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Abstract

This paper proposes a wavelet based edge detection scheme by scale multiplication. The dyadic wavelet transforms at

two adjacent scales are multiplied as a product function to magnify the edge structures and suppress the noise. Unlike

many multiscale techniques that first form the edge maps at several scales and then synthesize them together, we de-

termined the edges as the local maxima directly in the scale product after an efficient thrsholding. It is shown that the

scale multiplication achieves better results than either of the two scales, especially on the localization performance. The

dislocation of neighboring edges is also improved when the width of detection filter is set large to smooth noise. Ex-

periments on natural images are compared with the Laplacian of Gaussian and Canny edge detection algorithms.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Edge detection is an essential process in image
analysis and many techniques have been proposed.
Some edge detection filters were developed with
optimality (Canny, 1986; Shen and Castan, 1992).
Canny (1986) evaluated the detectors by three
criteria: good detection, good localization and low
spurious response, and he showed that the optimal
detector for an isolated step edge should be the first
derivative of Gaussian.

The optimal Canny edge detector for ramp edges
was proposed by Petrou and Kittler (1991). Canny
restricted the detector as a finite impulse response

(FIR) filter. Sarkar and Boyer (1991) extended it
to infinite impulse response (IIR) filter. Besides the
shape of the detector, another important problem
is to set a proper detection scale. As suggested by
Marr and Hildreth (1980), multiple scales should
be employed to describe the variety of the edge
structures. Then these multiscale descriptions will
be synthesized to form an edge map.

Canny (1986) used a fine-to-coarse feature
synthesis strategy to mingle the multiscale edge
information based on a set of predefined rules.
Bergholm (1987) combined the multiscale edges in
a coarse-to-fine tracking manner. The RRES (rea-
soning about edges in scale space) scheme of Lu
and Jain (1992) tends to be more complex with so
many knowledge rules and continuous scale space.

Considering that the synthesis of the multiscale
edges is intricate and itself an ill-posed problem,
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Jeong and Kim (1992) selected an optimal scale
adaptively for each of the pixels by minimizing
an objective function, but the results suffered from
the complicated shape of the function and the
sensitivity to the initial scale. Ziou and Tabbone
(1993) ran a subpixel Laplacian operator at two
scales and recovered the edges with four-step edge
models. Park et al. (1995) divided an image into
several regions based on a discontinuity mea-
sure calculated over a window and then selected
different resolution (i.e. scale) for each of the
regions.

This paper wants to find a simple but efficient
multiscale scheme. Wavelet transform (WT) is nat-
urally a multiscale analysis and some WT-based
edge detection techniques were proposed (Mallat
and Zhong, 1992; Sadler and Swami, 1999; Aydn
et al., 1996). The dyadic wavelet constructed by
Mallat and Zhong (1992) is a quadratic spline,
which approximates the first derivative of Gaussian.
The corresponding dyadic wavelet transform
(DWT) is equivalent to the Canny edge detection.
Mallat calculated the local maxima of DWT at
each scale and formed a multiscale edge represen-
tation of an image.

Signals and noise have different singularities
mathematically (Mallat and Hwang, 1992). In
DWT domain, it is represented that the edge struc-
tures present observably at each subband while
noise decreases rapidly along the scales. It has been
observed that multiplying the adjacent scales could
sharpen edges while diluting noise (Xu et al., 1994;
Sadler and Swami, 1999).

In this paper, we presented a scale-multiplica-
tion-based edge detection scheme. Two DWT
subbands are multiplied as a product function.
Unlike many multiscale edge detectors, where the
edge maps were formed at several scales and then
synthesized together, our scheme determines edges
as the local maxima in the product function after
a thresholding. The scale multiplication enhances
image structures and suppresses noise. An inte-
grated edge map will be formed efficiently while
avoiding the ill-posed edge synthesis process. It
will be shown that much improvement is obtained
on the localization accuracy and the detection re-
sults are better than using either of the two scales
only.

