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a b s t r a c t

Orientation coding based palmprint verification methods, such as competitive code, palmprint

orientation code and robust line orientation code, are state-of-the-art verification algorithms with

fast matching speeds. Orientation code makes use of two types of distance measure, SUM_XOR (angular

distance) and OR_XOR (Hamming distance), yet little is known about the similarities and differences

both SUM_XOR and OR_XOR can be regarded as special cases, and provide some principles for

determining the parameters of the unified distance. Experimental results show that, using the same

feature extraction and coding methods, the unified distance measure gets lower equal error rates than

the original distance measures.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, traditional token or key based personal authentica-
tion cannot meet the requirements of current applications,
especially the high secure orientated ones. Automatic authentica-
tion using biometric characteristics as the substitution or
complement technology is becoming more and more popular.
Biometrics [1] is a study of methods for uniquely recognizing
individuals based on one or more intrinsic physical or behavioral
traits, including the extensively studied fingerprint [31], facial
features [30], iris [29], speech, hand geometry, and palmprint
[3,4]. Among these traits, fingerprint has the longest history;
however, around 2% of the population could not provide clear
fingerprint images [2]. Iris is another reliable trait, but its
acquisition device is relatively expensive and it is not very
convenient to collect. Other features, such as the face, voice, and
hand geometry are not yet sufficiently accurate.

Compared with other biometric characteristics, palmprint has
advantages such as high accuracy and user friendliness. During
the past decades, five different classes of extraction algorithms
are typically applied in palmprint recognition, subspace learning
[6–12,24], multiple feature fusion [17,18], texture-based coding
ll rights reserved.
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[5,19–22], line-like feature extraction [13–16], and wavelet
analysis [25,26]. Although subspace learning [34–36] may achieve
good performance on some biometric systems such as face
recognition and gait recognition, they cannot effectively extract
the specific features, such as the line and orientation features,
existed in palmprint images, and they often require enough
training samples. Multiple features [17,18] could improve the
accuracy but the cost of timing and storage will be much
increased. The methods in [13–16] could extract dominant line
feature but may lose some fine structural information of
palmprint [5], and line detection in palmprint is not an easy
issue to be addressed. The wavelet coefficients could represent
discriminant information of palmprint [25,26], but the feature
extraction and comparison is too slow for some applications. The
extraction of line-like texture feature is a particularly popular
approach [19–21], in part because a palmprint contains many
lines as shown in Fig. 1, including principal lines, wrinkles, and
creases [5] and in part because the visual comparison of palmprint
images is simple and convenient. The common tasks in line-like
texture-based coding algorithms are to extract palm line
orientation and compare similarity between different images.
The ideal is to produce an orientation code that is accurate and
has a fast matching speed, or in other words, a short feature
extraction time.

One recently proposed class of methods that have achieved
high speeds and accuracies [19–21] code line orientation
information by viewing palm lines as negative lines. One such
method is which applied six real parts of Gabor filters to the
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Fig. 1. (a) A sample palmprint image [28] and (b) its region of interest (ROI).
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Fig. 2. Major framework of orientation coding-based palmprint verification

algorithm.
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image and selected one orientation for each local region. The
extracted feature was called the competitive code (CompCode)
and the dissimilarity between two features is measured using the
angular distance (SUM_XOR distance) [19]. Wu et al. [20] used a
similar idea but used four self-devised directional templates to
shorten the feature extraction time. In that case the extracted
code was called palmprint orientation code (POC) and the
distance was computed using the Hamming distance (OR_XOR
distance). Jia et al. [21] proposed to extract orientation informa-
tion using modified finite Radon transform (MFRAT). The
extracted feature was called robust line orientation code (RLOC)
and again the distance measure was the Hamming distance.

