; > A,. This quantity of OC can indicate how
strongly the energy is concentrated along the ridge orientation. If
there is a dominant ridge orientation, then /; > /2, and OC will be
close to 1. Otherwise, 4; and A, will not differ much and
consequently OC will be close to 0.

We also calculate a measurement related to the intensity
contrast (IC) of the block as follows:

IC = std(B) (6)

where std denotes the standard deviation. The purpose of this is to
exclude the background from the foreground fingerprint. The two
measurements, OC and IC, are evaluated with pre-specified thresh-
olds. If both of them are above the thresholds, the block is recorded as
a well-defined block and will not be further partitioned. Otherwise,
the block larger than the minimum size is evenly partitioned into four
equal sub-blocks, each of which is further examined. Suppose a block
has reached the minimum size, this block will be marked as a well-
defined block if its OC and IC measures are above the thresholds; it is
marked as an ill-posed block if its OC measure is less than the
threshold but the IC measure is above the threshold; otherwise, it is
marked as a background block. Fig. 5(b) shows the partition result of
the image in Fig. 5(a). The dominant ridge orientations of the well-
defined blocks are shown by the green lines.

After partitioning the fingerprint image into the three kinds of
blocks, the pores can be extracted from each of the foreground
(well-defined or ill-posed) blocks. For a well-defined block, the
dominant ridge orientation and the mean ridge frequency on it
can be calculated directly, and hence the DAPM can be conse-
quently instantiated. For an ill-posed block, there is no dominant
ridge orientation but the mean ridge frequency can be calculated
by interpolating the mean ridge frequencies of its neighboring
blocks. Hence, as a compromise, we apply to the ill-posed blocks
the adaptive DoG based pore models [25]. Next we discuss on
how to calculate the dominant ridge orientation of a well-defined
block and the mean ridge frequency on a foreground block.

The dominant orientation of a well-defined block is defined as
the average orientation of the ridge orientation field on the block.
To average the orientation field of block B, denoted by Bof, we first
multiply the orientation angle at each pixel by 2, and then calcu-
late its cosine and sine values. Finally, the dominant orientation of
the block is calculated as
(aver(sin(Z -BOF))>

1
Bpp = = arctan

5 ()

aver(cos(2 «Bor))

where aver(F) denotes the average of the elements in F.

Step A: Partition \

~

For each well-defined block, the average ridge frequency on
the block is calculated by using the method in [19]. The ridge
frequencies on the ill-posed blocks are estimated by interpolating
their surrounding blocks whose ridge frequencies have already
been calculated. Specifically, after the ridge frequencies on well-
defined blocks have been calculated, we iteratively check the
fingerprint image until all the ridge frequencies of the foreground
blocks have been calculated. If the ridge frequency of a foreground
block has not been calculated, we take the mean of the ridge
frequencies of its neighboring blocks as its ridge frequency.
Finally, all foreground fingerprint blocks, no matter with or
without dominant orientation, are assigned with ridge frequencies.

4.3. The pore extraction algorithm

We now summarize the complete adaptive fingerprint pore
extraction algorithm. As shown in Fig. 6, the proposed pore
extraction algorithm consists of five main steps. Take the
fingerprint fragment in Fig. 7(a), which is a part of Fig. 5(a), as an
example. The first step is to partition the fingerprint image into a
number of blocks, each being a well-defined block, an ill-posed
block or a background block (see Fig. 7(b)). In the second step, the
ridge orientation field of the fingerprint image is calculated.
Meanwhile, the mean ridge frequencies on all foreground blocks
are estimated, which form the ridge frequency map of the
fingerprint image (see Fig. 7(c)). It then proceeds to the third
step, in which the binary ridge map of the fingerprint image is
calculated as follows. Based on the estimated ridge orientation field
and ridge frequency map, the fingerprint image is first enhanced by
using a bank of Gabor filters [19] to enhance the bright valleys and
suppress dark ridges. In order to extract the ridges from the
fingerprint image, we binarize the enhanced image and calculate
its complement, where the ridge pixels have value ‘1’. With this
complement image, we can readily obtain the binary ridge map by
setting the corresponding ridge pixels in the foreground fingerprint
blocks to ‘1’ and the other pixels to ‘0’. This binary ridge map (see
Fig. 7(d)) will be used in the post-processing step to remove
spurious pores because pores can only locate on ridges.