It is often required to increase the filter’s scale
to better smooth noise. An edge would disappear
or be dislocated if there is another edge curve at its
neighborhood. In this paper, it is also found that
the scale multiplication will reduce the interference
of neighboring edges a lot.

The paper is organized as follows. Section 2
introduces DWT. In Section 3, the scale-multipli-
cation-based edge detection scheme is presented
and analyzed by synthetic images. In Section 4,
experiments are performed on natural images in
comparison with the Laplacian of Gaussian (LOG)
and Canny edge detection algorithms. The con-
clusion is given in Section 5.

2. The dyadic wavelet transform

A function wðxÞ is called a wavelet if its average
is equal to 0. The DWT of f ðxÞ at dyadic scale 2j

and position x is

Wjf ðxÞ ¼ f � wjðxÞ ð1Þ

where � denotes convolution operation and fj de-
notes the dyadic dilation of function f

fjðxÞ ¼ 2�jfð2�jxÞ ð2Þ

For the details please refer to Daubechies (1992)
and Mallat and Zhong (1992).

The DWT can be designed as a multiscale edge
detector that is equivalent to Canny edge detector.
Suppose that hðxÞ is a differentiable smooth func-
tion whose integral is 1 and converges to 0 at in-
finity. Let wavelet wðxÞ be the first order derivative
of hðxÞ
wðxÞ ¼ dhðxÞ=dx ð3Þ
Then

Wjf ðxÞ ¼ f � wjðxÞ ¼ f � 2j
dhj

dx

� �
ðxÞ

¼ 2j
d

dx
ðf � hjÞðxÞ ð4Þ

The Wjf ðxÞ is proportional to the first derivative
of f ðxÞ smoothed by a smooth function hjðxÞ.
When hðxÞ is Gaussian, the determination of the
local extrema of Wjf ðxÞ is equivalent to the Canny
edge detection.
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The wavelet used in this paper is the Mallat
wavelet (Mallat and Zhong, 1992). The corre-
sponding hðxÞ is a cubic spline, and thus wðxÞ is a
quadratic spline.

hðxÞ ¼

0 jxjP 1
hð�xÞ 06 x6 1
�8x3 � 8x2 þ 4=3 �0:56 x6 0
8ðxþ 1Þ3=3 �16 x6 � 0:5

8>><
>>: ð5Þ

wðxÞ ¼

0 jxjP 1
�wð�xÞ 06 x6 1
�24x2 � 16x �0:56 x6 0
8ðxþ 1Þ2 �16 x6 � 0:5

8>><
>>: ð6Þ

In Fig. 1, hðxÞ and wðxÞ are plotted as well as a
Gaussian function and its first derivative. It can be
seen that hðxÞ approximates the Gaussian function
closely and the DWT is equivalent to Canny edge
detection.

In the case of images, two wavelets w1ðx; yÞ and
w2ðx; yÞ should be utilized. Suppose hðx; yÞ is a 2-D
differentiable smooth function whose integral is 1
and converges to 0 at infinity. The two wavelets
are:

w1ðx; yÞ ¼ ohðx; yÞ
ox

; w2ðx; yÞ ¼ ohðx; yÞ
oy

ð7Þ

Denote

fjðx; yÞ ¼ 2�2jfð2�jx; 2�jyÞ ð8Þ

the dilation of fðx; yÞ by 2j, the WT of f ðx; yÞ at
scale 2j and position ðx; yÞ has two components

W 1
j f ðx; yÞ ¼ f � w1

j ðx; yÞ

and

W 2
j f ðx; yÞ ¼ f � w2

j ðx; yÞ ð9Þ

The 1-D and 2-D DWT are illustrated in Fig. 2.
FilterHjðGjÞ is the 2j dilation ofH0ðG0Þ (i.e. placing
2j � 1 zeros between each of the coefficients of
H0ðG0Þ) and H 0

jðG0
jÞ is the transition of HjðGjÞ.

