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Abstract: Researchers have recently found that the finger-knuckle-print (FKP), which refers to the inherent 

skin patterns of the outer surface around the phalangeal joint of one’s finger, has high discriminability, 

making it an emerging promising biometric identifier. Effective feature extraction and matching plays a key 

role in such an FKP based personal authentication system. This paper studies image local features induced 

by the phase congruency model, which is supported by strong psychophysical and neurophysiological 

evidences, for FKP recognition. In the computation of phase congruency, the local orientation and the local 

phase, can also be defined and extracted from a local image patch. These three local features are 

independent of each other and reflect different aspects of the image local information. We compute 

efficiently the three local features under the computation framework of phase congruency using a set of 

quadrature pair filters. We then propose to integrate these three local features by score-level fusion to 

improve the FKP recognition accuracy. Such kinds of local features can also be naturally combined with 

Fourier transform coefficients, which are global features. Experiments are performed on the PolyU FKP 

database to validate the proposed FKP recognition scheme. 
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1. Introduction 

The need for reliable automated user authentication techniques has been significantly increased in the wake 

of heightened concerns about security [1]. Biometrics based methods, which use unique physical or 

behavioral characteristics of human beings, are drawing increasing attention in both academic research and 

industrial applications because of their high accuracy and robustness in the modern e-world. In the past 

decades, researchers have exhaustively investigated a number of different biometric identifiers, including 

fingerprint, face, iris, palmprint, hand geometry, voice, and gait, etc [2]. 

Among various kinds of biometric identifiers, hand-based biometrics attracts much interest because of 

their high user acceptance and convenience. Some commonly used hand-based biometrics, e.g., fingerprint 

[3, 4], palmprint [5-11], hand geometry [12], and hand vein [13, 14], have been well investigated in the 

literature. Recently, scholars have reported that finger-knuckle-print (FKP), the image pattern of skin folds 

and creases in the outer finger knuckle surface, is highly unique and can serve as a distinctive biometric 

identifier [15-21]. Compared with fingerprint, FKP is hard to be abraded since people hold stuffs with the 

inner side of the hand. In addition, unlike fingerprint, there is no stigma of criminal investigation associated 

with the finger knuckle surface, so FKP can have a higher user acceptance [21]. Moreover, people rarely 

leave FKP remains on the stuff surface, making the loss of private data less possible. Thus, FKP has a great 

potential to turn into a widely accepted biometric identifier. 
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Fig. 1. Architecture of our FKP recognition system. 
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Fig. 2: (a) Outlook of our embedded FKP recognition system; (b) a typical FKP image; (c) the determination 
of ROI; (d) a cropped ROI image from the original FKP image in (c). 

 

A novel online FKP-based personal authentication system has been established in our previous works 

[15-18]. As shown in Fig. 1, it comprises four major components: FKP image acquisition, ROI (region of 

interest) extraction, feature extraction and feature matching. In our design, the finger knuckle will be 

slightly bent when being imaged, and hence the inherent skin patterns can be clearly captured. Fig. 2a 

shows the outlook of our embedded FKP recognition system and Fig. 2b shows a typical FKP image. Fig. 

2c and Fig. 2d illustrate the ROI extraction process presented in [15]. The feature extraction and matching 

are based on the extracted ROIs.  

As in many pattern classification tasks, feature extraction and matching plays a key role in FKP-based 

personal authentication system. In [17], Zhang et al. used the Gabor filter based competitive coding 

scheme, which was originally designed for palmprint recognition [6], to extract the local orientation 

information as FKP features. In [15], Zhang et al. combined the orientation information and the magnitude 

information extracted by Gabor filters. In [18], the Fourier transform coefficients of the image were taken 

as the feature and the band-limited phase-only correlation technique was employed to calculate the 

similarity between two FKP images. In the local-global information combination (LGIC) feature extraction 

scheme [16], the local orientation extracted by the Gabor filters is taken as the local feature while the 
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Fourier coefficients are taken as a global feature. In [19], Morales et al. used a real Gabor filter to enhance 

the FKP image and then used the scale invariant feature transform (SIFT) to extract features. 