It is worth mentioning that the first three steps can be
performed on a down-sampled small image of the original high
resolution fingerprint image because they do not depend on the
Level 3 features. In our experiments, we down-sampled the
images to half of their original resolution and then carried out
steps A, B, and C. Afterwards, the obtained image partition result,
ridge orientation field, ridge frequency map, and the ridge map
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Fig. 6. The main steps of the proposed pore extraction method.
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Fig. 7. (a) Is a fingerprint fragment, (b) shows the blocks on it (the value in red is the orientation certainty and the value in green is the intensity contrast), (c) displays the
estimated dominant ridge orientations and periods (the green lines denote the orientations on well-defined blocks, and if there is no orientation shown on a block, the
block is an ill-posed block), (d) is the ridge map, (e) is the initial pore map, and (f) shows the final detected pores (marked by circles). (For interpretation of the references to

color in the figure legend, the reader is referred to the web version of this article.)

were all up-sampled to the original resolution. They will be used
in the subsequent pore detection and post-processing. Working
on the down-sampled images can reduce a lot of computational
cost. The pore detection and post-processing are performed on the
original fingerprint images because the Level 3 pore features can
hardly be reliably extracted in the down-sampled low resolution
fingerprint images.

In the pore detection step, the foreground fingerprint blocks
are processed one by one to detect pores on them. A local
instantiation of the DAPM is established for each well-defined
block based on the local ridge orientation and frequency on that
block, and a local instantiation of the adaptive DoG based pore
model is established for each ill-posed block based on the local
ridge frequency on the block. Applying the adaptively instantiated
pore model to the block as a matched filter will enhance the pores
while suppressing valleys and noise. A threshold is then applied to
the filtering response to segment out the candidate pores on the
block. After processing all the blocks, we obtain a binary image
where the candidate pores have the value ‘1’ and other pixels
have value ‘0’. This binary image gives the initial pore extraction
result (pore map). Fig. 7(e) shows an example. We can see that
there could have some spurious and false pores in this map.

The last step is to remove the spurious and false pores from the
initial pore extraction result. In previous work, most methods
remove false pores by applying the restraint that pores should
reside only on ridges [10-12,14] and that the size of pores should
be within a valid range [10-11,14]. Some researchers also propose

to refine the pore extraction result based on the intensity contrast
[13].In[13], a PCA method is applied to a set of extracted putative
pores to estimate a model for the gray level distribution over
pores. This model is then used to exclude falsely detected pores
based on a method of minimizing squared error. This method is
however greatly affected by the chosen putative pores.

In this paper, we take the following steps to post-process the
extracted candidate pores. First, we use the binary ridge map as a
mask to filter the pore map. In this step, the pixels which are not on
ridges are removed. Second, we sort the remaining candidate pore
pixels according to their gray level values descendingly and then
discard the last 5% pixels because they are more probably caused by
noise. Third, we identify all the connected components on the pore
map, and each component is taken as a candidate pore. We check
the size of each component, i.e. the number of pixels it has. If the size
is out of the pre-specified range of valid pore size (from 3 to 30 in
our experiments), the candidate pore is removed from the pore map.
The final pore map is obtained after the above refinement. We
record the extracted pores by recording the coordinates of their
mass centers. See Fig. 7(f) for an example. More examples of
different fingerprint fragments are given in Fig. 8.

5. Experiments and performance evaluation

To evaluate the proposed fingerprint pore extraction method, a
high resolution fingerprint image dataset is required. It is well
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accepted that the fingerprint image resolution should be at least
1000 dpi to reliably capture the Level 3 features such as pores [5].
Unfortunately, so far there is no such high resolution fingerprint
image database freely available in the public domain. So we built
an optical fingerprint scanner by ourselves, which could collect
the fingerprint images at a resolution of about 1200dpi. Fig. 9
shows the scanner we developed. It uses a CCD camera (Lumenera
Camera LU135M) to capture the fingerprint image when the
finger touches against the prism of the scanner.