3. Edge detection by scale multiplication

3.1. The discrimination of singularity and noise by
DWT

The behavior of signal across scales in wavelet
domain depends on the local regularity that can be
measured by Lipschitz exponents mathematically.
A function f ðxÞ is Lipschitz a at x0 ð06 a6 1Þ if
and only if there exists a constant K1 such that in
the neighborhood of x0:

jf ðxÞ � f ðx0Þj6K1jx� x0ja ð10Þ
We call the superior bound of all a satisfying Eq.
(10) as Lipschitz regularity. And the relations be-
tween a and wavelet amplitude is described by
(Mallat and Hwang, 1992):

Fig. 1. (a) The smooth function hðxÞ (––) and a Gaussian

function (- - -). (b) Wavelet wðxÞ (––) and the first derivative of

the Gaussian in (a) (- - -).

Fig. 2. (a) 1-D DWT, (b) 2-D DWT. Here filter HjðGjÞ is the 2j
dilation of H0ðG0Þ (putting 2j � 1 zeros between each of coef-

ficients of H0ðG0Þ) and H 0
jðG0

jÞ is the transition of HjðGjÞ.
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jWjf ðxÞj6K2ð2jÞa ð11Þ
where K2 is a constant.

The Lipschitz regularity of a step edge is 0 and
the definition can be extended to negative values
for singularities worst than discontinuities, such as
white noise. White noise is almost singular every-
where and has a uniform Lipschitz regularity
equaling to �1=2.

It can be seen from Eq. (11) that for singu-
larities of signals, whose Lipschitz regularities are
aP 0, the DWT amplitudes would increase or
keep invariant when increasing the scale 2j. On the
contrary, the Lipschitz regularity of white noise is
less than 0, the transform amplitudes will decrease
rapidly along the scales. In Fig. 3 the DWT of a
step function and noise are illustrated. It can be
observed that the DWT amplitudes of the step are
large across scales, but those of noise decay rapidly.

3.2. The scale multiplication

The scale product function of f ðxÞ is defined as
the correlation of two adjacent DWT scales

Pf
j ðxÞ ¼ Wjf ðxÞWjþ1f ðxÞ ð12Þ

Subscript j means that the correlation is computed
at scales 2j and 2jþ1.

As Fig. 3 has shown, the peaks due to edges
tend to propagate across scales. The production
function will enhance the edge structures. But if
f ðxÞ is Gaussian white noise, it could be proved

that the average number of local maxima at scale
2jþ1 is half of that at scales 2j (Mallat and Hwang,
1992). Directly multiplying the DWT at adjacent
scales will dilute the noise.

With scale varying along dyadic sequence ð2jÞ,
j 2 Z, the support of wavelet base wjðxÞ will in-
crease rapidly. This is also to say Wjf ðxÞ will be-
come smoother rapidly along scales. If three or
more adjacent scales were incorporated in the mul-
tiplication, edges would not be sharpened more
but much edge dislocation would occur. So it is
appropriate to analyze the multiplication using
two scales.

In Fig. 4(a), a block signal g and its noisy ver-
sion f ¼ g þ e are illustrated, where e is Gaussian
white noise. Their DWT at the first three scales are
given in Fig. 4(b) and (c). It is shown that at the
finest scale the wavelet coefficients W1f are almost
dominated by noise. At the second and third
scales, the noise diluted rapidly. It can also be seen
that at the small scales the positions of the step
edges are better localized. But some noise may be
falsely considered as edges. At the large scales, the
SNR is improved and edges can be detected more
correctly but with the decreasing of the accuracy of
the edge location. In Fig. 4(d), the product Pf

j ,
j ¼ 1–3, are illustrated. Apparently the step edges
are more observable in Pf

j than in Wjf .

Fig. 3. (a) The DWT of step g at the first three scales, (b) the

DWT of noise e at the first three scales.