All of these state-of-the-art algorithms apply a common
approach for feature extraction: several filters or masks with
different orientations are convolved with the image, and then a
criterion is applied to determine the ‘‘dominant’’ orientation.
While both approaches to match the orientation code have been
shown to be fast, and in [23], Kong claimed that the angular
distance is superior to the Hamming distance but without any
experimental support, little work has been done to date to
compare the two distance measures. And even if it does turn out
that angular distance has higher verification accuracy than the
Hamming distance, it is possible that these two distance measures
are complementary and the combination of them would outper-
form either one of them.

In this paper, we propose a unified distance measure and then
show that the angular and the Hamming distance measures
(SUM_XOR and OR_XOR) can be regarded as the special cases of
the proposed measure. We also discuss principles for determining
the parameters of the unified distance and present experimental
results show that the same feature extraction and coding methods
using the unified distance measure can achieve lower equal error
rates (EER) than the original distance measures.

The rest of paper is organized as follows. In Section 2 we
present a survey of current research on three orientation coding
based feature extraction methods and their distance measures
(dissimilarity distances). In Section 3 we propose a unified
distance measure. Section 4 presents our experiments and results.
Section 5 offers our Conclusion.
2. Review on orientation coding based palmprint
verification algorithms

Fig. 2 shows an overview of the process of applying an
orientation coding-based palmprint verification algorithm. The
three main issues are filter design, coding of filtering responses,
and the distance measure. In the following subsections, we review
three orientation coding-based algorithms, CompCode, POC and
RLOC with respect to each of these issues.

2.1. Filter design

The extraction of features from a palmprint image, in particular
information about the orientation of palm lines, usually involves
the application of a group of filters with different orientations.
Different orientation coding-based palmprint verification ap-
proaches have used different filters. CompCode [19] has used
the Gabor filter, POC [20] has used directional templates, and
RLOC [21] has used MRFAT.

In CompCode, the real parts of six neurophysiology-based
Gabor filters with different orientations, yk ¼ kp=6 (k={0, 1, 2, 3, 4,
5}) are used to extract the orientation information from images.
The Gabor function is usually defined in the following way:

cðx; y;o;yÞ ¼ offiffiffiffiffiffi
2p
p

k
e�ðo

2=8k2Þð4x
02þy

02Þðeiox0 � e�k
2=2Þ ð1Þ

where x0 ¼ ðx� x0Þcosyþðy� y0Þsiny, y0 ¼ � ðx� x0Þsinyþðy�
y0Þ cosy, ðx0; y0Þ is the center of the function; o is the radial
frequency in radians per unit length and y is the orientation of the
Gabor functions in radians. The k is defined by k¼ffiffiffiffiffiffiffiffiffiffiffiffi

2 ln 2
p

ðð2d
þ1Þ=ð2d

� 1ÞÞ, where d is the half-amplitude band-
width of the frequency response.

To speed up the feature extraction process, POC applies a small
directional template. The 01-directional template is defines as
follows:

T0 ¼

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1

2
6666664

3
7777775

ð2Þ

and the y-directional template (Ty) is obtained by rotating T0 with
an angle y. To make the experiments be consistent, in the
following we use six directional templates yk ¼ kp=6 (k={0, 1, 2, 3,
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4, 5}) instead of four directional templates (0, p/4, p/2, 3p/4) as
proposed in [20].

To avoid ‘‘wrap around’’, the MRFAT proposed in RLOC uses the
Radon transform. Denoting Zp ¼ f0;1; . . . ; p� 1g, where p is a
positive integer, the MFRAT of real function f ðx; yÞ on the finite grid
Z2

p is defined as

rðLyÞ ¼MFRATf ðyÞ ¼
X
ði;jÞALy

f ði; jÞ ð3Þ

where Ly denotes the set of points that make up a line on the
lattice Z2

p , i.e.