In our previous method [15, 17], real Gabor filters are used to extract the local orientation information; 

such an idea was inspired by the method [6] for palmprint recognition. Local orientation feature of 

biometric images can also be defined and extracted using other different mathematical models. For example, 

in [7], Jia et al. proposed a coding method to extract the local orientation of palmprints, namely robust line 

orientation code (RLOC), which is based on a modified finite Radon transform. In addition to the local 

orientation, the local phase is also widely used in the biometrics community and it is usually extracted by 

using band-pass complex filters, e.g., Gabor filters [22, 23] and log-Gabor filters [24]. By making use of 

the local phase feature extracted by Gabor filters, Daugman invented the famous IrisCode [25]; inspired by 

Daugman’s work, Zhang et al. adopted a similar idea to match palmprint images [5]. Actually, according to 

[26, 27], the local phase reflects the type of local features. However, it is not clear whether such a feature is 

significant and stable. To address such an issue, we need to know whether the local phases over scales are 

consistent. The phase congruency (PC) model [28-31] serves as a solution to this issue. Studies of 

psychophysics and neurophysiology have revealed that visually discernable image features coincide with 

those points where Fourier waves at different frequencies have congruent phases. PC has been exploited as 

features by some biometrics researchers for face recognition [32], iris recognition [33] and palmprint 

recognition [8].   

To the best of our knowledge, in the biometrics community there is no work to define and analyze 

systematically the three local features – local orientation, local phase, and PC – in a unified framework, and 

there is no attempt trying to integrate these three features to improve the performance of biometrics systems, 

either. In fact, these three local features are independent of each other and none of them can be covered by 

the others; they reflect different aspects of image local information. Thus, better performance could be 

expected by combining these three local features together in some way. Based on these considerations, in 

this paper, we first define these three local features under a unified framework, and then present an efficient 

method to compute them using the computation framework of PC. At last we integrate these three local 

features together for FKP recognition. Experimental results demonstrate that the integration of the three 

local features performs much better than using any of them separately. Moreover, we report the system’s 
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performance when integrating the three local features with one global feature, the Fourier transform 

coefficients, which leads to the best result on our benchmark FKP database. 

The remainder of this paper is organized as follows. Section 2 defines and analyzes the three local 

features, while Section 3 presents the extraction and matching scheme for each local feature. Section 4 

reports the experimental results and discussions. Finally, Section 5 concludes the paper. 

2. Analysis of Local Features 

As stated in Section 1, in literature the three local features, the local orientation, the local phase, and the 

phase congruency, are extracted by using different mathematical models and their relationships are not 

systematically investigated. In this section, we will examine these three local features in detail and under a 

unified framework.  

 

    
(a) (b) (c) (d) 

Fig. 3. Signals with different intrinsic dimensions. (a) i0D; (b) i1D; (c) i2D; (d) i2D. 

 

To ease the following discussions, we first introduce the concept of intrinsic dimension here. The 

intrinsic dimension is the number of degrees of freedom necessary to describe a local image structure [34]. 

A 2D image patch can be classified into a local region, denoted by R, of different intrinsic dimension. For 

example, constant areas are of intrinsic dimension zero (i0D) while straight lines and edges are of intrinsic 

dimension one (i1D). Mathematically, such a classification can be expressed as 

i0 , ( ) ( ), ,

i1 , ( , ) ( cos sin ), ( , ) , i0
i2 ,

R i j i j

N N

N

D f f N

f D f x y g x y x y N f D
D else

θ θ

= ∀ ∈⎧
⎪∈ = + ∀ ∈ ∉⎨
⎪
⎩

x x x x
 (1) 

where g is a 1D real-valued function. Examples of i0D, i1D, and i2D signals are shown in Fig .3. 
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A point x in an image can be characterized by its “local features”, which are derived from a local 

window centered on it. Before we define local features we need to have a model for the signal to be 

analyzed. In our case, we are dealing with 2D FKP images, which are actually a special kind of 2D images 

in that they are abundant of line-like features. And these line-like features play dominant roles in 

distinguishing different individuals. Thus, in this paper, we assume that FKP images are locally i1D 

(intrinsic one dimensional) signals. 