Two databases have been established by using the scanner we
developed. The first database (denoted as DBI) is a partial fingerprint
image database where the image size is 320 pixels in width and 240
pixels in height. The second database (denoted as DBII) contains full-
size fingerprint images which are 640 pixels in width and 480 pixels
in height. Both databases have 1480 fingerprint images taken from
148 fingers with each finger having 10 samples in two sessions. Five
images were captured for each finger in each of the two sessions
which were about two weeks apart.

Using the established databases, we have conducted extensive
experiments to evaluate the proposed pore extraction method in

comparison with three state-of-the-art methods (Jain’s method
[10,11], Ray’s method [12], and the adaptive DoG based method
[25]). Three types of experiments were conducted. First, we
compared the proposed method with its counterparts in terms of
pore detection accuracy using a set of fingerprint images chosen
from DBI. Second, using the partial fingerprint image database DBI
and a minutia-pore-based fingerprint matcher, we evaluated the
fingerprint recognition performance by using the pores extracted
by the proposed method and the other three methods. Third, we
evaluated the fingerprint recognition performance of the four
methods on the full-size fingerprint image database DBIL In the
following, we present the experiments in detail.

5.1. Pore detection accuracy

We first assess the pore detection accuracy of the proposed
method. For this purpose, we chose a set of 24 fingerprint images
from DBI. The chosen images have relatively good quality so that
the pores on them can be easily marked. Fig. 10 shows two

W7

Fig. 8. Some example pore extraction results obtained by using the proposed method.

Fig. 9. (a) The high-resolution fingerprint scanner we developed and (b) its inner structure.
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Fig. 10. Two example fingerprint images used in the experiments.
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example fingerprint images. We manually marked the pores on
these fingerprint images as the ground truth for our experiments.
We then used our proposed method, Jain’s method, Ray’s method,
and the adaptive DoG based method to extract pores on them.
Fig. 11 shows the pore extraction results of the four methods on
the fingerprint image in Fig. 10(b). On this fingerprint fragment,
the ridges on the left hand side are thinner than those on the right
hand side, and both open and closed pores can be observed. From
Fig. 11(a) and (b), we can see that due to the unitary scale they
use, Ray’s method and Jain’s method cannot work consistently well
on the left and the right parts of the fingerprint image because of
the varying ridge widths and pore sizes. In addition, all the three
comparison methods miss many open pores because their isotropic
pore models cannot accurately handle open pores. In contrast, the
proposed method successfully detects most of the pores on both
the left and the right parts of the fingerprint image no matter they
are open or closed. This demonstrates that the proposed DAPM
model can better adapt to varying ridge widths and pore sizes, and
can better cope with both closed and open pores.

In addition to the visual evaluation of the pore detection
results, we calculated the average detection accuracy on the 24
fingerprint images by using two metrics: Ry (true detection rate)
and Rr (false detection rate). Ry is defined as the ratio of the
number of detected true pores to the number of all true pores,
while Rr is defined as the ratio of the number of falsely detected
pores to the total number of detected pores. A good pore
extraction algorithm should have a high Rr and a low Rr simul-
taneously. Table 1 lists the average detection accuracy and the

standard deviation of detection accuracy of the four methods.
According to the average detection accuracy listed in Table 1, the
proposed method achieves not only the highest true detection
rate but also the lowest false detection rate. With regard to the
standard deviation, as shown in Table 1, the proposed method
again achieves the smallest deviation over the whole image set for
both true detection rate and false detection rate. As for the other
three methods, none beats its counterparts in all cases. From
these results, we can see that the proposed method can detect
pores on fingerprint images more accurately and more robustly.