Fig. 4. (a) Blocks g and its noisy version f, (b) the DWT of g at

the first three scales, (c) the DWT of noisy f at the first three

scales, (d) the product function Pf
j with j ¼ 1–3.

1774 L. Zhang, P. Bao / Pattern Recognition Letters 23 (2002) 1771–1784



3.3. The thresholding

In the first-derivative-based edge detection
schemes, the gradient image should be thresholded
to eliminate false edges produced by noise. With a
single threshold t, there will still be some false
edges if t is small, and portions of a contour may
be missed if t is too large. In the Canny edge
detection, a double thresholding algorithm was
employed. After non-maxima suppression, a low
threshold tl and a high threshold th 
 2tl are ap-
plied to obtain double thresholded edge images,
Il and Ih. The algorithm selects edges in Il that link
to the edges in Ih.

The double thresholding algorithm can also be
applied in our scheme. Notice that edges and noise
can be better distinguished in the scale product
than in a single scale, a properly chosen threshold
could suppress the noise maxima effectively. Due
to this observation, the single threshold is pre-
ferred for the simplicity.

We assert the edges as the local maxima in Pf
j .

A significant edge at abscissa x0 will occur on both
the adjacent scales and the signs of Wjf ðx0Þ and
Wjþ1f ðx0Þ will be the same, so that Pf

j ðx0Þ should be
non-negative. If Pf

j ðxÞ is less than zero, the point
will be considered as noise and filtered out.

Refer to Fig. 2(a), suppose that the input is
Gaussian white noise e � Nð0; r2Þ. The DWT of e
on scale 2j is WjeðxÞ ¼ e � wjðxÞ. For expression
convenience, we denote XjðxÞ ¼ WjeðxÞ and the
product function is rewritten as YjðxÞ ¼ P e

j ðxÞ ¼
XjðxÞXjþ1ðxÞ.

Obviously, Xj is Gaussian colored noise and
Xj � Nð0; r2

j Þ, where rj ¼ kwjkr and

kwjk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
w2

j ðxÞdx

s
ð13Þ

Xj and Xjþ1 are highly correlated due to the simi-
larities between wavelet bases wj and wjþ1.

Denote tscðjÞ the threshold applied to YjðxÞ. For
the de-noising purpose, it is expected that tscðjÞ
could suppress almost all the values in YjðxÞ, i.e.
P ðyj < tscðjÞÞ ! 1. We give a form of threshold
tscðjÞ as follows.

Normalize Xj and Xjþ1 as:

X j ¼ Xj=rj; X jþ1 ¼ Xjþ1=rjþ1 ð14Þ

So X j, X jþ1 � Nð0; 1Þ. Define

Y jðxÞ ¼ X jðxÞ � X jþ1ðxÞ ð15Þ
and then

YjðxÞ ¼ kwjk � kwjþ1kr2 � Y jðxÞ ð16Þ

Let

Y j;þðxÞ ¼ ðX jðxÞ þ X jþ1ðxÞÞ=2
and

Y j;�ðxÞ ¼ ðX jðxÞ � X jþ1ðxÞÞ=2 ð17Þ

Then

Y jðxÞ ¼ Y
2

j;þðxÞ � Y
2

j;�ðxÞ ð18Þ
and Y j;þðxÞ, Y j;�ðxÞ are Gaussian distributed:
Y j;þ � Nð0; r2

j;þÞ and Y j;� � Nð0; r2
j;�Þ, where

rj;þ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
ðwjðxÞ=kwjk þ wjþ1ðxÞ=kwjþ1kÞ

2
dx

s
;

rj;� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
ðwjðxÞ=kwjk � wjþ1ðxÞ=kwjþ1kÞ

2
dx

s

ð19Þ

Since there is a strong correlation between wjðxÞ
and wjþ1ðxÞ, so that r2

j;þ is much more than r2
j;�.