Let’s consider the one dimensional (1D) signal first. The analytic signal is an effective tool for 1D 

signal processing. Given a real 1D signal f(x), the corresponding analytic signal is defined as 

( )( ) ( ) ( ) ( ) ( ) * ( )A Hf x f x if x f x i f x h x= + = +  (2) 

where h(x) = 1/πx refers to the Hilbert transform kernel in the spatial domain and i2 = -1. The local 

amplitude and the local phase of the 1D analytic signal are defined as 

2 2( ) ( ) ( ), ( ) arg ( )H Aa x f x f x x f xφ= + =  (3) 

The local amplitude indicates the energetic information of the signal, while the local phase can be used to 

distinguish between different local structures and it is independent of the local amplitude [26]. In practice, 

since the Hilbert transform operator is an improper integral and difficult to calculate, researchers usually 

use a pair of spatial filters forming a quadrature pair to construct the analytic signal [26, 35]. To this end, 

complex Gabor [22, 23] or log-Gabor [24] filters are widely used. When the 1D signal is embedded into the 

2D space, its orientation should be considered. Thus, the local amplitude, the local phase, and the local 

orientation are three independent measures to characterize a 2D image point.  

The local phase reflects the type of local structures [ref]. However, we do not know to what degree it is 

a significant feature. To address such an issue, we make use of the phase congruency (PC) [28-30], a 

dimensionless quantity, to measure the consistency of the local phases over scales. Based on the 

physiological and psychophysical evidence, it is found that visually discernable features coincide with 

those points having maximal phase congruency. Such a conclusion has been further corroborated by some 

recent studies in neurobiology using functional magnetic resonance imaging (fMRI) [31]. Phase 

congruency has an intriguing property that it is almost invariant to changes in image brightness or contrast.  

Thus, within the local window surrounding an image point x, four features – the local amplitude, the 
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local phase, the local orientation and the phase congruency, can be extracted and they reflect different 

aspects of information contained in the local window. However, we will not use the local amplitude for 

recognition because it is not contrast invariant. Hence, the local phase, the local orientation and the phase 

congruency will be used as three local features in this article. 

For real 2D images, these three local features can be defined and extracted using a set of 2D quadrature 

filter pairs, such as 2D complex Gabor or log-Gabor filters. Suppose that complex Gabor filters are adopted, 

which are defined as 

'2 '2
'

2 2

1 2( , ) exp exp
2 x y

x yG x y i xπ
σ σ λ

⎛ ⎞⎛ ⎞ ⎛ ⎞= − + ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
 (4) 

where x' = xcosθ + ysinθ, y' = -xsinθ + ycosθ. In Eq. (4), λ represents the wavelength of the sinusoid factor, 

θ represents the orientation of the normal to the parallel stripes of the Gabor function, σx and σy are the 

standard deviations of the 2D Gaussian envelop. It can be seen from the definition that a Gabor filter is 

actually a Gaussian envelop modulated by a sinusoidal plane wave. The Gaussian envelop ensures that the 

convolution is dominated by the image patch near the center of the filter. Therefore, the Gabor filter is a 

local operator and can extract information at a specific scale and a specific orientation within a local region. 

To define and extract the local orientation, we make use of the competitive coding scheme which has 

been successfully used for palmprint [6] and FKP [15, 17] recognition. Denote by GR (GI) the real 

(imaginary) part of the Gabor filter G. With a series of GR sharing the same parameters, except the 

parameter of orientation, the local orientation of the image I at the position (x, y) can be extracted. 

Mathematically, the local orientation is defined as 

( , ) arg min{ ( , ) * ( , , )}R j
j

ori x y I x y G x y θ=  (5) 

where θj = jπ/J, j = {0,…, J - 1}. J represents the number of orientations. It needs to be noted that 

theoretically speaking, the local orientation of ideal i1D 2D image signals can be accurately extracted by 

the Riesz transform-based monogenic signal model, which is a 2D extension of the classical 1D analytic 

signal [36, 37]; however, for real 2D images, multi-dimensional even-symmetric filters usually perform 

better for this task [6, 15]. 

The extraction of the PC using quadrature pair filters will be presented in Section 3.1 in detail. Actually, 
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the PC is a 1D concept. For 2D images, we can compute
j

PCθ along different orientations {θj:| j = 0 ~ J - 1}. 