Ly ¼ fði; jÞ : j¼ kði� i0Þ; iAZpg ð4Þ

where ði0; j0Þ denotes the central point of the lattice Z2
p , and y

means the corresponding slope of Lk. Here yk ¼ kp=6 (k={0, 1, 2, 3,
4, 5}).
2.2. Coding of orientation feature

The dominant orientation at position ðx; yÞ is determined
using the rules argminyk

ðIðx; yÞ � cRðx; y;o; ykÞÞ (for CompCode),
argminyk

ðIðx; yÞ � Tyk
Þ (for POC), and argminyk

ðrðLyk
ÞÞ (for RLOC),

where I is the input image. In CompCode, Kong et al. encoded the
dominant orientation {0, p/6, p/3, p/2, 2p/3, 5p/6} using three bits
{000, 001, 011, 111, 110, 100} for efficient palmprint representation
and matching. Fig. 3b shows an example of CompCode. Such a
coding could also be used in the POC and RLOC schemes [20,21].
Fig. 3c shows an example of the coding map of POC and Fig. 3d
that of RLOC.
2.3. Distance measure

Orientation code matches using two kinds of distance measure,
SUM_XOR (angular distance) and OR_XOR (Hamming distance). In
CompCode [19], the angular distance between two features is
defined as

DSUM_XORðP;Q Þ ¼

PM
y ¼ 1

PN
x ¼ 1

P3
i ¼ 1 Pb

i ðx; yÞ � Qb
i ðx; yÞ

3 �M � N
ð5Þ

where P and Q are two CompCode features. Pb
i or Qb

i is the ith bit
plane of P or Q and � is bitwise exclusive OR (XOR). For each pixel,
the angular distance is the sum of the three XOR results on each
bit. Thus the angular distance can be called the SUM_XOR
distance.

In [20], the distance between two POCs is defined as follows:

DHammingðP;Q Þ ¼
HðP;Q Þ

M � N
ð6Þ

where H(P, Q) is defined as the number of pixels at which the
values of P and Q are different. Using the bit representation as
Fig. 3. One palmprint image (a) and with its three different feature maps (b) CompCode,

values.
CompCode, the distance could be rewritten as

DOR_XORðP;QÞ ¼PM
y ¼ 1

PN
x ¼ 1ðP

b
0ðx; yÞ � Qb

0 ðx; yÞÞjðP
b
1ðx; yÞ � Qb

1 ðx; yÞÞjðP
b
2ðx; yÞ � Qb

2 ðx; yÞÞ

M � N
ð7Þ

For each pixel, the distance defined in Eq. (7) actually performs
the OR operation on the three XOR results on each bit. It is called
the OR_XOR distance. RLOR uses a similar distance measure [21].
3. A unified distance measurement

In the past, research on how to represent palmprint features
has attracted a lot of attention, and some work have been done on
investigating the relationship between different feature extraction
algorithms [22]. In contrast, little such work has been done on the
distance measures. SUM_XOR and OR_XOR have been widely
adopted for fast matching of orientation codes, while little
comparative study has been made to investigate the difference
and relations between them. In [23], Kong claimed that SUM_XOR
is superior to OR_XOR but without any experimental evidence.
Even SUM_XOR could achieve higher verification accuracy, it is
still possible that OR_XOR and SUM_XOR would be complemen-
tary and hence the combination of them would outperform any
one of them.

In this section, we propose a unified distance measure
and then show that OR_XOR and SUM_XOR can be regarded as
two special cases of the unified distance measure. We then discuss
the principles for determining the parameters of the unified
distance and compare the computational complexity of OR_XOR,
SUM_XOR, and the unified distance measure.

