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» Sparse representation for image restoration
e Sparse coding
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* Nonlocally centralized sparse representation

* Low-rank minimization for image restoration
* Low-rank matrix approximation
* Weighted nuclear norm minimization

* Deep learning for image restoration
* Discriminative learning vs. model based optimization
* Deep CNN methods for image restoration tasks
* Learn a deep denoiser for general image restoration

Open problems



Image restoration: the problem



Image restoration: the problem

* Reconstruct the latent image from its degraded
measurement

" noise, down-sampling, blur, damaged pixels, ...

Blurred Low-resolution Damaged




General observation model

y=Hx+v

H: The observation (degradation) matrix
v: The additive noise

* Goal of image restoration:
Given observation vy, recover the latent image x.

* Image restoration is a typical ill-posed inverse
problem. Prior information is needed to solve it.



Example applications

* Denoising

H is an identity matrix.



Example applications

e Deblurring

H is a blurring matrix.



Example applications

e Superresolution

H is a compound matrix of
blurring and downsampling.



Example applications

* Inpainting

H is a 0-1 indication matrix
of damaged pixels.



Example applications

 Single image separation
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Filtering based methods

e Gaussian low-pass filtering

* Smoothing edges while removing noise Local
 PDE-based anisotropic diffusion m

* Preserving better edges than low-pass filtering
* Bilateral filtering

* Exploiting both spatial and intensity similarity v
* Nonlocal means filtering Nonlocal

* Exploiting the nonlocal self-similarity

* From local filtering to nonlocal (global) filtering, the
image restoration performance is greatly improved.



(Linear) Transform based methods

* Fourier transform (“big” sine and cosine wave bases)
* Wavelet transform (“small” and “localized” bases)

e Curvelet transform
* More redundant, able to better describe big structures

 Ridgelet transform, Bandlet transform, ...
* More and more redundant, oriented, ...

* The bases are actually the dictionary atoms.

* From Fourier dictionary to curvelet dictionary and so
on, the dictionary becomes more and more redundant

and over-complete.



Model based optimization

Based on the image degradation process and the available
image priors, build a model (objective function) and
optimize it to estimate the latent image.

General model:

Fidelity Regularization (Prior)

min, F(x,y) + 1- R(x)

Many state-of-the-art methods belong to this category.

Key issues
* Modeling of the degradation process
* Good priors about the latent image
e Good objective function for minimization



Sparse representation for image
restoration
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A linear system

Aa =D>b

e What is the solution a?

* |t depends on the setting of matrix A
e If Ais a full-rank square matrix, we have &« = A~ 'b.

 If Ais a full-rank but tall matrix (over-determined
system), we can have an approximate solution by
minimizing ||Aa — b||5 .

* We have: o
a=(ATA) 1ATb = A"h A b
AT = (ATA)71AT7 is called the pseudo-inverse of A.
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Underdetermined linear system

Aa =D>b

 How about if A is a fat matrix (underdetermined
system)?

A a b

* There is no solution in general.

* Some constraint must be imposed to find a
meaningful solution of «a.



Solution
min, J(a) s.t.Aa = b
* Different objective functions /(&) lead to different

solutions to the underdetermined system.
* A dense solution: /() = ||«f
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Sparse solution

* The dense solution may not be useful or effective
enough (e.g., not robust, not unique).

* In many applications, we may need a “sparse”
solution that has many zero or nearly zero entries
(e.g., more robust, more unique).

* So how to achieve this goal?



A model for sparse solution

ming |||l s.t.Aa = b
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A convex model

ming |||l s.t.Aa = b

L,-norm minimization is non-convex and NP-hard.

!

ming ||a|l; s.t. Aa = b

L,-norm minimization is tightest convex relaxation of
L,-norm minimization .
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Lo,-normvs. L{-norm

e Geometric illustration
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A relaxed L4 sparse coding model

ming ||Aa — b||5 + |||,

* This is the most widely
used sparse coding
model, which is easy

to solve and usually
leads to a sparse
solution.




