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ABSTRACT
Efficient and light-weight super resolution (SR) is highly demanded
in practical applications. However, most of the existing studies fo-
cusing on reducing the number ofmodel parameters and FLOPsmay
not necessarily lead to faster running speed on mobile devices. In
this work, we propose a re-parameterizable building block, namely
Edge-oriented Convolution Block (ECB), for efficient SR design.
In the training stage, the ECB extracts features in multiple paths,
including a normal 3 × 3 convolution, a channel expanding-and-
squeezing convolution, and 1st-order and 2nd-order spatial deriva-
tives from intermediate features. In the inference stage, the multiple
operations can be merged into one single 3×3 convolution. ECB can
be regarded as a drop-in replacement to improve the performance
of normal 3 × 3 convolution without introducing any additional
cost in the inference stage. We then propose an extremely efficient
SR network for mobile devices based on ECB, namely ECBSR. Ex-
tensive experiments across five benchmark datasets demonstrate
the effectiveness and efficiency of ECB and ECBSR. Our ECBSR
achieves comparable PSNR/SSIM performance to state-of-the-art
light-weight SR models, while it can super resolve images from
270p/540p to 1080p in real-time on commodity mobile devices, e.g.,
Snapdragon 865 SOC and Dimensity 1000+ SOC. The source code
can be found at https://github.com/xindongzhang/ECBSR.
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Figure 1: Illustration of PSNR on Urban100 dataset, FLOPs
range (marked by color cast) and inference latency of dif-
ferent SISRmodels performing 540p to 1080p upscaling. All
models are quantized and executed on DSP hardware of
SnapDragon 865.

1 INTRODUCTION
Singe Image super resolution (SISR) aims at reproducing high-
resolution (HR) outputs from their degraded low resolution (LR)
counterparts. In recent years, deep convolutional neural network
(DCNN) [25] based SR models [5, 12, 13, 30, 39, 40, 44, 48, 57] have
become prevalent for their strong capability in recovering or gen-
erating [26, 49] image high-frequency details, showing promising
practical value in image and video restoration, transition and dis-
play. However, most of existing SRmodels tend to employ very deep
and complicated network topology for reproducing more details.
As a result, the required heavy computational cost and memory
consumption make it hard to deploy these SR models in many real-
world applications with resource-limited edge and mobile devices.

In order to deploy SR models on resource-limited devices, how to
improve their efficiency has attracted increasing attentions recently
[55]. Model parameters reduction [22, 43] and FLOPs reduction [1, 7,
17, 31, 47, 55] are currently the two main streams towards efficient
and light-weight SR design. The former strategy usually employs
weight sharing strategy to reduce the model parameters, but it does
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not change the computational complexity of network. The latter
strategy focuses on introducing low-FLOPs (e.g., group convolution,
depth-wise convolution, and element-wise operation) and FLOPs-
free (e.g., feature splitting, concatenation and shuffling / reshaping)
operations to reduce the consumption of FLOPs while maintaining
competitive capacity to those large SR models. However, it has been
shown recently that fewer number of parameters and FLOPs do not
necessarily lead to faster running speed [55]. In addition, most of
existing studies on efficient SR design are evaluated on GPU servers
which cannot reflect their running speed on mobile devices.

It is more challenging to design light-weight and efficient SR
model on commodity mobile devices due to the very limited hard-
ware resources on mobile SOC, e.g., fairly lower bandwidth and
computing capacity compared to those of GPU server. Fig. 1 shows
the hardware performance of various SR models performing 540p
to 1080p upscaling on the DSP hardware of SnapDragon 865, where
all models conduct inference in 8-bit arithmetic. As can be seen,
most of the compared SR models obtaining reasonable PSNR index
are far from real-time in mobile hardware validation, and models
with fewer FLOPs may have even larger latency. Although some
tiny SR models such as FSRCNN [13] and ESPCN [40] can reach
nearly real-time speed, their SR performance measured by PSNR
is quite limited. It is highly desirable to design efficient SR model
that can achieve real-time SR on mobile devices while maintaining
reasonable SR quality.

In this work, we make an attempt to build super efficient SR
model targets for mobile devices. We first choose a neat topol-
ogy with deployable-friendly operators to ensure high inference
speed. Although multi-branch topology can improve the SR per-
formance, the increased network fragments severely decrease the
inference speed on mobile devices. To boost the SR performance
while maintaining high efficiency, we propose to employ the re-
parameterization technique into our SR model design. By explicitly
employing a linear combination of multiple branches in the training
stage and folding them back to a normal 3x3 convolution in the
inference stage, the re-parameterization strategy has proven its
effectiveness on several high-level vision tasks [9–11, 53]. How-
ever, straightly borrowing their network blocks for SR task brings
little improvement. To address this problem, we design a more
effective re-parameterization block, namely Edge-oriented Convo-
lution Block (ECB) for the SR task. Specifically, our ECB consists
of four types of carefully designed operators: normal 3 × 3 convo-
lution, channel expanding-and-squeezing convolution, extracting
1st-order and 2nd-order spatial derivatives from intermediate fea-
tures. Such a design can more effectively extract edge and texture
information which is important for SR task. As shown in Fig. 1, our
ECB based SR model (ECBSR) can not only achieve high SR quality
but also maintain high inference speed.

Our contributions can be summarized as follows:
1) We, for the first time, investigate the structure re-parameteri-

zable technique for SR task and propose an Edge-oriented
Convolution Block (ECB). ECB can be used to improve the
SR performance of any SR model without introducing any
extra burden for inference.