3.1. Relation between SUM_XOR and OR_XOR

Suppose Pðx; yÞ and Q ðx; yÞ are two three-bit features extracted
from the same location of two images. Using the SUM_XOR
distance, there are four possible results when we compare Pðx; yÞ

with Q ðx; yÞ: zero-, one-, two- or three-bit difference. Denote by a,
b, c, and d the numbers of pixels where the zero-, one-, two- and
three-bit differences occur, respectively. We define the unified
distance between P and Q is

DUðP;Q Þ ¼
ð1þKÞ � bþð2þKÞ � cþð3þKÞ � d

ð3þKÞðaþbþcþdÞ
ð8Þ

where K is a parameter of the unified distance measure.
It can be shown that OR_XOR and SUM_XOR are two special

cases of the proposed unified distance measure. The SUM_XOR
distance (angular distance) defined in Eq. (5) could be written as

DSUM_XORðP;Q Þ ¼
bþ2cþ3d

3ðaþbþcþdÞ
ð9Þ
(c) POC, and (d) RLOC. Different orientation feature is represented by different gray
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Clearly the SUM_XOR distance is a special case of the unified
distance with K=0. Similarly, the OR_XOR distance defined in
Eq. (7) could be written as

DOR_XORðP;Q Þ ¼
bþcþd

aþbþcþd
¼ lim

K-þ1
DUðP;Q Þ ð10Þ

Thus, the OR_XOR distance can also be regarded as a special
case of the unified distance with K= +N. By adjusting the K value,
we can get the more appropriate weights on a, b, c, and d, and
thus expect that the unified distance measure would achieve a
higher verification performance.

3.2. Selection of parameter K

In this section, we discuss some principles to determine the
value of parameter K based on the score level fusion theory [27].
OR_XOR and SUM_XOR can be treated as two classifiers. Given
two templates P and Q, the outputs of these two classifiers are
DSUM_XORðP;Q Þ and DOR_XORðP;Q Þ. If we adopt the weighted sum
rule to combine the classification outputs DSUM_XORðP;Q Þ and
DOR_XORðP;Q Þ, the fusing result would be

DCðP;Q Þ ¼DSUM_XORðP;Q ÞþwDOR_XORðP;Q Þ ð11Þ

where w40 is the weight on OR_XOR. The fusing result can be
given as

DCðP;Q Þ ¼
ð1þ3wÞbþð2þ3wÞcþð3þ3wÞd

3ðaþbþcþdÞ
ð12Þ

DCðP;Q Þ ¼
3þK

3
DUðP;Q Þ when K ¼ 3w ð13Þ

It is obvious that the unified distance measure is proportional
to the weighted sum of OR_XOR and SUM_XOR with K ¼ 3w. In
real application, the selection of K, like in many other score level
fusion [27] technique, is not a trivial issue. It could be relied on the
individual modal’s accuracy [32], or be done by using a small
portion of the data as training set to tune the parameter [7].
Usually, the weight is strongly related with the data set and the
feature map’s discrimination. For example, if OR_XOR has better
result than SUM_XOR on a given data set, the optimal value of K

should be bigger than 3 (w41); otherwise, it will be smaller than
3 (wr1).

3.3. Computational complexity

The proposed unified distance preserves the fast matching
property and could be implemented in bit-wise operation. In
this subsection, we compare the computational complexity of
OR_XOR, SUM_XOR, and the unified distance measure.

Suppose P and Q are of M*N pixels and there are three bits for
each pixel. According to Eq. (5), SUM_XOR needs 3*M*N times
XOR operations and 3*M*N times SUM operations. While OR_XOR
in Eq. (7) requires the same number of XOR operations, 2*M*N

times OR operations and M*N times SUM operations. Usually, the
bit-wise operation OR is much faster than integer-wise SUM
operation. So OR_XOR is a little faster than SUM_XOR.