5.2. Pore based partial-fingerprint recognition

Since the purpose of pore extraction is to introduce new
features for fingerprint recognition, it is necessary to test how the
pores extracted by the methods will contribute to a fingerprint
recognition system. According to [8,9,26], the fingerprint recogni-
tion benefits more from the pores when the used fingerprint
images cover small fingerprint area. Therefore, in order to
emphasize the contribution of pores, we evaluated in this sub-
section the improvement of fingerprint recognition accuracy
made by the extracted pores based on the partial fingerprint
image database DBI.

We implemented an AFRS like the one in [26] which is based
on minutiae and pores. The block diagram of the AFRS is shown in
Fig. 12. It consists of five main modules, i.e. minutia extraction,
pore extraction, minutia matching, pore matching, and match

Fig. 11. Example pore extraction results of (a) Ray’s method, (b) Jain’s method, (c) the adaptive DoG based method, and (d) the proposed method. The pores are manually
marked by bright dots and the detected pores are marked by red circles. (For interpretation of the references to color in the figure legend, the reader is referred to the web

version of this article.)

Table 1

The average pore detection accuracy (%) and the standard deviation of the four methods on the 24 fingerprint images.

Ray’s method Jain’s method Adaptive DoG based method The proposed method
Rr 60.6 (11.9) 75.9 (7.5) 80.8 (6.5) 84.8 (4.5)
Rr 30.5 (10.9) 23.0 (8.2) 22.2 (9.0) 17.6 (6.3)
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score fusion. We use the methods in [21] for minutia extraction
and matching modules. The pore matching is accomplished by
using the direct pore matching method in [26]. It firstly
establishes initial correspondences between the pores on two
fingerprints based on their local features, and then uses the
RANSAC (Random Sample Consensus) algorithm [27] to refine the
pore correspondences, and finally calculates a pore-based simi-
larity score between the two fingerprints based on the number of
corresponding pores. The pore matching is independent of minutia
matching in this method. This method is very suitable for small
partial fingerprint recognition where the minutia matching results
are often unreliable due to the limited number of minutiae on the
small fingerprint fragments [26]. The pore match score and the
minutia match score are finally fused by using a simple weighted
summation scheme to give the final match score between two
fingerprint images (before fusion, both match scores are normal-
ized to the range between 0 and 1) as follows:

MS = WMS yiny + (1 —®W)MSpore €))

where @ is the weight of minutiae with respect to pores.

By using database DBI and the above described AFRS, we
evaluated the fingerprint recognition performance of the four pore
extraction methods. Considering the expensive computational cost,
the following matches were carried out: (1) Genuine matches: Each
of the fingerprint images in the second session was matched with
all the fingerprint images in the first session, leading to 3700
genuine matches, and (2) Imposter matches: the first fingerprint
image of each finger in the second session was matched with the
first fingerprint image of all the other fingers in the first session,
resulting in 21,756 imposter matches. Fig. 13 shows the equal error
rates (EER) obtained by the four methods on DBI under different
weights. By using only minutiae, the EER is 17.67%. The EERs when
using only pores (i.e. w=0) are, respectively, 21.96% by Ray’s
method, 21.53% by Jain’s method, 22.99% by the adaptive DoG

Minutia Extraction » Minutia Matching

Score

Fusion[—"

Direct Pore
Matching

Pore Extraction

Fig. 12. Block diagram of the AFRS used in partial fingerprint recognition
experiments.
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Fig. 13. The EERs of the four methods on DBI with different fusing weights.
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Fig. 14. The ROC curves of the four methods on DBI when the lowest EERs are
obtained.

based method, and 20.49% by the proposed method. By fusing
minutiae and pores, the best results are 12.41% (w=0.9), 12.4%
(w=0.8), 14.18% (w=0.9), and 11.51% (w=0.8) by the four
methods, respectively. Fig. 14 shows their receiver operating
characteristics (ROC) curves when the best EERs are obtained. It
is seen that the proposed method leads to the best recognition
results. The improvement of recognition accuracy made by fusing
the pore features over using only minutia features are 29.77%,
29.82%, 19.75% and 34.86%, respectively by the four methods.