Then the maximum of { :| 0 ~ 1}
j

PC j Jθ = −  can be taken as the PC value at the examined position: 

2 ( , ) max{ ( , ) :| 0 ~ 1}
jj

PC x y PC x y j Jθ= = −  (6) 

We denote by θm the orientation along which the 1D PC takes the maximum. Then, we can apply Gabor 

filtering along θm and define the local phase as:  

( )( , ) arg ( , ) * ( , , ) ( , ) * ( , , )R m I mphase x y I x y G x y iI x y G x yθ θ= +  (7) 

3. Extraction and Matching of Local Features 

In Section 2, we have defined and analyzed three local features. In practice, for the reason of computational 

efficiency, we do not compute the three local features separately. Instead, we present a scheme based on the 

computational framework of PC in [30] to extract those features more efficiently. So, in the following 

sub-sections, the PC its computation will be described first. 

3.1. Phase congruency (PC) 

Rather than assume a feature is a point of sharp changes in intensity, the PC model postulates that features 

are perceived at points where the Fourier components are maximal in phase [28-30]. Phase congruency can 

be considered as a dimensionless measure for the significance of a structure independently of the signal 

amplitude. The technique to calculate PC used in this paper is based on Kovesi’s work [30]. 

We start from the 1D signal f(x). Denote by Me 
n  and Mo 

n  the even-symmetric and odd-symmetric filters 

at scale n and they form a quadrature pair. Reponses of each quadrature pair to the signal will form a 

response vector at position x and on scale n: 

[ ( ), ( )] [ ( ) * , ( ) * ]e o
n n n ne x o x f x M f x M=  (8) 

The local amplitude on scale n is given by 

2 2( ) ( ) ( )n n nA x e x o x= +  (9) 

and the local phase is given by 
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( ) 2( ( ), ( ))n n nx atan o x e xφ =  (10) 

These response vectors form the basis of our localized representation of the signal and the PC can be 

derived from them. 

Let F(x) = ∑nen(x) and H(x) = ∑non(x). Then, the 1-D PC can be computed as 

( )( )
( )nn

E x
PC x

A xε
=

+ ∑  (11) 

where ( )2 2( ) ( )E x F x H x= +  and ε is a small positive constant. We can also define the local phase as 

( )( ) 2 ( ), ( )Phase x atan H x F x=  (12) 

Actually, it is the average local phase over n scales. 

For 2D images, we have to apply the 1D analysis over several orientations and combine the results in 

some way. In such case, 2D filters with the orientation selection property can be used, such as the Gabor 

filters [22, 23] or log-Gabor filters [24]. Let θj = jπ / J, j = {0, 1, …, J - 1}, denote the orientation angle of 

the filter, where J is the number of orientations. By modulating n and θj and convolving with the 2D image, 

we can get a set of responses at each image point x as  

, ,( ), ( )
j jn ne oθ θ

⎡ ⎤
⎣ ⎦x x  (13) 

The local amplitude of point x on scale n and along orientation θj is given by 

2 2
, , ,( ) ( ) ( )

j j jn n nA e oθ θ θ= +x x x  (14) 

The local energy along orientation θj is given by 

( )22( ) ( )
j j j

E F Hθ θ θ= +x x x   (15) 

where ,( ) ( )
j jnn

F eθ θ= ∑x x  and ,( ) ( )
j jnn

H oθ θ= ∑x x . Then, the phase congruency along orientation θj is 

computed by 

,

( )
( )

( )
j

j

jn n

E
PC

A
θ

θ
θε

=
+ ∑

x
x

x  (16) 

The average local phase along orientation θj is defined as 
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( )( ) 2 ( ), ( )
j j j

Phase atan H Fθ θ θ=x x x  (17) 

We define the 2D PC at x as 

2 ( ) max ( )
jj

PC PCθ=x x  (18) 

It should be noted that PC2(x) is a real number within 0 ~ 1. 

3.2. Local feature extraction and coding 

In this section, we present the extraction and coding algorithm for each local feature. The local orientation 

and the local phase can be efficiently extracted by using the intermediate results of the PC computation. 