Take the wavelet used in this paper as an example,
for any scale parameter j the ratio of r2

j;þ to r2
j;� is

about 5.44. (In discrete implementations, the ratio
is of some distortion, at the first three scales the
ratios are: r2

j;þ=r
2
j;� ¼ 3:30, 4.62, 5.22. When j > 3

the ratio approximates 5.44.)

Let �ttscðjÞ ¼ tscðjÞ=ðkwjk � kwjþ1kr2Þ, we have

Pðyj < tscðjÞÞ ¼ P ð�yyj < �ttscðjÞÞ
¼ P ð�yy2j;þ < �ttscðjÞ þ �yy2j;�Þ

P Pð�yy2j;þ < �ttscðjÞÞ ¼ P ðj�yyj;þj <
ffiffiffiffiffiffiffiffiffiffi
�ttscðjÞ

p
Þ

ð20Þ

Y j;þ is Gaussian distributed,
ffiffiffiffiffiffiffiffiffiffi
�ttscðjÞ

p
P 4rj;þ will

lead to

Pðj�yyj;þj <
ffiffiffiffiffiffiffiffiffiffi
�ttscðjÞ

p
j

ffiffiffiffiffiffiffiffiffiffi
�ttscðjÞ

p
P 4rj;þÞ > 0:9999

Therefore

Pðyj < tscðjÞjtscðjÞP 16kwjk � kwjþ1kr2r2
j;þÞ

P P ðj�yyj;þj <
ffiffiffiffiffiffiffiffiffiffi
�ttscðjÞ

p
j

ffiffiffiffiffiffiffiffiffiffi
�ttscðjÞ

p
P 4rj;þÞ ! 1
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In real applications, the input is f ¼ g þ e
where g is the original image and f is a measure-
ment. Due to the linearity of WT, the DWT of f
can be written as Wjf ¼ Wjg þ Wje. At fine scales,
Wje will be predominant in Wjf except for some
significant edge structures to be detected. Since the
contrast of image singularities and noise is greatly
amplified in Pf

j , threshold tscðjÞ will be much ef-
fective in discriminating edges from noise. In our
experiments a setting of

tscðjÞ ¼ c � kwjk � kwjþ1kr2r2
j;þ ð21Þ

with c 
 20 yields impressive results.
It is well known that the scale, i.e. the width, of

the detection filter should be determined to give
a better trade-off between the detection and the
localization efficiency. Small scale leads to higher
resolution while large scale leading to lower false
edge rate. Canny (1986) pointed out that small
operator width should be used whenever they have
sufficient SNR. This is natural for that as long as
the SNR is high enough to dilute the effects of
noise, the filter width should be set as small as
possible to improve the localization and reduce the
interference of neighboring edges.

3.4. Two dimensions

In two dimensions, two product functions
should be defined in x and y directions.

Pf ;1
j ðx; yÞ ¼ W 1

j f ðx; yÞ � W 1
jþ1f ðx; yÞ

and

Pf ;2
j ðx; yÞ ¼ W 2

j f ðx; yÞ � W 2
jþ1f ðx; yÞ ð22Þ

For an edge point ðx0; y0Þ, W i
j f ðx0; y0Þ and

W i
jþ1f ðx0; y0Þ, i ¼ 1; 2 should have the same sign.

So both Pf ;1
j ðx0; y0Þ and Pf ;2

j ðx0; y0Þ will be non-
negative and the orientation information of the
gradient is lost, which should be recovered from
W 1

j f ðx0; y0Þ and W 2
j f ðx0; y0Þ.

Setting the points with Pf ;1
j ðx; yÞ < 0 (Pf ;2

j ðx; yÞ <
0) to 0, the modulus and angle of point ðx; yÞ are
defined as

Mjf ðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pf ;1
j ðx; yÞ þ Pf ;2

j ðx; yÞ
q

ð23Þ

Ajf ðx;yÞ

¼ arctan
sgnðW 2

j f ðx;yÞÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pf ;2
j ðx;yÞ

q
sgnðW 1

j f ðx;yÞÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pf ;1
j ðx;yÞ

q
0
B@

1
CA ð24Þ

As in the Canny edge detection algorithm, an
edge point is asserted wherever Mjf ðx; yÞ has a
local maximum in the direction of the gradient
given by Ajf ðx; yÞ.