5.3. Pore based full-size fingerprint recognition

The experiments in this sub-section were to evaluate the
contribution of the extracted pores to full-size fingerprint recogni-
tion. We compared the four pore extraction methods by using a
different AFRS in [10], which is appropriate for full-size fingerprint
images, and using the full-size fingerprint image database DBII.
Fig. 15 shows the block diagram of the AFRS. We used the same
minutia extraction and matching modules and the same score
fusion module as in the last sub-section, but implemented the pore
matching module by using the ICP (iterative closest point) based
method as in [10,11]. This is because on fingerprint images
covering large fingerprint area, there are sufficient minutiae to
provide reliable minutia match results. We can thus compare the
pores locally in the neighborhoods of matched minutiae. In this
way, the pores can be matched much more efficiently. Specifically,
after matching the minutiae on two fingerprints, the pores lying in
the neighborhoods of each pair of matched minutiae are matched
by using the ICP algorithm [10,11], resulting in N match scores (N is
the number of pairs of matched minutiae), which are defined as the
summation of two terms: the mean distance between all matched
pores and the percentage of unmatched pores. The pore match
score between the two fingerprints is finally defined as the average
of the first three smallest match scores.

By using the above AFRS, we matched pair-wise all the
fingerprint images in DBII (avoiding symmetric matches), generat-
ing 6660 genuine match scores and 1,087,800 imposter match
scores. Fig. 16 presents the EERs obtained by the four methods on
DBIL Because the fingerprint images in DBII are full-size fingerprint
images and have more minutiae, it can be seen that the EER of
using only minutiae is 0.61%, which is much better than that
obtained on DBI (17.67%, referring to Section 5.2). When only using
pores, the EER of Ray’s method is 9.45%, Jain’s method 8.82%, the
adaptive DoG based method 10.85%, and the proposed method
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Fig. 16. The EERs of the four methods on DBII when different weights are used. (b) is the zoom-in of (a) when the weight is from 0.6 to 1.

7.81%. The best results of these methods after fusion with minutia
match scores are 0.59% (0 =0.9), 0.6% (w=0.9), 0.56%(w=0.8), and
0.53% (w=0.7). Fig. 17 shows their corresponding ROC curves
when the best results are obtained. The proposed method improves
on the best EERs of Ray’s method, Jain’s method, and the adaptive
DoG based method by 10.17%, 11.67%, and 5.36%, respectively.

5.4. Computational complexity analysis

Before closing this section, we would like to briefly analyse
the computational complexity of the methods. As shown in Fig. 6,
the proposed pore extraction method has five main steps: (A)
partition, (B) ridge orientation and frequency estimation, (C) ridge
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Fig. 17. The ROC curves of the four methods on DBII when the best results are obtained.

map extraction, (D) pore detection, and (E) post-processing.
Among these steps, the steps (B) and (C) are common to most
automatic fingerprint recognition systems. The step (A) needs to
calculate the two measurements, OC and IC, for each of the blocks,
which can be done very efficiently. On a PC with 2.13GHz
Intel(R) Core(TM) 2 6400 CPU and RAM of 2GB, the Matlab
implementation of the method took about 0.05ms on average to
conduct the step (A) for one partial fingerprint image used in the
experiments (note that down-sampling was applied in the
experiments). In the pore detection step (D), the main operation
is the convolution of pore models with the fingerprint image. This
is essentially common to all filtering-based pore extraction
methods including the three counterpart methods considered in
the experiments here. However, because Jain’s and Ray’s methods
both apply a single pore filter to the whole fingerprint image, they
are more efficient than the Adaptive DoG-based method and the
method proposed here which apply different pore filters to
different blocks. Specifically, Jain’s and Ray’s methods took less
than 0.1 ms to detect the pores on one partial fingerprint image,
whereas the other two methods used about 0.5 ms. The last post-
processing step (E) is also common to all pore extraction methods.
Using our Matlab implementation, it took about 0.4 ms to carry
out all the post-processing operations defined in Section 4.3. From
the above analysis, we can see that the proposed pore extraction
method is a little more complex than Jain’s and Ray’s methods due
to the more elaborated pore models on which it is based. How-
ever, considering the gain of accuracy by the proposed method,
the increased computational complexity is deserved. More
importantly, its computational cost is still acceptable (with the
Matlab implementation, it took about 1-2s to extract the pores
on one partial fingerprint image), and we expect that the
computational cost can be much reduced by using languages like
C/C+ and after optimization.