Having obtained two raw PC maps of two images, we do not match them directly. Instead, we quantize 

them to several levels and then code them into integers. In practice, such a scheme can have three 

advantages: a) it can save a lot the storage space; b) for recognition, it works more robustly than using raw 

PC maps; and c) it allows a fast matching of two maps. Therefore, we quantize the PC into L levels and 

define the PC code as 

2 ( )( )
1 /

⎢ ⎥= ⎢ ⎥⎣ ⎦

PCpcCode
L
xx  (19) 

where ⎣x⎦ is the operator to return the largest integer not bigger than x. It is easy to see that each pcCode is 

an integer within 0 ~ L-1. 

Although there are other kinds of methods to evaluate the local phase feature and the local orientation 

feature, we want to make a full use of the intermediate results in the process of computing PC in order to 

reduce the computational cost. It is easy to see that when calculating the PC, we can get responses from a 

set of even-symmetric and odd-symmetric quadrature filters at different scales and different orientations. 

We can compute the local orientation and the local phase directly from them. For the local orientation 

evaluation, we borrow the idea from the competitive coding scheme [6, 15, 17]. With the responses from 

the even-symmetric filters at a certain scale ς, i.g. ,{ ( ) : 0 ~ 1}
j

e j Jζ θ = −x , the orientation code at x can be 

defined as 

{ },( ) arg min ( ) , 0,..., 1
j

j
oriCode e j Jζ θ= = −x x  (20) 
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Obviously, each orientation code oriCode(x) is an integer within 0 ~ J - 1. 

Refer to Eq. (18), by our definition the 2D PC is actually the maximum of the 1D PCs along different 

orientations. We denote by θm the orientation along which the 1D PC takes the maximum value. Then, we 

can take the average local phase along θm as the local phase at x. That is 

( ) ( )
m

LP Phaseθ=x x  (21) 

The range of LP is [0, 2π]. Once again, we do not need the exact local phase angle. Instead, we quantize LP 

into several discrete levels to get the “phase code” as 

( )( ) ( ) / 2 /π= ⎢ ⎥⎣ ⎦phaCode LP Mx x  (22) 

where M is the number of quantization levels. Thus, each phase code is an integer within 0 ~ M - 1. 

Finally, for a given image, we can get its three code maps: pcCode, oriCode, and phaCode. Examples 

of them are shown in Fig. 4. 

3.3. Matching of local feature maps 

Having obtained the three code maps pcCode, oriCode, and phaCode for each image, the next issue is how 

to match them for recognition. Since the PC is a dimensionless measure, we can use the absolute difference 

to measure the distance between two pcCode maps. Specifically, given two PC code maps, pcCode1 and 

pcCode2, we define their normalized matching distance as 

( )1( ) 2( )
( 1)

abs pcCode pcCode
pcD

L S
−

=
− ⋅

∑∑ x x
 (23) 

where S is the area of the image.  

   
(a1) (b1) (c1) (d1) 

   
(a2) (b2) (c2) (d2) 

Fig. 4. Examples of local feature maps. (a1) and (a2) are the original FKP ROI images; (b1) and (b2) are the 
corresponding pcCode maps; (c1) and (c2) are the corresponding oriCode maps; (d1) and (d2) are the corresponding 
phaCode maps. 
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For comparing two orientation code maps, oriCode1 and oriCode2, we resort to the normalized angular 

distance proposed in [6], which is defined as 

( )

( )
( )
( )

min , ,
,

min , ,

1( ), 2( )
/ 2

p q q p J p q
p q

q p p q J p q

ang oriCode oriCode
oriD

S J

ang
− − +   ≥

=
− − +   <

=
⋅

⎧
⎨
⎩

∑∑ x x

 (24) 

When matching two phase code maps, we use a similar method as matching two orientation code maps. 

The matching distance between two phase code maps, phaCode1 and phaCode2, is given by 

( )1( ), 2( )
/ 2

ang phaCode phaCode
phaD

S M
=

⋅
∑∑ x x

 (25) 

In real implementation, it is easy to design “bitwise” representations for pcCode, oriCode and phaCode, 

and accordingly, pcD, oriD and phaD can be effectively computed. 