Sparse coding solvers

* Greedy Search for Ly-norm minimization
* Matching pursuit (MP)
* Orthogonal matching pursuit (OMP)

* Convex Optimization for L{-norm minimization
Linear programming

Iteratively reweighted least squares

Proximal gradient descent (Iterative soft-thresholding)

Augmented Lagrangian methods (Alternating direction
method of multipliers)



How to adopt sparse coding for
Image restoration?

e Represent (encode) x over a dictionary D, while
enforcing the representation vector to be sparse:

min, ||a||; s.t. x = Da

* Together withmin, ||[Hx — y||5 + R(x),

we have: ﬁ

ming ||HDa — y||3 + Alletll4

* Solving x turns to solving «a.



Sparse representation based Image
restoration: basic procedures

1. Partition the degraded image into overlapped patches.
2. For each patch, solve the following nonlinear L{-norm
sparse coding problem:

@ = argming ||[HDa — y||5 + A al|,

3. Reconstruct each patch by X = Da.

4. Put the reconstructed patch back to the original image.
For overlapped pixels between patches, average them.

5. In practice, the above procedures can be iterated for
several rounds to better reconstruct the image.



An example

* A noisy image and the denoised images in several
iterations

Noisy Image
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Why sparse: neuroscience
perspective

* Observations on Primary Visual Cortex
= The Monkey Experiment by Hubel and Wiesel, 1968

p—

\

W

_ _ David Hubel and Torsten Wiesel
Responses of a simple cell in Nobel Prize Winner
monkeys’ right striate cortex.



Why sparse: neuroscience
perspective

* Olshausen and Field’s Sparse Codes, 1996

= Goal: to achieve a coding strategy that succeeds in producing
full set of natural images while keeping all the three
properties: localized, oriented and bandpass.

= Solution: a coding strategy that maximizes sparseness:
E = -[preserve information] — lambdax[sparseness]

Bruno A. Olshausen, “Emergence of simple-cell receptive field properties by
learning a sparse code for natural images.” Nature, 381.6583 (1996): 607-609.
Bruno A. Olshausen and David J. Field. “Sparse coding with an overcomplete basis
set: A strategy employed by VI?.” Vision Research, 37.23 (1997): 3311-3326.
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Why sparse: neuroscience
perspective

* Olshausen and Field’s Sparse Codes, 1996
* The basis function can be updated by gradient descent:

A, (5,,3) = 1{a, [ 1053,) = 105,90 | )
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Courtesy by Olshausen
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Why sparse: Bayesian perspective

* Signal recovery in a Bayesian viewpoint

Likelihood Prior

X = argmax, P(x|y) « argmax, P(y|x)P(x)
" Encode x over a dictionary D

X =Da«a

= Assume that the representation coefficients follow some
exponential distribution (prior):

a~exp (= el
l
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Why sparse: Bayesian perspective

* The maximum a posteriori (MAP) solution:

a = argmaxy, P(aly)
= argmax, —log P(y|a) — logP(a)
= argmin, |[HDa — y||5 +Allall,

= \We can see:
 If p =0, itisthe Ly-norm sparse coding problem.
* If p =1, it becomes the convex L{-norm sparse
coding problem.

* If 0 <p <1, itwill be the non-convex L,-norm
minimization.



Why sparse: Bayesian perspective

* Isp < 1agood prior of a? In general, yes!

I /AI"*\ R — Empirical distribution

J:
009 ' — - — Laplacian

-2 . .
n
I 4l
aaaaaaa / Gaussian
0.08} | .
I B+ i + o 4
0.07F | - \
[ .
0.06 - _ Bt i X |
] . S
= = .
g 005r B 1 A0¢ i
0.04} i
121 |
003 3 i
oozl i b | 14
: / 4
001 i 6|

0 ‘ P s . =S — g . 1 . L 1
50 40 -30 20 10 0 10 20 30 40 50 40 3[] 20 1[] 0 10 20 10 40 50
a

logP(a)

* Empirical distribution of image coding coefficients on
an over-complete dictionary. (Right: log-probability)
" [.;-norm minimization: MAP with Laplacian prior.
" [,-norm minimization: MAP with Gaussian prior.