2) Based on ECB, we further design a super efficient and light-
weight SR model, namely ECBSR, for real-time SISR on mo-
bile devices.

Extensive experiments and comparisons validate the effectiveness
of our proposed ECB and ECBSR. ECBSR can upscale images from
270p/540p to 1080p at real-time on mobile devices while preserving
good SR quality.

2 RELATEDWORK
Efficient SR Network Design. Existing efficient SR network de-
sign methods focus mainly on reducing the number of parameters
and FLOPs. Kim et al. [21] proposed a very deep SR (VDSR) network
via residual learning and introduced a deep recursive convolutional
network (DRCN) [22] to reduce the number of parameters. Tai et al.
[43] improved DRCN by combining recursive and residual learning
to achieve better performance with fewer parameters. To reduce
the number of FLOPs, Ahn et al. [1] proposed an efficient cascading
residual network (CARN) with group convolution. Hui et al. [17]
proposed an information distillation network (IDN) to compress
the number of filters per layer. They then extended IDN to infor-
mation multidistillation network (IMDN) [16] and won the AIM
2019 constrained image SR challenge [56]. Liu et al. [31] further
improved IMDN to residual feature distillation block (RFDB) and
won the AIM 2020 [55] SR challenge. In [7, 8], authors used FLOPs
as a constraint of latency objective to search for a light-weight and
effective SR network. However, fewer parameters and FLOPs do
not necessarily mean higher efficiency, especially on the mobile
devices. In this work, we discuss the factors that affect the efficiency
of SR models on mobile devices and introduce a mobile-efficient SR
model.

Computation Reduction. There are also some attempts trying
to reduce the computational cost while preserving SR performance.
Low-bit quantization [33, 51] represents features and weights of
SR models in quantized format, which significantly reduces the
model size and computational cost. However, quantization of SR
models often can hardly maintain the SR quality because of the
precision requirement of pixel-wise prediction. Model pruning is
also an effective method for computation reduction. DHP [28] uses
a differentiable prunning method via hypernetworks for automatic
network pruning, and shows its effectiveness on SR task. Some re-
searchers seek to replace themultiplicationwith cheaper operations.
AdderSR [41] employs addition operation to replace multiplication
and GhostSR [35] uses shift operator to generate redundant fea-
tures. However, these special operations, such as binary/tenary
convolution, fully adder convolution, and shift operation, require
customized hardware optimization to achieve high inference speed,
which is infeasible for most commodity mobile devices only sup-
porting 8/16/32 bit arithmetic calculation and limited operations. To
this end, our proposed ECB is friendly to most commodity mobile
devices and it can be used to improve SR inference performance at
no additional cost.

Re-parameterization.Recently, several studies on re-paramete-
rization have shown their effectiveness on high level vision tasks
such as image classification, object detection and semantic seg-
mentation [2, 9–11, 53]. Arora et. al [2] demonstrated that the re-
parameterization of FC layer can accelerate the training of network
as depth of network increases. DiracNet [53] trains a plain CNN
with comparable performance to ResNet series. ACNet[9] adopts
asymmetric convolution to strengthen the normal convolution,



which can be viewed as another form of structural re-parameterization.
RepVGG [11] de-couples a normal 3 × 3 convolution into multi-
branch block consisting of identity mapping, 1 × 1 convolution and
3× 3 convolution, and boost the performance of traditional VGG to
the level of ResNet series [14] on several high level vision tasks. Di-
verse Branch Block [10] exploites different scales and complexities
of features to enrich the representative capacity of normal convolu-
tion. Previous re-parameterization blocks have been validated on
high level tasks, however it is not effective to straightly employ
these blocks in SR task according to our experiments.

In this paper, we propose ECB for the SR task. ECB is a re-
parameterization block which incorporates domain knowledge
from classical directional and edge filters [3, 29, 36, 58]. Different
from previous researches that explicitly extract the edge informa-
tion using additional local filters, we implicitly insert learnable
edge-aware filter groups in the manner of re-parameterization,
which does not introduce additional cost in the inference stage.

3 METHODOLOGY
We first design a neat topology with mobile-friendly operations as
the base model, then propose a re-parameterizable edge-oriented
convolution block to improve SR performance.

3.1 Base model

Figure 2: Illustration of (a) base topology and (b) Edge-
oriented Convolution Block (ECB). In the training stage, the
ECB employs multiple branches, which can be merged into
one normal convolution layer in the inference stage.

To ensure high inference speed and cross-device deployment on
commodity mobile devices, we carefully consider the limited com-
putation and memory resource on mobile devices and deliberately
choose a neat topology consisting of the most basic operations as
the base model. The overall architecture of the base model is shown
in Fig. 2(a).

Neat Topology. Although complicated topologies such as mul-
tiple branches [1, 16, 17, 31] and dense connections [46, 49] can
enrich the feature representation without introducing many FLOPs,
such topologies result in much higher memory access cost (MAC)
and sacrifice the parallelism degree, which severely reduces the
inference speed. The situation is even worse on mobile devices
because of the low bandwidth of DDR1. For one example, FSRCNN
[13] using a plain topology has slightly higher FLOPs than IMDN-
RTC [16] using a complicated topology, but runs about two-order
faster on SnapDragon 865 for 540p to 1080p upscaling as shown in
Fig. 1. Taking the limited bandwidth into consideration, we choose
a nearly plain topology as the base model and employ only one
skip connection in the three-channel image space (rather than the
high-dimensional feature space) to keep the MAC of our model as
low as possible.