The modulus map Mjf ðx; yÞ should be thres-
holded to remove noise. Similar to Section 3.3, a
proper threshold tiscðjÞ that could be applied to
Pf ;i
j ðx; yÞ, i ¼ 1; 2, is

tiscðjÞ ¼ c � kwi
jk � kw

i
jþ1k � r2 � ðri

j;þÞ
2 ð25Þ

where c is a constant and

kwi
jk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ Z
ðwi

jðx; yÞÞ
2
dxdy

s
ð26Þ

ri
j;þ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ Z
ðwi

jðx; yÞ=kw
i
jk þ wi

jðx; yÞ=kw
i
jkÞ

2
dxdy

s

ð27Þ

c can be chosen around 20. By experimental ex-
perience, setting the threshold applied to Mjf ðx; yÞ
as

tscðjÞ ¼ 0:8 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t1scðjÞ þ t2scðjÞ

q
ð28Þ

could achieve satisfying results.

3.5. Performance analysis

In this section, we take two synthetic images as
examples to show that the scale multiplication will
improve the detection performance (especially on
the localization accuracy) and reduce the interfer-
ence of neighboring edges.

3.5.1. Isolated step edge
First we take the isolated step edge as an ex-

ample. By DWT, we find edges at two adjacent
scales respectively using the Canny edge detection
algorithm. Then we detect edges in the product of
the two scales with our scheme. The figure of merit
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F of Pratt (1991) is used to evaluate the perfor-
mance

F ¼ 1

maxfNI;NAg
XNA

k¼1

1

1þ ad2ðkÞ ð29Þ

where NI is the number of the actual edges and NA

is the number of the detected edges. dðkÞ denotes
the distance from the kth actual edge to the cor-
responding detected edge. a is a scaling constant
set to 1=9 as in Pratt’s work. The greater the F, the
better the detection results.

Fig. 5(a) shows a 256� 256 isolated step edge
corrupted with Gaussian white noise. Fig. 5(c) and
(d) are the edge detection results by the small scale
23 and large scale 24. Fig. 5(b) is the detected edge
map by the scale multiplication scheme. Denote by
FP the figure of merit value of Fig. 5(b) and F1, F2
those of (c) and (d). These values are shown in
Table 1. As expected, FP is the greatest. F1 is less
than F2 for that some false edges are caused by
noise.

Next we focus on the localization accuracy of
the three edge images. If the distance dðkÞ is not
greater than 4 pixels, this edge is considered as a

true edge. Denote by N the total number of true
edges that are detected, we define the mean square
distance as

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

d2ðiÞ

vuut ð30Þ

The smaller the D, the better the localization ac-
curacy will be achieved.

Denote by DP the mean square distance value of
Fig. 5(b) and D1, D2 those of (c) and (d). It can be
seen from Table 2 that not only DP is less than D2

but also it is less than D1. This implies that the
scale multiplication improves the localization ac-
curacy significantly while keeping high detection
efficiency.

3.5.2. Neighboring step edges
If two or more edges occur in a neighborhood,

they may interference each other with the in-
creasing of the width of the filter. Lu and Jain
(1989, 1992) discussed the behavior of the edges in
scale space and pointed out that with a large scale
the dislocation of an edge will occur if there is
another edge in the neighborhood. If we select a
small scale parameter, the detection result would
noise sensitive. Generally with a single scale it is
intricate to properly balance the edge dislocation
and the noise sensitivity. With the scale multipli-
cation, this problem can be largely resolved. First,
in comparison with the small scale, edges are en-
hanced and noise is diluted. The noise sensitivity
will be reduced. Second, in comparison with the
large scale, the dislocation of the edges will be

Fig. 5. Noisy step and edge maps: (a) noisy step edge, (b) by

scale multiplication, (c) by scale 23, (d) by scale 24.