6. Conclusion

This paper presented a dynamic anisotropic pore model
(DAPM). It differs from previous pore models in that it is aniso-
tropic and dynamic so that it can more accurately represent pores
by using orientation and scale parameters. A novel adaptive pore

extraction method was then developed based on the DAPM. The
fingerprint image was partitioned into well-defined, ill-posed and
background blocks according to the orientation certainty and
intensity contrast on the blocks. For each well-defined block, the
ridge orientation and frequency were estimated directly, while for
each ill-posed block, the ridge frequency was estimated by
interpolating the ridge frequencies on its neighboring blocks.
The local instances of the DAPM were then instantiated for the
well-defined blocks based on the estimated orientations and
frequencies of them. The instantiated pore models were taken as
the matched filters and applied to the blocks to detect the pores
thereon. In the post-processing step, some constraints were used
to remove possible spurious and false pores in the detection result.

We have established two high-resolution fingerprint databases
to evaluate the proposed method in comparison with three state-
of-the-art pore extraction methods. The proposed method
obtained a true detection rate as 84.8% and a false detection rate
as 17.6%, and corresponding deviations 4.5% and 6.3%. In contrast,
the best true detection rate and false detection rate of existing
methods were, respectively, 80.8% and 22.2%, and their deviations
were 6.5% and 8.2%. These experimental results demonstrated
that the proposed DAPM is more accurate and robust than the
previous models. We consequently evaluated the pore based
fingerprint recognition systems. The experiments show that by
using pores as additional features to the conventional minutia
features, higher recognition accuracy can be obtained. Since the
proposed DAPM achieves higher pore detection accuracy, it
obtains the best fingerprint recognition accuracy among the
state-of-the-art pore extraction methods on both partial and full-
size fingerprint image databases. On the partial fingerprint image
database, by fusing minutia and pore match scores it improves the
recognition accuracy of using only minutiae by 34.86%, whereas
the improvements made by the other methods are all below 30%.
On the full-size fingerprint image database, again, the proposed
method achieves the best EER at 0.53%, which improves the other
methods by over 5% to about 12%.

In this paper, we experimentally set the scale parameter of the
proposed pore model according to the local ridge periods by a
ratio. In our future work, we are going to determine it in a more
adaptive way based on the automatic scale selection theory
[17,28]. Currently, the proposed pore extraction method is mainly
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for live-scan fingerprints. In future, we are also going to extend
the proposed method to more challenging latent fingerprints.

Acknowledgements

The authors would like to thank the editor and the anonymous
reviewers for their help in improving the paper. The work is
partially supported by the GRF fund from the HKSAR Government,
the central fund from Hong Kong Polytechnic University, and the
NSFC fund (No. 60803090), the Natural Scientific Research
Innovation Foundation in Harbin Institute of Technology, and
the Shenzhen Key Laboratory of Network Oriented Intelligent
Computation, China.

References

[1] D. Zhang, Automated Biometrics: Technologies and Systems, Kluwer and
Academic Publishers, USA, 2000.

[2] AK. Jain, P. Flynn, A. Ross, Handbook of Biometrics, Springer, 2007.

[3] D. Maltoni, D. Maio, AK. Jain, S. Prabhakar, Handbook of Fingerprint
Recognition, Springer, New York, 2003.

[4] N. Ratha, R. Bolle, Automatic Fingerprint Recognition Systems, Springer, New
York, 2004.

[5] CDEFFS, Data format for the interchange of extended fingerprint and
palmprint features, Working Draft Version 0.4, (http://fingerprint.nist.gov/
standard/cdeffs/index.html”, June 2009.

[6] A. Roddy, ]. Stosz, Fingerprint features - statistical analysis and system
performance estimates, Proceedings of the IEEE 85 (9) (1997) 1390-1421.