Basic Operations. Unlike GPU servers, the operations well op-
timized by DSP/GPU/NPU on mobile devices are currently quite
limited and vary from device to device. Unsupported operations
have to be processed on CPU, not only having very low processing
speed but also introducing additional MAC. We thus only adopt𝑀
3 × 3 normal convolutions, which are well-supported and highly
optimized for most DSP/GPU/NPU on mobile devices [6, 20]. To be
more specific, the LR image is first processed by𝑀 sequential 3 × 3
convolution with 𝐶 channels. The final 3 × 3 convolution projects
the feature to the desired dimension, and the output feature is added
by the shortcut from the LR input. A PixelShuffle [40] operator is
used to generate the final HR image.

The proposed base model is very suitable for mobile scenario
with high efficiency and flexibility. The neat topology with low
MAC enables super fast inference on mobile devices and the basic
operations make it easy to support cross-device deployment. By
controlling the values of𝑀 and𝐶 , the complexity of the model can
be conveniently scaled to achieve good trade-off between perfor-
mance and running speed on different devices.

3.2 Edge-oriented convolution block
Although the plain base model is efficient, its SR performance is less
satisfied compared to those complicated models. We thus employ
the re-parameterization technique to enrich the representation
capability of the base model. Re-parameterization has achieved
promising results on several high-level vision tasks [2, 9–11, 53].
However, straightly applying those re-parameterizable blocks de-
signed for high-level vision tasks obtains little improvement in
the SR task. We design a more suitable re-parameterization block,
namely Edge-oriented Convolution Block (ECB), which can more
effectively extract edge and texture information for the SR task.
As shown in Fig. 2(b), the ECB consists of four types of carefully
designed operators, which are summarized as follows.

Component I: a normal 3×3 convolution. We first employ a
normal 3× 3 convolution to ensure the base performance. Different
from previous re-perameterization blocks in high-level vision tasks,
which employ a batch normalization (BN) [19] layer after normal

1Most flagship mobile devices use LPDDR4 as off-chip memory, whose bandwidth
is far less than GDDR6 and HBM2 used in GPU servers. The memory bandwidth
of dual-channel LPDDR4 is about 30GB/s, while the bandwidth of GDDR6 (used in
NVIDIA GeForce RTX 2070 / 2080) and HBM2 (used in NVIDIA Tesla P100 / V100) is
about 600GB/s and 1TB/s, respectively.



convolution, we do not use BN layer because it hampers the SR
performance. The normal convolution is denoted as:

𝐹𝑛 = 𝐾𝑛 ∗ 𝑋 + 𝐵𝑛 (1)

where 𝐹𝑛 , 𝑋 , 𝐾𝑛 , 𝐵𝑛 represent the output feature, input feature,
weights and bias of the normal convolution, respectively.

Component II: expanding-and-squeezing convolution. Wi-
der features can significantly improve the expressiveness and con-
tribute to better performance on SR task [52], we thus design an
expanding-and-squeezing convolution as the second component.
Specifically, we first employ a 𝐷 ×𝐶 × 1 × 1 convolution to expand
the channel dimension from 𝐶 to 𝐷 , then use a 𝐶 × 𝐷 × 3 × 3 to
squeeze the feature back to𝐶 channels. Denote by {𝐾𝑒 , 𝐵𝑒 } and { 𝐾𝑠 ,
𝐵𝑠 } as the {weights, bias} of the 1× 1 expanding and 3× 3 squeezing
convolutions, the expanding-and-squeezing feature is extracted as:

𝐹𝑒𝑠 = 𝐾𝑠 ∗ (𝐾𝑒 ∗ 𝑋 + 𝐵𝑒 ) + 𝐵𝑠 (2)

In our experiments, we set𝐷 = 2𝐶 which yields better performance.
Component III: sequential convolution with scaled Sobel

filters. Edge information has been proven very helpful for the SR
task [32]. Different from [32] which explicitly extracts the 1st-order
spatial derivatives using the Sobel filters and employs an additional
network branch to process the edge information, we implicitly
incorporate extraction of the 1st-order derivatives into the design
of our ECB. Since it is difficult for the model to automatically learn
sharp edge filters, we alternatively choose to use pre-defined edge
filters and learn scaling factor to each of the filter. Specifically, the
input feature 𝑋 is first processed by a 𝐶 ×𝐶 × 1 × 1 convolution,
then the gradient of the intermediate feature is extracted using
two scaled sobel filters. Denote by 𝐷𝑥 and 𝐷𝑦 the horizontal and
vertical Sobel filters:

𝐷𝑥 =


+1 0 −1
+2 0 −2
+1 0 −1

 𝑎𝑛𝑑 𝐷𝑦 =


+1 +2 +1
0 0 0
−1 −2 −1

 (3)

Each channel of the intermediate feature is first processed by the
Sobel filters, then scaled by a channel-wise scaling factor. The
horizontal and vertical edge information are extracted by:

𝐹𝐷𝑥 = (𝑆𝐷𝑥 · 𝐷𝑥 ) ⊗ (𝐾𝑥 ∗ 𝑋 + 𝐵𝑥 ) + 𝐵𝐷𝑥

𝐹𝐷𝑦 = (𝑆𝐷𝑦 · 𝐷𝑦) ⊗ (𝐾𝑦 ∗ 𝑋 + 𝐵𝑦) + 𝐵𝐷𝑦
(4)

where {𝐾𝑥 , 𝐵𝑥 } and {𝐾𝑦 , 𝐵𝑦 } are the {weights, bias} of 1× 1 convolu-
tion for horizontal and vertical branch, { 𝑆𝐷𝑥 , 𝐵𝐷𝑥 } and { 𝑆𝐷𝑦 , 𝐵𝐷𝑦 }
are the scaling parameters and bias with the shape of 𝐶 × 1 × 1 × 1,
⊗ and ∗ represent depth-wise convolution (DWConv) and normal
convolution, · indicates channel-wise broadcasting multiplication,
{(𝑆𝐷𝑥 · 𝐷𝑥 ), (𝑆𝐷𝑦 · 𝐷𝑦)} are in the shape of 𝐶 × 1 × 3 × 3. The
combined edge information extracted by the scaled Sobel filters is:

𝐹𝑠𝑜𝑏 = 𝐹𝐷𝑥 + 𝐹𝐷𝑦 (5)

Component IV: sequential convolution with scaled Lapla-
cian filters. In addition to the 1st-order derivatives, we also extract
the 2nd-order spatial derivative using a Laplacian filter which is
more stable and robust to noise for edge information extraction [42].
Similarly, the input feature 𝑋 is first processed using a𝐶 ×𝐶 × 1× 1
convolution, then the 2nd-order spatial derivative is extracted using

a Laplician filter as follow:

𝐷𝑙𝑎𝑝 =


0 +1 0
+1 −4 +1
0 +1 0

 (6)

The scaled 2nd-order edge information is extracted by:

𝐹𝑙𝑎𝑝 = (𝑆𝑙𝑎𝑝 · 𝐷𝑙𝑎𝑝 ) ⊗ (𝐾𝑙 ∗ 𝑋 + 𝐵𝑙 ) + 𝐵𝑙𝑎𝑝 (7)

where { 𝐾𝑙 , 𝐵𝑙 } are the {weights, bias} of the 1 × 1 convolution, {
𝑆𝑙𝑎𝑝 , 𝐵𝑙𝑎𝑝 } are scaling factors and bias of DWConv, respectively.

The output of the ECB in the combination of the four compo-
nents:

𝐹 = 𝐹𝑛 + 𝐹𝑒𝑠 + 𝐹𝑠𝑜𝑏 + 𝐹𝑙𝑎𝑝 (8)

The combined feature map is then feed into a non-linear activation
layer. PReLU is employed in our experiments.

3.3 Re-parameterization for efficient inference
We now describe how to re-parameterize the ECB into a single
3× 3 convolution for efficient inference. According to [10], the 1× 1
expanding and 3 × 3 squeezing convolutions in component II can
be merged into one single normal convolution with parameters
{𝐾𝑒𝑠 , 𝐵𝑒𝑠 },

𝐾𝑒𝑠 = 𝑝𝑒𝑟𝑚(𝐾𝑒 ) ∗ 𝐾𝑠 ,
𝐵𝑒𝑠 = 𝐾𝑠 ∗ 𝑟𝑒𝑝 (𝐵𝑒 ) + 𝐵𝑠

(9)

where 𝑝𝑒𝑟𝑚 denotes the permute operation which exchanges the
1st and 2nd dimensions of a tensor, thus the shape of 𝑝𝑒𝑟𝑚(𝐾𝑒 )
is 𝐶 × 𝐷 × 1 × 1. 𝑟𝑒𝑝 is the spatial broadcasting operation, which
replicates the bias 𝐵𝑒 ∈ R1×𝐷×1×1 into 𝑟𝑒𝑝 (𝐵𝑒 ) ∈ R1×𝐷×3×3.

Both components III and IV employ a sequence of 1 × 1 convolu-
tion and 3× 3 DWConv. The DWConv can be regarded as a normal
convolution with a special sparsity constraint on the channel di-
mension. Denote by {𝐾𝐷𝑥 , 𝐾𝐷𝑦 , 𝐾𝑙𝑎𝑝 } ∈ R𝐶×𝐶×3×3 the weights of
the normal convolutions which are equal to the DWConv used to
extract {𝐹𝐷𝑥 , 𝐹𝐷𝑦 , 𝐹𝑙𝑎𝑝 }, respectively, we have:

𝐾𝐷𝑥 [𝑖, 𝑖, :, :] = (𝑆𝐷𝑥 · 𝐷𝑥 ) [𝑖, 1, :, :] 𝑎𝑛𝑑 𝐾𝐷𝑥 [𝑖, 𝑗, :, :] = 0, 𝑖 ≠ 𝑗

𝐾𝐷𝑦 [𝑖, 𝑖, :, :] = (𝑆𝐷𝑦 · 𝐷𝑦) [𝑖, 1, :, :], 𝑎𝑛𝑑 𝐾𝐷𝑦 [𝑖, 𝑗, :, :] = 0, 𝑖 ≠ 𝑗

𝐾𝑙𝑎𝑝 [𝑖, 𝑖, :, :] = (𝑆𝑙𝑎𝑝 · 𝐷𝑙𝑎𝑝 ) [𝑖, 1, :, :] 𝑎𝑛𝑑 𝐾𝑙𝑎𝑝 [𝑖, 𝑗, :, :] = 0, 𝑖 ≠ 𝑗

(10)

where 𝑖, 𝑗 = 1, 2, ...,𝐶 . The final weights and bias after re-parameteriz-
ation are as follows:

𝐾𝑟𝑒𝑝 = 𝐾𝑛 + 𝐾𝑒𝑠 + 𝑝𝑒𝑟𝑚(𝐾𝑥 ) ∗ 𝐾𝐷𝑥

+ 𝑝𝑒𝑟𝑚(𝐾𝑦) ∗ 𝐾𝐷𝑦 + 𝑝𝑒𝑟𝑚(𝐾𝑙 ) ∗ 𝐾𝑙𝑎𝑝
𝐵𝑟𝑒𝑝 = 𝐵𝑛 + 𝐵𝑒𝑠 + (𝐾𝐷𝑥 ∗ 𝑟𝑒𝑝 (𝐵𝑥 ) + 𝐵𝐷𝑥 )

+ (𝐾𝐷𝑦 ∗ 𝑟𝑒𝑝 (𝐵𝑦) + 𝐵𝐷𝑦) + (𝐾𝑙𝑎𝑝 ∗ 𝑟𝑒𝑝 (𝐵𝑙 ) + 𝐵𝑙𝑎𝑝 )

(11)

The output feature can be obtained using one single normal convo-
lution in the inference stage as follow:

𝐹 = 𝐾𝑟𝑒𝑝 ∗ 𝑋 + 𝐵𝑟𝑒𝑝 (12)



Scale Model #Params(K) #FLOPs(G) #Acts(M) #Conv Set5 Set14 B100 U100 DIV2K

× 2

Bicubic — — — — 33.68/0.9307 30.24/0.8693 29.56/0.8439 26.88/0.8408 32.45/0.9043
SRCNN [12] 24.00 52.70 89.39 3 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946 34.61/0.9334
ESPCN [40] 21.18 4.55 23.04 3 36.83/0.9564 32.40/0.9096 31.29/0.8917 29.48/0.8975 34.63/0.9342
ECBSR-M4C8 2.80 0.64 10.14 6 36.93/0.9577 32.51/0.9107 31.44/0.8932 29.68/0.9014 34.80/0.9356
FSRCNN [13] 12.46 6.00 40.53 8 36.98/0.9556 32.62/0.9087 31.50/0.8904 29.85/0.9009 34.74/0.9340
MOREMNAS-C [8] 25.00 5.50 269.11 49 37.06/0.9561 32.75/0.9094 31.50/0.8904 29.92/0.9023 34.87/0.9356
ECBSR-M4C16 10.20 2.34 19.35 6 37.33/0.9593 32.81/0.9129 31.66/0.8961 30.31/0.9091 35.15/0.9382
TPSR-NoGAN [27] 60.00 14.00 50.69 14 37.38/0.9583 33.00/0.9123 31.75/0.8942 30.61/0.9119 —
IMDN-RTC [16] 19.70 4.57 65.20 28 37.51/0.9600 32.93/0.9144 31.79/0.8980 30.67/0.9140 35.34/0.9398
ECBSR-M10C16 24.30 5.60 41.47 12 37.55/0.9602 32.98/0.9144 31.85/0.8985 30.78/0.9149 35.38/0.9402
LapSRN [24] 813.00 29.90 223.03 14 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100 35.31/0.9400
FALSR-B [7] 326.00 74.70 372.33 49 37.61/0.9585 33.29/0.9143 31.97/0.8967 31.28/0.9191 35.58/0.9408
FALSR-C [7] 408.00 93.70 379.70 34 37.66/0.9586 33.26/0.9140 31.96/0.8965 31.24/0.9187 35.57/0.9407
EDSR-R5C32 [30] 130.80 30.31 111.51 13 37.61/0.9605 33.06/0.9144 31.87/0.8970 30.90/0.9166 35.45/0.9407
ECBSR-M10C32 94.70 21.81 82.02 12 37.76/0.9609 33.26/0.9146 32.04/0.8986 31.25/0.9190 35.68/0.9421
VDSR [21] 665.00 612.60 1121.59 20 37.53/0.9587 33.05/0.9127 31.90/0.8960 30.77/0.9141 35.43/0.9410
EDSR-R16C64 [30] 1334.90 307.89 546.51 37 37.99/0.9604 33.57/0.9175 32.16/0.8994 31.98/0.9272 35.85/0.9436
MOREMNAS-B [8] 1118.00 256.90 987.96 79 37.58/0.9584 33.22/0.9135 31.91/0.8959 31.14/0.9175 35.46/0.9402
CARN-M [1] 412.00 91.20 649.73 42 37.53/0.9583 33.26/0.9141 31.92/0.8960 31.23/0.9193 35.62/0.9420
IMDN [16] 660.30 152.04 406.43 34 37.99/0.9619 33.39/0.9179 32.14/0.9022 32.03/0.9279 35.87/0.9436
ECBSR-M16C64 596.00 137.31 251.60 18 37.90/0.9615 33.34/0.9178 32.10/0.9018 31.71/0.9250 35.79/0.9430