For the unified distance measures, Eq. (8) could be rewritten as

DUðP;Q Þ ¼
�Kaþbþ2cþ3d

ð3þKÞaþbþcþd
þ

K

3þK
¼

DU
0 ðP;Q Þ

3þK
þ

K

3þK
ð14Þ

DU
0 ðP;Q Þ ¼

�K � aþbþ2cþ3d

aþbþcþd
ð15Þ

Since K is a constant value, it will not influence the distance
relationship. For example, if DUðA;BÞ4DUðA;CÞ, then DU

0 ðA;BÞ4
DU
0 ðA;CÞ. So Eqs. (14) and (15) could be regarded as equivalent

form for recognition.
Eq. (15) could be implemented in bit-wise operation as

DU
0 ðP;Q Þ ¼

�K � aþbþ2cþ3d

aþbþcþd

¼
�K �

PM
y ¼ 1

PN
x ¼ 1ðP

b
0ðx; yÞ � Q b

0 ðx; yÞÞjðP
b
1ðx; yÞ � Qb

1 ðx; yÞÞjðP
b
2ðx; yÞ � Qb

2 ðx; yÞÞ

M � N

þ

PM
y ¼ 1

PN
x ¼ 1

P3
i ¼ 1 Pb

i ðx; yÞ � Qb
i ðx; yÞ

M � N
ð16Þ

It needs 3*M*N times XOR operations, 2*M*N times
OR operations, and 4*M*N times SUM operations. Though
the complexity is little higher than SUM_XOR and OR_XOR, the
unified distance measure is still fast enough for real time
applications.
4. Experimental results

In this section, we compare the performance of two different
distance measures and investigate the effect of K on Eq. (15) using
two public palmprint databases and three feature extraction
methods.

4.1. Experiment results on PolyU database [28]

4.1.1. Database and test protocol

This public database contains 7752 palmprint images from 193
individuals. The database was collected in two sessions. In each
session, the subject was asked to provide about 10 palmprint
images each from his left and right palms. Each person provided
around 40 images. The average interval between the first and the
second collection was 69 days.

The palmprint verification tests matched each palmprint
image against all the other palmprint images in the database. A
match was counted as genuine if the two palmprint images were
from the same palm. Otherwise, it was counted as an impostor.
There were 30,042,876 matches with 74,068 being genuine. Due
to page limitation, the EER, the point when false accept rate (FAR)
is equal to false reject rate (FRR), is used to evaluate the accuracy.

The central part (128*128) of the palm image was cropped
using a region of interest (ROI) extraction algorithm similar to that
described in [5]. To reduce the influence of imperfect ROI
extraction, we translate the features vertically and horizontally
in a small range. A minimal distance obtained by translated
matching is regarded as the final distance. The ranges of the
translation are all set �4–4 in this section.

4.1.2. Verification accuracy comparison and discussion

Fig. 4 shows the EERs using different K values. Because we add
some morphological operations to overcome the broken finger
problem caused by shading during ROI extraction, better results
were achieved than the previous publication [19–21].

As shown in Fig. 4, the EER drops to a minimal point when K is
small, then it increases and gradually stabilizes. This is because
OR_XOR and SUM_XOR have different properties. Fusing those
increases accuracy when K is small but as K increases, the
accuracy will change gradually to that of OR_XOR. Fig. 5 shows an
example. Using original SUM_XOR distance, the same palm
images will be wrongly classified because the distance is bigger
than that of the different palm images. If we use a different K

values, it will easy to distinguish the same palm images from the
different palm images.

Table 1 lists part of the EERs with optimal K values. Compared
with the original distance (italic number) used in each method, the
optimal K value (shown in bracket) reduces the EER by up to 22%
(0.0379-0.0298), 25% (0.2341-0.1761), and 20% (0.0820-0.0656)
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for CompCode, POC, and RLOC, respectively. There is no common
optimal K value for the unified distance. As discussed in Section 3.2
this value is related to the performance of SUM_XOR and OR_XOR.
For example, when EER of SUM_XOR is lower than that of OR_XOR,
smaller K will get superior results. Negative K value will drop the
performance significantly, and this is intuitive because bigger a
should occur on genuine and it plays an important role for
discrimination. We also found that in this database, SUM_XOR is
better than OR_XOR. This finding is consistent with the claim by
Kong [23], i.e. angular distance is superior to Hamming distance.
4.2. Experimental results on CASIA database [33]

4.2.1. Database and test protocol

The CASLA database contains 5239 palmprint images from 301
individuals. To the best of our knowledge, this database is the
largest public available database in term of the number of
Fig. 5. The matching results with different K valu
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Fig. 4. EER vs K.
subjects. The samples were collected in one session only. The
subject was asked to provide about eight palmprint images from
his/her left and right palms.