3.4. Integration of local features 

The three local features reflect different aspects of information contained in an image patch. Thus, we can 

expect higher recognition accuracy when assembling information from the three features together. This can 

be achieved by a score-level fusion and we refer to this feature integration scheme as local feature 

integration (LFI) in this paper. Suppose that three matching distances pcD, oriD, and phaD have been 

calculated by matching the three kinds of local features respectively. These three distances can be fused 

together to get the final matching distance. There are a couple of rules for the fusion of matching distances, 

such as the Simple-Sum (SS) rule, the MIn-Score (MIS) rule, the MAx-Score (MAS) rule, and the 

Matcher-Weighting (MW) rule [38]. In our case, pcD, oriD, and phaD can be considered to be obtained 

from three different matchers and we adopt the MW rule. With the MW fusion rule, weights are assigned 

according to the Equal Error Rate (EER) obtained on a training dataset by different matchers. Denote by ek 

the EER of the matcher k, k = 1,…, 3. Then, the weight wk associated with matcher k can be calculated as  

3

1

11/ /k k
j j

w e
e=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (26) 

where 0 ≤ wk ≤ 1 and ∑3 
k=1wk=1. It is obvious that the weights are inversely proportional to the corresponding 
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EERs. Then, the final matching distance between two FKP images using LFI is calculated as 

1 2 3d w pcD w oriD w phaD= + +  (27) 

4. Experimental Results and Discussions 

4.1. FKP database and the test protocol 

In our previous work [15-18], an FKP database was established using the developed FKP image acquisition 

device. This database is intended to be a benchmark to evaluate the performance of various FKP 

recognition methods, and it is publicly online available at [39]. In this database, FKP images were collected 

from 165 volunteers, including 125 males and 40 females. Among them, 143 subjects were 20~30 years old 

and the others were 30 ~ 50 years old. We collected samples in two separate sessions. In each session, the 

subject was asked to provide 6 images for each of the left index finger, the left middle finger, the right 

index finger and the right middle finger. Therefore, 48 images from 4 fingers were collected from each 

subject. In total, the database contains 7,920 images from 660 different fingers. The average time interval 

between the first and the second sessions was about 25 days. The maximum and minimum time intervals 

were 96 days and 14 days respectively. In all of the following experiments, we took images collected at the 

first session as the gallery set and images collected at the second session as the probe set. To obtain 

statistical results, each image in the probe set was matched with all the images in the gallery set. If the two 

images were from the same finger, the matching between them was counted as a genuine matching; 

otherwise it was counted as an imposter matching.  

The equal error rate (EER), which is the point where the false accept rate (FAR) is equal to the false 

reject rate (FRR), is used to evaluate the verification accuracy. The decidability index d' [40] is used to 

measure how well the genuine and the imposter distributions are separated. d' is defined as 

( )
1 2'

2 2
1 2 / 2

d
μ μ

σ σ

−
=

+
 (28) 

where μ1 (μ2) is the mean of the genuine (imposter) matching distances and σ1 (σ2) is the standard deviation 

of the genuine (imposter) matching distances. Besides, by adjusting the matching threshold, a detection 
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error tradeoff (DET) curve [41], which is a plot of false reject rate (FRR) against false accept rate (FAR) for 

all possible thresholds, can be created. The DET curve can reflect the overall verification accuracy of a 

biometric system. Thus, the DET curve obtained by using each evaluated method will be provided. 

4.2. Determination of parameters 

In real implementation, with respect to the quadrature pair filters, we utilized the log-Gabor filters whose 

transfer function in the frequency domain is 

( )( ) ( )22
0

2 2 2

log /
( , ) exp exp

2 2 θ

θ θω ω
ω θ

σ σ

⎛ ⎞⎛ ⎞ −⎜ ⎟⎜ ⎟= − ⋅ −
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

j
j

r

G  (29) 

where ω0 is the filter’s center frequency, σr controls the filter’s radial bandwidth and σθ determines the 

filter’s angular bandwidth. In the spatial domain, a log-Gabor filter has a similar shape with a Gabor filter 

[30]. However, compared with Gabor filters, log-Gabor filters have some special advantages [24, 30]. At 

first, one cannot construct Gabor filters of arbitrary bandwidth and still maintain a reasonably small DC 

component in the even-symmetric filter, while log-Gabor filters, by definition, has no DC component. 