× 4

Bicubic — — — — 28.43/0.8113 26.00/0.7025 25.96/0.6682 23.14/0.6577 28.10/0.7745
SRCNN [12] 57.00 52.7 89.39 3 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 29.25/0.8090
ESPCN [40] 24.90 1.44 6.45 3 30.52/0.8697 27.42/0.7606 26.87/0.7216 24.39/0.7241 29.32/0.8120
ECBSR-M4C8 3.70 0.21 3.23 6 30.52/0.8698 27.43/0.7608 26.89/0.7220 24.41/0.7263 29.35/0.8133
FSRCNN [13] 12.00 5.00 10.81 8 30.70/0.8657 27.59/0.7535 26.96/0.7128 24.60/0.7258 29.36/0.8110
ECBSR-M4C16 11.90 0.69 5.53 6 31.04/0.8805 27.78/0.7693 27.09/0.7283 24.79/0.7422 29.62/0.8197
TPSR-NoGAN [27] 61.00 3.60 13.13 15 31.10/0.8779 27.95/0.7663 27.15/0.7214 24.97/0.7456 29.77/0.8200
IMDN-RTC [16] 21.00 1.22 16.99 28 31.22/0.8844 27.92/0.7730 27.18/0.7314 24.98/0.7504 29.76/0.8230
ECBSR-M10C16 26.00 1.50 11.06 12 31.37/0.8866 27.99/0.7740 27.22/0.7329 25.08/0.7540 29.80/0.8241
LapSRN [24] 813.00 149.40 264.04 27 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560 29.88/0.8250
EDSR-R5C32 [30] 241.80 14.15 50.69 13 31.46/0.8880 28.07/0.7760 27.27/0.7340 25.21/0.7579 29.87/0.8256
ECBSR-M10C32 98.10 5.65 21.20 12 31.66/0.8911 28.15/0.7776 27.34/0.7363 25.41/0.7653 29.98/0.8281
VDSR [21] 665.00 612.60 1121.59 20 31.35/0.8838 28.02/0.7678 27.29/0.7252 25.18/0.7525 29.82/0.8240
EDSR-R16C64 [30] 1778.00 102.85 181.56 37 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849 30.21/0.8336
CARN-M [1] 412.00 46.10 222.11 43 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.62/0.7694 30.10/0.8311
IMDN [16] 667.40 38.41 102.30 34 32.03/0.8966 28.42/0.7842 27.48/0.7409 25.96/0.7843 30.22/0.8336
ECBSR-M16C64 602.90 34.73 63.59 18 31.92/0.8946 28.34/0.7817 27.48/0.7393 25.81/0.7773 30.15/0.8315

Table 1: Performance comparison of different SR models on five benchmarks. PSNR/SSIM on Y channel are reported on each
dataset. #Params, #FLOPs, #Acts and #Conv represent the total number of network parameters, floating-point operations,
activation and convolution layers, respectively. The #FLOPs and #Acts are measured under the setting of generating an SR
image of 1280 × 720 resolution on both scales. The results of our model and best candidate are in blue and red color.

4 EXPERIMENTS
In this section, we first conduct extensive experiments to validate
the superior performance of our ECBSR model on five SR bench-
mark datasets and its high efficiency on two typical hardware. We
then perform comprehensive ablation studies to valid the design of
our proposed ECB.

4.1 Datasets and implementation details
We train our models on DIV2K datasets [45] with 800 training
images. The validation set of DIV2K together with several standard
benchmark datasets, including Set5 [4], Set14 [54], BSD100 [34]
and Urban100 [15], are used for performance evaluation. We use
PSNR and SSIM [50] as the evaluation metrics, and calculate them
on the Y channel after converting RGB to YCbCr format.

We randomly crop 32 patches of size 64×64 from the LR images as
input for each training mini-batch. Data augmentation is performed

on the training set, such as random rotations of 90◦, 180◦ and 270◦,
and horizontal flips. All models are trained by the ADAM [23]
optimizer with standard 𝐿1 loss for 700 epoches. The learning rate
is set to a constant 5 × 10−4. The model training is conducted by
using Pytorch [37] toolbox on a NVIDIA Tesla P100 GPU.

4.2 Benchmark results
We compare the proposed ECBSR with representative SR mod-
els, including SRCNN [12], FSRCNN [13], ESPCN [40], VDSR [21],
LapSRN [24], CARN-M [1], MoreMNAS-{B,C} [8], FALSR-{B,C} [7],
TPSR-NoGAN [27] , EDSR [30] and IMDN [16], on ×2 and ×4 up-
scaling tasks. Since the default version of EDSR and IMDN are
designed for GPU server and have very deep or complicated topol-
ogy, we slim EDSR into two lightweight versions, EDSR-R5C32
and EDSR-R16C64, and also report the IMDN-RTC (a lightweight
version of IMDN) for comparison. EDSR-R5C32 contains 5 residual



blocks with 32 channels for each convolution layer. In order to
make fair comparison with previous models, we scale our ECBSR
to five different levels of complexity: ECBSR-M4C8, ECBSR-M4C16,
ECBSR-M10C16, ECBSR-M10C32, and ECBSR-M16C64.

The performance comparison of different SR models on 5 bench-
mark datasets are summarized in Table. 1. In addition to PSNR/SSIM
indexes, we also list the number of parameters, FLOPs, activation
and convolution layers for more comprehensive comparison. The
number of FLOPs and activation are calculated under the setting
of upscaling image to 1280 × 720 resolution on both ×2 and ×4
tasks. It has been recently shown that the number of activation is a
better metric for evaluating the model efficiency than number of
parameters and FLOPs [38, 55].