[7] J.D. Stosz, L.A. Alyea, Automated system for fingerprint authentication using
pores and ridge structure, in: Proceedings of the SPIE Conference on
Automatic Systems for the Identification and Inspection of Humans, San
Diego, vol. 2277, 1994, pp. 210-223.

[8] K. Kryszczuk, A. Drygajlo, P. Morier, Extraction of level 2 and level 3 features
for fragmentary fingerprints, in: Proceedings of the 2nd COST Action 275
Workshop, 2004, pp. 83-88.

[9] K. Kryszczuk, P. Morier, A. Drygajlo, Study of the distinctiveness of level 2 and
level 3 features in fragmentary fingerprint comparison, in: BloAW2004, LNCS
3087, 2004, pp. 124-133.

[10] A.K. Jain, Y. Chen, M. Demirkus, Pores and ridges: Fingerprint matching using
level 3 features, in: Proceedings of ICPROG, vol. 4, 2006, pp. 477-480.

[11] AK. Jain, Y. Chen, M. Demirkus, Pores and ridges: fingerprint matching using
level 3 features, IEEE Transactions on Pattern Analysis and Machine
Intelligence 29 (1) (2007) 15-27.

[12] M. Ray, P. Meenen, R. Adhami, A novel approach to fingerprint pore
extraction, in: Proceedings of the 37th South-eastern Symposium on System
Theory, 2005, pp. 282-286.

[13] N.R. Parsons, ].Q. Smith, E. Thonnes, L. Wang, R.G. Wilson, Rotationally
invariant statistics for examining the evidence from the pores in fingerprints,
Law, Probability and Risk 7 (2008) 1-14.

[14] N. Ratha, K. Karu, S. Chen, AK. Jain, A real-time matching system for large
fingerprint databases, IEEE Transactions on Pattern Analysis and Machine
Intelligence 18 (8) (1996) 799-813.

[15] D.R. Ashbaugh, Quantitative-Qualitative Friction Ridge Analysis: An Intro-
duction to Basic and Advanced Ridgeology, CRC Press LLC, 1999.

[16] B. Bindra, O.P. Jasuja, AK. Singla, Poroscopy: a method of personal
identification revisited, Internet Journal of Forensic Medicine and Toxicology
1 (1) (2000).

[17] M. Sofka, C.V. Stewart, Retinal vessel centerline extraction using multiscale
matched filters, confidence and edge measures, IEEE Transactions on Medical
Imaging 25 (12) (2006) 1531-1546.

[18] A.M. Bazen, S.H. Gerez, Systematic methods for the computation of the
directional fields and singular points of fingerprints, IEEE Transactions on
Pattern Analysis and Machine Intelligence 24 (7) (2002) 905-919.

[19] L. Hong, Y. Wan, AK. Jain, Fingerprint image enhancement: algorithms and
performance evaluation, IEEE Transactions on Pattern Analysis and Machine
Intelligence 20 (8) (1998) 777-789.

[20] Y. Chen, S. Dass, A. Jain, Fingerprint quality indices for predicting authentica-
tion performance, in: Proceedings of AVBPA2005, 2005, pp. 160-170.

[21] ]J. Feng, Combining minutiae descriptors for fingerprint matching, Pattern
Recognition 41 (2008) 342-352.

[22] A. Ross, A. Jain, ]. Reisman, A hybrid fingerprint matcher, Pattern Recognition
36 (2003) 1661-1673.

[23] A. Jain, L. Hong, R. Bolle, On-line fingerprint verification, IEEE Transac-
tions on Pattern Recognition and Machine Intelligence 19 (4) (1997)
302-314.

[24] Y. He, ]. Tian, L. Li, H. Chen, X. Yang, Fingerprint matching based on global
comprehensive similarity, IEEE Transactions on Pattern Analysis and Machine
Intelligence 28 (6) (2006) 850-862.

[25] Q. Zhao, D. Zhang, L. Zhang, N. Luo, High resolution partial fingerprint
alignment using pore-valley descriptors, Pattern Recognition 43 (3) (2010)
1050-1061.