Table 1

The figure of merit values of the two scales and their multipli-

cation for the isolated step edge

FP F1 F2

0.9929 0.9496 0.9877

Table 2

The mean square distance values of the two scales and their

multiplication for the isolated step edge

DP D1 D2

0.1782 0.2271 0.2887
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significantly improved, as illustrated in the fol-
lowing example.

Fig. 6(a) is the 256� 256 noisy neighboring step
edges. One edge is located at x ¼ 124 and jumps
from low level to high level. Another is located at
x ¼ 134 and jumps from high level to low level. (If
the two edges are sufficiently close, they can be
viewed as a pulse.) Fig. 6(c) and (d) are the edge
figures formed by small scale 23 and large scale 24.
Fig. 6(b) is the result by the scale multiplication.
The figure of merit value FP, F1 and F2 of Fig. 6(b)–
(d) are listed in Table 3. In Fig. 6(d), since the
width of detection filter is large, the two edges are
with some dislocation and their distance is greater
than 10 pixels. Thus although some false edges
occur in Fig. 6(c), F1 is still greater than F2. Fig.
6(b) possesses both the advantages of Fig. 6(c) and
(d) with few false edges and little edge dislocation.
This is consistent with that FP is greater than both
F1 and F2.

The mean square distances DP, D1 and D2 of
Fig. 6(b)–(d) are given in Table 4. DP is slightly
greater D1 and both of them are much smaller than

D2, implying that much dislocation of the edges
occur in Fig. 6(d).

4. Experiments

Experiments on some benchmark images are
used to validate the proposed scheme. The Canny
edge detection and LOG algorithms are employed
for comparison. There are two parameters in
Canny edge detection. One is the high threshold th.
The other is rg, the standard deviation of the
Gaussian function that is used to adjust the width
of the detection filter. Also two parameters are
taken in LOG scheme, the standard deviation rg of
the Gaussian function and the threshold t to sup-
press false edges. In the proposed scale multipli-
cation based scheme by DWT, the filter width will
be enlarged rapidly with the increasing of the dy-
adic scale parameter 2j. Setting the small scale as
22 or 23 will be sufficient in general. In the fol-
lowing experiments, we fixed the small scale as 22

and then the large scale is 23.
Fig. 7(a) is a 256� 256 noisy House image

ðSNR ¼ 16:52 dB). Fig. 7(b) is the edge image
detected by the scale multiplication scheme. Fig.
8(a)–(c) are the edge maps generated by Canny
edge detection with rg ¼ 1 and threshold th ¼ 0:25,
0.32, 0.39 respectively. Fig. 9(a)–(c) show theCanny
edge detection results with rg ¼ 2 and th ¼ 0:21,
0.26, 0.31. The edge maps by LOG operator are
illustrated in Fig. 10(a)–(c) with rg ¼ 2, t ¼ 1:9,
2.4, 2.9 and Fig. 11(a)–(c) with rg ¼ 2:8, t ¼ 0:5,
0.7, 0.9.

Fig. 6. Noisy two neighboring steps and edge maps: (a) noisy

neighboring step edges, (b) by scale multiplication, (c) by scale

23, (d) by scale 24.

Table 3

The figure of merit values of the two scales and their multipli-

cation for neighboring step edges

FP F1 F2

0.9899 0.9477 0.8914

Table 4

The mean square distance values of the two scales and their

multiplication for neighboring step edges

DP D1 D2

0.2852 0.1837 1.0049
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Fig. 7. (a) Noisy house (SNR ¼ 16:52 dB), (b) edge map by scale multiplication scheme.

Fig. 8. Edge maps by Canny with rg ¼ 1: (a) th ¼ 0:25, (b) th ¼ 0:32, (c) th ¼ 0:39.