Several interesting observations can be made from Table. 1. As
the smallest version of our model, ECBSR-M4C8 outperforms both
SRCNN [12] and ESPCN [40] by a large margin on all five bench-
marks, while using about 12×/10× fewer parameters, 92×/9× fewer
FLOPs, 9 × /2× fewer activations, respectively. Using only a little
more computation and memory, ECBSR-M4C8 can achieve much
better performance than bicubic upsampling. Similarly, ECBSR-
M4C16, ECBSR-M10C16 and ECBSR-M10C32 show obvious ad-
vantages over their competitors on both performance and model
complexity in most cases. It is worth mentioning that MOREMNAS-
C, FALSR-B and FALSR-C are obtained using neural architecture
search. Our ECBSR models are either comparable or better than
themwhile having much smaller model size, computation and mem-
ory consumption. We also scale up our ECBSR to M16C64 in order
to compare with some more complicated SR models. Using similar
number of layers and much less parameters, FLOPs and activations,
ECBSR-M16C64 outperforms VDSR by a large margin on all five
datasets. Our ECBSR-M16C64 can obtain comparable performance
to EDSR-R16C64, CARN-M and IMDN but it is much smaller and
lightweight. Although further improving the number of block and
feature channel of ECBSR can brings better performance, the com-
putation and memory cost will be too heavy for mobile devices as
will be discussed in the next section.

4.3 Hardware running speed
Since model size, parameters, FLOPs and activations cannot faith-
fully reflect the real running speed of SRmodels, we further evaluate
their real running speed on twomobile devices. We select two repre-
sentative flagship mobile SoC for evaluation, the GPU of Dimensity
1000+ and the DSP of SnapDragon 865. Since SDK also plays an
important role in inference speed, we run all models with the same
SDK under the same setting. We use the AI benchmark app [18]
for model execution. The TFLITE GPU and Hexagon NN are se-
lected as the delegates of inference engine. Moreover, all models
are quantized and executed in 8-bit arithmetic. The running speed
of upscaling images to 1080p resolution on both × 2 and × 4 tasks
are reported in Table 2.

As can be seen, most of the compared SR models are far from
real-time on both mobile devices. Our ECBSR-M4C8 and ECBSR-
M4C16 are super efficient, achieving real-time speed on both de-
vices. ECBSR-M10C16 and ECBSR-M10C32 can also achieve nearly
real-time performance in most cases, while ECBSR-M16C64 is too
heavy for both mobile devices. Regarding the compared models,

Model
Snapdragon 865
DSP (/second)

Dimensity 1000+
GPU (/second)

× 2 × 4 × 2 × 4
SRCNN [12] 1.591 1.583 0.890 0.896
ESPCN [40] 0.072 0.026 0.080 0.032
ECBSR-M4C8 0.032 0.010 0.022 0.011
FSRCNN [13] 0.114 0.032 0.076 0.028
ECBSR-M4C16 0.033 0.011 0.046 0.017
IMDN-RTC [16] 1.101 0.318 1.076 0.287
ECBSR-M10C16 0.060 0.017 0.089 0.029
LapSRN [24] 4.395 5.378 1.624 5.801
EDSR-R5C32 [30] 0.150 0.101 0.653 0.567
ECBSR-M10C32 0.062 0.017 0.203 0.063
VDSR [21] 8.946 9.036 3.379 3.365
CARN-M [1] 0.884 0.170 1.195 0.362
EDSR-R16C64 [30] 1.447 0.527 2.372 1.639
IMDN [16] 10.610 2.782 12.792 2.676
ECBSR-M16C64 0.513 0.071 0.786 0.209

Table 2: Comparison of hardware running speed of SR mod-
els on upscaling image to 1920 × 1080 using two flagship mo-
bile devices. Real-time performance (> 30 fps) and nearly
real-time performance (15 fps ≤ x ≤ 30 fps) are in red and
blue.

only ESPCN and FSRCNN can achieve real-time performance in
some cases (× 4 tasks) because of their very neat topology. Al-
though using neat topology, SRCNN is much slower owing to its
pre-upsampling strategy, which substantially increases memory
and computation consumption. Even using a lightweight version,
EDSR-R5C32 and IMDN-RTC are unable to reach nearly real-time
speed on both devices because their dense connections and multi-
branch topology introduce too many MACs and decrease execution
parallelism. The other models suffer from the same problem and
are even slower.

4.4 Qualitative results
In this section, we further qualitatively compare the SR quality of
different models. Since we focus on real-time SR on mobile de-
vices, we only compare SR models that can reach real-time or
nearly real-time speed, including bicubic upsampling, FSRCNN,
ESPCN, ECBSR-M4C8, ECBSR-M4C16, ECBSR-M10C16 and ECBSR-
M10C32. The ×2 SR results on two typical example images from
Urban100 are shown in Fig. 3. One can see that ESPCN, FSRCNN
and ECBSR-M4C8 have only slightly better visual quality than
bicubic upsampling, and all of them fail to recover sufficiently dis-
tinct edges on image033 because of their very shallow topology.
By improving the depth and width of the topology, ECBSR-M4C16,
ECBSR-M10C16 and ECBSR-M10C32 achieve consistently better vi-
sual quality, with sharper edges and clearer textures. For the results
of img004, ESPCN and FSRCNN introduce slightly undesired tex-
ture on the smooth area and waved ceiling pattern around lattices.
The proposed ECBSR has better perceptual results than ESPCN and
FSRCNN. ECBSR-M10C32 performs the best among all models, and
faithfully restores the structure and edge details of the lattices.



Figure 3: Qualitative comparison of real-time and nearly real-time SR models on Urban100 for × 2 upscaling task.