Secondly, the transfer function of the log-Gabor filter has an extended tail at the high frequency end, which 

makes it more capable to encode natural images than ordinary Gabor filters. Thus, we chose to use 

log-Gabor filters to compute local features discussed in Sections 2 and 3 in this paper. Parameters were 

empirically tuned based on a sub-dataset containing images from the first 300 FKP classes and the tuning 

criterion was that parameter values that could lead to a lower EER would be chosen. As a result, parameters 

were set as the following: n = 3, J = 6, σθ = 0.44, L = 5, ς = 3, M = 8, ω1 
0 =0.60, ω2 

0 =0.167, ω3 
0 =0.083, where 

ω1 
0 , ω2 

0  and ω3 
0  represent the three center frequencies of the log-Gabor filters at three scales. 

4.3. Performance of local features 

In this experiment, we validate our claim that LFI could provide higher performance than using any of the 

three local features (the local orientation, the local phase, and the phase congruency) individually. In this 

experiment, all the classes of FKPs were involved. Therefore, there were 660 (165 × 4) classes and 3,960 

(660 × 6) images in the gallery set and the probe set each. Each image in the probe set was matched against 
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all the images in the gallery set. Thus, the numbers of genuine matchings and imposter matchings were 

23,760 and 15,657,840, respectively.  

The verification accuracy by using each single feature, the local orientation, the local phase, or the PC, 

is given in Table 1. The performance of the LFI scheme is also reported in Table 1. The performance of 

state-of-the-art FKP recognition method, CompCode [15], is listed in Table 1 for comparison. The DET 

curves obtained by the evaluated methods are shown in Fig. 5.  

From the experimental results shown in Table 1 and Fig. 5, we can have the following findings. At first, 

the local orientation can provide higher discriminability than the other two local features, the local phase 

and the PC, for the task of FKP verification. Secondly, “local orientation” and “CompCode” have nearly the 

same performance because both of them exploit the orientation information. In fact, the local orientation in 

this paper is extracted by using log-Gabor filters while CompCode extracts such information by using 

Gabor filters. Thus, we can conclude that Gabor filters and log-Gabor filters have very similar performance 

for orientation feature extraction. Thirdly, the LFI scheme which integrates all the three local features 

together performs obviously better than using any of them individually, which corroborates our claim.  

It should be noted that LFI has higher computational cost and needs more storage space than 

CompCode [15]. At the feature extraction stage, the major operations involved are convolutions. So, the 

number of convolutions used can roughly reflect the overall computational complexity of the feature 

extraction. For CompCode, 6 convolutions are needed [15]. For LFI, in order to compute the phase 

congruency, at each specific scale 6 log-Gabor filtering are applied and altogether 3 scales are adopted; thus, 

6×3 = 18 convolutions are needed. Therefore, LFI has about 3 times the computational complexity of 

CompCode. In CompCode, each feature point is represented by 3-bits. In LFI, for each feature point, 3-bits 

are used to represent each local feature, and thus 9-bits are used to represent a feature point. So, it is easy to 

see that LFI needs 3 times storage space compared with CompCode.   

 
Table 1: Performance of different FKP verification schemes based on local feature(s) 

feature type EER (%) d' 
local orientation 1.67 4.2847 

local phase 3.01 2.9213 
local phase congruency 2.59 3.3811 

CompCode [15] 1.66 4.2989 
LFI 1.27 4.3221 
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Fig. 5. DET curves obtained by using various FKP recognition methods based on local feature(s). 

 

4.4. Further discussions 

4.4.1 Robustness to small rotations 

From the experimental results reported in Section 4.3, we can see that the local orientation has much higher 

discriminability than the local phase and PC for FKP recognition, and by incorporating the local phase and 

PC, the verification performance could be much better than using the local orientation feature alone. The 

local phase and PC could provide additional discriminative information that is independent of local 

orientation for the FKP verification task. In addition, the local phase and PC features are more robust to 

small rotations than the local orientation. Due to the imperfection of the imaging device and the ROI 

extraction algorithm, there will be small rotations among intra-class images captured at different times, 

which will have negative effect to the algorithms mainly depending on the orientation information. To 

validate such a conjecture, we tested the robustness to small rotations of each local feature in this section.  