Fig. 9. Edge maps by Canny with rg ¼ 2: (a) th ¼ 0:21, (b) th ¼ 0:26, (c) th ¼ 0:31.
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In Canny edge detection and LOG algorithms,
with small scale the edge maps are sensitive to
noise. When the threshold is increased to suppress
noise, some of the true edges disappear. With large
scale, the location accuracy is decreased. It can be
seen from Fig. 7(b) that with our scheme much
better results are obtained. False edges are elimi-
nated and the edges on the house are clearly visi-
ble. Many relatively faint edges undetected by
LOG and Canny edge detection are enhanced by
the scale multiplication and found in the final edge
map.

Fig. 12(a) is the 256� 256 noisy Lenna (SNR ¼
16:34 dB). Fig. 12(b) shows the edge map by the

scale multiplication scheme. Fig. 13(a)–(c) show
the edge maps generated by Canny edge detection
with rg ¼ 1:0, 1.4, 1.8 respectively. Fig. 14(a)–(c)
are the results by LOG with rg ¼ 1:6, 2.0, 2.4.
From Figs. 13 and 14 it can be seen that finer edges
are detected as well as many false edges at fine
scales and noise are suppressed but some edges are
also missed or dislocated (such as the face and hair
of Lenna) at large scales. In Fig. 12(b) through the
scale multiplication more fine edges are asserted
while false edges being removed really well.

Figs. 15–20 are the experiments on Peppers and
Cameraman. The presented scheme also achieves
satisfying performances.

Fig. 10. Edge maps by LOG with rg ¼ 2: (a) t ¼ 1:9, (b) t ¼ 2:4, (c) th ¼ 2:9.

Fig. 11. Edge maps by LOG with rg ¼ 2:8: (a) t ¼ 0:5, (b) t ¼ 0:7, (c) t ¼ 0:9.
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Fig. 13. Edge maps by Canny: (a) rg ¼ 1, (b) rg ¼ 1:4, (c) rg ¼ 1:8.

Fig. 14. Edge maps by LOG: (a) rg ¼ 1:6, (b) rg ¼ 2:0, (c) rg ¼ 2:4.

Fig. 12. (a) Noisy Lenna (SNR ¼ 16:34 dB), (b) edge map by scale multiplication scheme.
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Fig. 15. (a) Noisy Peppers (SNR ¼ 16:36 dB), (b) edge map by scale multiplication scheme.

Fig. 16. Edge maps by Canny: (a) rg ¼ 1, (b) rg ¼ 1:4, (c) rg ¼ 1:8.

Fig. 17. Edge maps by LOG: (a) rg ¼ 1:6, (b) rg ¼ 2:0, (c) rg ¼ 2:4.
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Fig. 18. (a) Noisy Cameraman (SNR ¼ 16:52 dB), (b) edge map by scale multiplication scheme.

Fig. 19. Edge maps by Canny: (a) rg ¼ 1, (b) rg ¼ 1:4, (c) rg ¼ 1:8.

Fig. 20. Edge maps by LOG: (a) rg ¼ 1:6, (b) rg ¼ 2:0, (c) rg ¼ 2:4.
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5. Conclusion

In this paper, we proposed a DWT based edge
detection scheme by scale multiplication. Since
there exist high spatial similarities in wavelet sub-
bands, we defined a scale product function as the
multiplication of two adjacent scales of wavelet
coefficients to amplify edge structures while dilut-
ing noise. Then the edges are determined as the
local maxima of the product to avoid the ill-posed
edge synthesis process in most multiscale detection
schemes. Noting that edges and noise can be better
distinguished in the scale product, we only use a
properly determined threshold to suppress the
noise maxima instead of the double thresholding
utilized by Canny. Through synthetic images, it is
shown that the scale multiplication achieves really
better results than either of the two scales, espe-
cially on the localization performance. The dislo-
cation of neighboring edges is also improved when
the width of detection filter is set large to smooth
noise. At last the experiments on natural images
are compared with the LOG and Canny edge de-
tection algorithms.
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