[26] Q. Zhao, L. Zhang, D. Zhang, N. Luo, Direct pore matching for fingerprint
recognition, in: Proceedings of ICB2009, 2009, pp. 597-606.

[27] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, 2nd
ed, Cambridge University, 2003.

[28] T. Lindeberg, Edge detection and ridge detection with automatic scale
section, International Journal of Computer Vision 30 (1998) 117-156.

About the Author—QIJUN ZHAO holds a B.S. degree and an M.S. degree both from the Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, China. He received his Ph.D. degree in computer science from the Department of Computing at the Hong Kong Polytechnic University in 2010. He is now a post-
doc fellow in the Pattern Recognition and Image Processing Lab at Michigan State University. His research interests mainly lie in the fields of pattern recognition, machine
learning, image processing, and artificial intelligence, with applications to biometrics, information security, and intelligent systems.

About the Author—DAVID ZHANG graduated in Computer Science from Peking University. He received his M.Sc. in Computer Science in 1982 and his Ph.D. in 1985 from
the Harbin Institute of Technology (HIT). From 1986 to 1988 he was a Postdoctoral Fellow at Tsinghua University and then an Associate Professor at the Academia Sinica,
Beijing. In 1994 he received his second Ph.D. in Electrical and Computer Engineering from the University of Waterloo, Ontario, Canada. Currently, he is a Head, Department
of Computing, and a Chair Professor at the Hong Kong Polytechnic University where he is the Founding Director of the Biometrics Technology Centre (UGC/CRC) supported
by the Hong Kong SAR Government in 1998. He also serves as Visiting Chair Professor in Tsinghua University, and Adjunct Professor in Peking University, Shanghai Jiao
Tong University, HIT, and the University of Waterloo. He is the Founder and Editor-in-Chief, International Journal of Image and Graphics (IJIG); Book Editor, Springer
International Series on Biometrics (KISB); Organizer, the International Conference on Biometrics Authentication (ICBA); Associate Editor of more than 10 international
journals including IEEE Transactions and Pattern Recognition; Technical Committee Chair of IEEE CIS and the author of more than 10 books and 200 journal papers.
Professor Zhang is a Croucher Senior Research Fellow, Distinguished Speaker of the IEEE Computer Society, and a Fellow of both IEEE and IAPR.

About the Author—LEI ZHANG received the B.S. degree in 1995 from Shenyang Institute of Aeronautical Engineering, Shenyang, P.R. China, the M.S. and Ph.D. degrees in
Electrical and Engineering from Northwestern Polytechnical University, Xi'an, P.R. China, respectively in 1998 and 2001. From 2001 to 2002, he was a research associate in
the Dept. of Computing, The Hong Kong Polytechnic University. From January 2003 to January 2006 he worked as a Postdoctoral Fellow in the Dept. of Electrical and
Computer Engineering, McMaster University, Canada. Since Jan. 2006, he has been an Assistant Professor in the Dept. of Computing, The Hong Kong Polytechnic University.
His research interests include Image and Video Processing, Biometrics, Pattern Recognition, Computer Vision, Multisensor Data Fusion and Optimal Estimation Theory, etc.

About the Author—NAN LUO received the B.S. degree in 2003 and he is now working as a Research Assistant at the Biometrics Research Centre of the Hong Kong
Polytechnic University. His research interests include imaging technology and biometric systems.


http://fingerprint.nist.gov/standard/cdeffs/index.html
http://fingerprint.nist.gov/standard/cdeffs/index.html

	Adaptive fingerprint pore modeling and extraction
	Introduction
	Review of existing pore extraction methods
	Dynamic anisotropic pore model (DAPM)
	Adaptive pore extraction
	DAPM parameter estimation
	Implementation issues
	The pore extraction algorithm

	Experiments and performance evaluation
	Pore detection accuracy
	Pore based partial-fingerprint recognition
	Pore based full-size fingerprint recognition
	Computational complexity analysis

	Conclusion
	Acknowledgements
	References