 For this purpose, we selected images from the first 400 FKP classes as the dataset and the experiment 

protocols were the same as described in Section 4.1. Let α = {0, 1, 2, 3, 4, 5}. For each α, by rotating each 
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image in the dataset randomly by a degree within range [-α, α], we can get a new virtual dataset. The 

verification performances of each local feature in terms of EER on these 6 virtual datasets are summarized 

in Table 2. For comparison, we also list the results obtained by CompCode and LFI under the same 

experimental settings in Table 2. 

 

Table 2. Verification performance (measured by EER) of local features on the virtual rotated datasets 
 α = 0 α = 1 α = 2 α = 3 α = 4 α = 5 

local orientation 2.03% 2.04% 2.16% 2.40% 2.78% 3.61% 
local phase 3.63% 3.65% 3.87% 4.21% 4.64% 5.50% 

phase congruency 2.83% 2.86% 2.91% 3.23% 3.36% 3.88% 
CompCode [15] 2.01% 2.03% 2.15% 2.38% 2.77% 3.60% 

LFI 1.52% 1.54% 1.64% 1.77% 1.96% 2.34% 
  

As shown in Table 2, when α increases, the EER obtained by using each local feature increases. 

However, for different local features, the “accelerations” of the EER increase are different. We use the 

following measure to characterize the “acceleration” of the EER increase 
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where eeri is the EER obtained when α = i. By using this metric η, the “acceleration” of the EER increase 

by using different local features while α increases can be compared. For the local orientation, η = 0.2798; 

for the local phase η = 0.2050; and for the PC, η = 0.1477. From this experiment, we can clearly see that 

with the increase of the rotation degree, the performance decrease of local phase and PC is much less than 

local orientation, which indicates that the local phase and PC are more robust to small rotations than the 

local orientation. Moreover, for CompCode, η = 0.2866 and for LFI, η = 0.2171, which indicates that the 

proposed local feature integration scheme LFI is much more robust to small rotations than the CompCode 

scheme which depends on local orientation information only. 

4.4.2 Integrating local features with global feature 

In our previous work [16], we presented a local-global information combination (LGIC) scheme for FKP 

recognition, in which the local orientation extracted by Gabor filters was taken as the local feature while the 

image’s Fourier transform coefficients were taken as the global feature. Similarity of Fourier transform 
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coefficients from two images were compared using the phase-only correlation (POC) technique [42, 43]. 

LGIC could achieve the highest verification accuracy on our FKP database. In fact, the local features 

discussed in this paper can also be integrated with the global feature, i.e., the Fourier transform coefficients, 

using the same framework as LGIC. We call this new local-global information combination scheme as 

LGIC2. Compared with LGIC, LGIC2 involves two more local features, the local phase and the phase 

congruency. We compared the performance of LGIC and LGIC2 under the same experiment settings as 

described in Section 4.3. The results in terms of EER and d' are summarized in Table 3. DET curves 

obtained by LGIC and LGIC2 are shown in Fig. 6a. Distance distributions of genuine machings and 

imposter matchings obtained by LGIC2 are plotted in Fig. 6b. From the experimental results, we can see 

that LGIC2 performs better than LGIC. It once again corroborates our claim that the local phase and the 

phase congruency could afford more discriminative information for FKP recognition. 

 
Table 3. FKP verification performance of LGIC and LGIC2 

Method EER (%) d' 
LGIC [16] 0.402 4.5356 

LGIC2 0.358 4.7001 
 

5. Conclusions 

In this paper, we focused on developing new effective feature extraction and matching method for FKP 

recognition. To this end, we analyzed three commonly used local features, the local orientation, the local 

phase, and the phase congruency systematically and presented a method for computing them efficiently 

using the phase congruency computation framework. Coding and matching algorithm for each local feature 

was presented. Extensive experiments were conducted on the benchmark PolyU FKP database. The 

experimental results showed that the integration of all the local features together performs better than using 

any of them separately. The algorithm LGIC2, which integrates all the three local features and one global 

feature, Fourier transform coefficients, could achieve the best verification result on the benchmark FKP 

database, with the EER being 0.358%. 
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Fig. 6. (a) DET curves obtained by LGIC and LGIC2; (b) distance distributions of genuine matchings and 
imposter matchings obtained by LGIC2. 
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