The same test protocol and matching scheme stated above is
used in this section. There were 13,710,466 (two poor quality
images were excluded from our experiment, so the actual number
of pictures is 5237) matches with 20,567 being genuine. EER is
used to evaluate the accuracy.
4.2.2. Verification accuracy comparison and discussion

Fig. 6 shows the EERs using different K values and Table 2 lists
part of the EERs with optimal K values. Similar to Fig. 4, the EER
drops to a minimal point, and then it increases and gradually
stabilizes. The optimal K value could reduce the EER compared
with original distance metric. Unlike the results in PolyU
database, OR_XOR gets better result than SUM_XOR for all
feature extraction methods. This finding shows that it is hard to
draw a conclusion that the angular distance is superior to the
Hamming distance.

The accuracy of CASIA database is much lower than that of
PolyU. This is mainly caused by three reasons. First, the size of the
database of CASIA is much larger than PolyU, which brings
difficulty for classification. Second, there are no pegs to restrict
postures and positions of palms during CASIA data collection,
which brings large degree of freedom. Finally, the image quality of
CASIA is not as good as that of PolyU. As shown in Fig. 7, lot of
detailed palmprint information is lost in CASIA database.
es. CompCode is applied on the three images.

Table 1
EER under different K values and different feature extraction algorithms.

EER (%) CompCode POC RLOC

0 (SUM_XOR) 0.0379 0.1887 0.0678

Optimal K 0.0298 (K=5) 0.1761 (K=1) 0.0656 (K=1)

þ1 (OR_XOR) 0.0325 0.2341 0.0820
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Table 2
EER under different K values and different feature extraction algorithms.

EER (%) CompCode POC RLOC

0 (SUM_XOR) 0.5475 0.9575 0.8407

Optimal K 0.5006 (K=4) 0.8294 (K=4) 0.7092 (K=50)

þ1 (OR_XOR) 0.5190 0.8547 0.7138

Fig. 7. (a) A sample palmprint of PolyU [28] and (b) A sample palmprint of

CASIA [33].

Table 3
Execution times of different distance measures.

Measure Average time (ms)

SUM_XOR (Eq. (5)) 0.058

OR_XOR (Eq. (7)) 0.052

Unified distance (Eq. (15)) 0.070
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Fig. 6. EER vs K.
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4.3. Matching speed

Table 3 shows the matching speed of different distance
measures by average execution times. The ordinal relationship is
accord with our computational complexity discussion in Section
3.3. The experiment is implemented using Visual C++6.0 on a PC
with Windows XP, E6650 CPU (2.33GHz) and 4GB Ram. Although
the proposed unified distance takes a little longer than OR_XOR, it
could increase the accuracy and still fast enough for most of
applications. For example, for a 1–10 000 identification
comparison, the matching using the proposed distance takes
about 0.7 s.
5. Conclusions

In this paper we discussed three state-of-the-art palmprint
verification algorithms and their feature extraction and matching
metrics. After analyzing the two distance metrics, we proposed a
unified distance for orientation-based coding. The two widely
used distance metrics are two special cases of the proposed
distance. The proposed distance measure was evaluated on two
large public databases. The palmprint verification results showed
that the proposed unified distance achieves lower EER than the
each of the two previously used distances on both databases. We
also empirically found that OR_XOR is not inferior to SUM_XOR
but has a faster matching speed. The proposed matching distance
could also be applied to other coding based palmprint verification
algorithms, such as OLOF [22].
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