4.5 Ablation studies
We finally conduct a series of ablation studies on the design of
the proposed ECB. Specifically, we first ablate some branches of
ECB and observe the change in performance, then compare ECB
with some other re-parameterization blocks proposed in high-level
vision tasks, including the AC block [9], the RepVGG Block [11]
and the DB block [10]. Triple duplicate 3 × 3 convolution block is
also compared as a baseline reference. Considering that BN hurts
the SR performance, we discard the BN layers for all competitors.
The compared re-parameterization blocks are visualizaed in Fig. 4
and the PSNR/SSIM indexes on five benchmarks are reported in
Table 3. All models are trained from scratch using the same setting.
PSNR/SSIM are evaluated on the ×2 upscaling task.

From the results in Table 3, one can observe that employing
any of the three components can boost the performance of the
baseline model, and removing any component in ECB degrades its
performance. This implies that all components in ECB are helpful
for the SR task and those components are complementary to each
other. As for the other re-parameterization blocks, triple duplicate
3 × 3 convolution block, AC block and RepVGG block obtain only

marginal improvement compared to the baseline. The DB block
achieves slightly better performance, leading to less than 0.05dB
improvement on the PSNR index. In comparison, our ECB can
consistently improve PSNR by about 0.1dB on all datasets. It is
worth mentioning that all the compared blocks are merged into one
single 3×3 normal convolution and have the same computation and
memory cost at inference stage. The advantage of ECB validates
the effectiveness of our edge-oriented design for the SR task.

We also conduct some experiments by applying our ECB to
some existing SR topology to further validate the effectiveness
of ECB. Specifically, we replace the 3 × 3 normal convolutions in
FSRCNN and ESPCN with our ECB and name the enhanced version
as FSRCNN+ and ESPCN+, respectively. For fair comparison, we
re-implemented all models and trained them under the same setting.
The PSNR/SSIM comparison of different models on five datasets
are reported in Table. 4. As can be seen, the enhanced models again
obtains ≥0.1dB consistent improvement on the PSNR index on
most datasets. This indicates that our ECB is a general and drop-
in replacement module for improving SR performance without
introducing additional inference cost.



Block 3 × 3
conv

Expand-
and-

Squeeze

1 × 1—
Sobel

1 × 1—
Laplacian Set5 Set14 B100 Urban100 DIV2K

ECB 1 ✓ ✓ ✓ 37.33/0.9593 32.81/0.9129 31.66/0.8961 30.31/0.9091 35.15/0.9382
ECB 1 ✓ ✓ 37.29/0.9592 32.75/0.9129 31.64/0.8960 30.26/0.9090 35.11/0.9381
ECB 1 ✓ ✓ 37.29/0.9592 32.77/0.9129 31.64/0.8959 30.23/0.9087 35.09/0.9380
ECB 1 ✓ ✓ 37.28/0.9592 32.77/0.9130 31.64/0.8960 30.23/0.9086 35.08/0.9380
ECB 1 ✓ 37.26/0.9591 32.75/0.9129 31.63/0.8959 30.24/0.9085 35.09/0.9381
ECB 1 ✓ 37.27/0.9591 32.75/0.9128 31.62/0.8957 30.21/0.9082 35.07/0.9379
ECB 1 ✓ 37.28/0.9592 32.76/0.9127 31.64/0.8959 30.23/0.9085 35.09/0.9380
Baseline 1 37.24/0.9572 32.73/0.9101 31.60/0.8956 30.15/0.9075 35.05/0.9377
Triple Duplicate 3 37.26/0.9591 32.74/0.9127 31.62/0.8958 30.21/0.9085 35.07/0.9379
AC Block [9] 1 37.24/0.9590 32.75/0.9127 31.63/0.8958 30.22/0.9084 35.08/0.9379
RepVGG Block [11] 1 37.26/0.9591 32.75/0.9128 31.62/0.8958 30.17/0.9079 35.07/0.9379
DB Block [10] 1 37.29/0.9592 32.74/0.9127 31.63/0.8957 30.23/0.9086 35.09/0.9380

Table 3: Ablation studies on the design of ECB based on the M4C16 topology on five benchmarks. All the compared blocks can
be merged into one single 3 × 3 convolution in the inference stage.

Figure 4: Illustration of the compared re-perameterization
blocks.

5 CONCLUSION
In this paper, we proposed an Edge-oriented Convolution Block
(ECB) for efficient and light-weight SR design towards mobile de-
vices. Based on the proposed ECB, we further designed an ECBSR
model, aiming at balancing hardware efficiency and PSNR/SSIM
indexes. Extensive experiments across five benchmarks were con-
ducted to validate the efficiency and effectiveness of ECBSR over
state-of-the-art lightweight SR models. Our ECBSR achieves real-
time SR on two flapship mobile SoC and maintains high visual
quality. In the future, we will explore more efficient and effective re-
parameterization blocks and network topologies using the network
architecture search technique.

Model Set5 Set14 B100 Urban100 DIV2K

FSRCNN 37.12/
0.9586

32.64/
0.9122

31.53/
0.8948

30.12/
0.9067

35.02/
0.9374

FSRCNN+ 37.26/
0.9592

32.77/
0.9129

31.64/
0.8960

30.28/
0.9087

35.12/
0.9386

ESPCN 36.83/
0.9564

32.40/
0.9096

31.29/
0.8917

29.48/
0.8975

34.63/
0.9342

ESPCN+ 36.92/
0.9573

32.51/
0.9106

31.38/
0.8928

29.59/
0.8989

34.73/
0.9348

Table 4: Performance comparison of applying our ECB to
other SR models.
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