Why sparse: signal processing
perspective

* Some examples:

K < N large
N pixels | wavelet coefficients
(blue = 0)
N wideband MI\IH K <« N large
signal samples £.58 Gabor (TF)
¥ g coefficients

Courtesy by Baraniuk, 2012
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Why sparse: signal processing
perspective

e K-sparse signal: x is called K-sparse if it is a linear
combination of only K basis vectors. If K < N, it is
called compressible.

K
X = z aill)i = D«
=1

* Measurementy = Hx = HDa = Aa

H D a

y
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Why sparse: signal processing
perspective

e Reconstruction

* If x is K-sparse, it is possible that we can reconstruct x
from y with a number of measurements much less than
the signal dimension (M < N ):

a=argming ||lal|ys.t.y = Aa

e But the measurement matrix 4 should satisfy the RIP
condition.



Why sparsity helps signal
recovery?

**An illustrative example

* You are looking for your another half.
* i.e., you are “reconstructing” the desired signal.

* You hope that She/he is (L .;; jicn ué— — Jrl]”
* i.e., you want a “clean” and “perfect” reconstructlon.

 However, there are limited candidates.

* i.e., the dictionary is small. (For example, your search
space is constrained to a class in PolyU ®.)

* Can you easily find your ideal another half?



Why sparsity helps signal
recovery?

A illustrative example

* Candidate A is tall; however, he is too poor.

* Candidate B is rich; however, he is too fat.

* Candidate Cis handsome; however, he is not healthy.

* |f you sparsely select one of them, none is ideal for you
* j.e., a sparse representation vector such as [0, 1, 0].

 How about a dense solution: (A+B+C)/3?
* i.e., a dense representation vector [1, 1, 1]/3

* The “reconstructed one” is somewhat “5-5F-Jl”, but
he is fat and unhealthy (i.e., noise) at the same time.



Why sparsity helps signal
recovery?

A illustrative example

N, P
* So what’s the problem?

e This is because the dictionary is too small!

* |f you are able to find your another half from all
candidates all over the world (i.e., a large enough
dictionary), there is a very high probability (nearly 1)
that you will find the one.

* i.e., avery sparse solution [O, ..., 1, ..., O].

* [n summary, a sparse solution with an over-complete
dictionary often works!

 Sparsity (coefficients) and redundancy (dictionary)
are the two sides of the same coin.
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Dictionary

* Analytical dictionaries
* DCT bases
* Wavelets
e Curvelets
* Ridgelets, bandlets, ...

 Learn dictionaries from natural images
e K-SVD
* Coordinate descent
e Multi-scale dictionary learning

Adaptive PCA dictionaries



Why dictionary learning?

e Sparse models with a learned over-complete
dictionary often work better than analytically
designed dictionaries such as DCT dictionary and
wavelet dictionary.

* Why learned dictionary works better?
* More adaptive to specific task/data.

* Less strict constraints on the mathematical properties of
basis (dictionary atom).

* More flexible to model data.
* Tend to produce sparser solutions to many problems.



Dictionary learning methods

* Input: Training samples Y = [y, V5, ..., Y]
* Qutput: Dictionary D = |d{,d, ...,d,,], m < n, such
thatY = DA, and A = |[aq, a5, ..., a,]

* Methods
* K-SVD (Ly-norm)
e Coordinate descent (L;{-norm)
e Others

e Multiscale dictionary learning
* Double sparsity dictionary learning

* Adaptive PCA dictionary learning



K-SVD

e Basicidea

* K-means is a special case of sparse dictionary learning (approximate
each sample with only one atom, i.e., the cluster center). The idea
of alternatively updating cluster label and cluster center in k-means
can be adopted for dictionary learning.

* Instead of approximating each sample using only one atom, we can
learn a dictionary of K atoms to approximate a sample:

Ming p zj”Da]- ~ il st g, <L

* Since Ly-norm is adopted, when updating D, we only care about
the number of non-zeros in a but not the values of them.

* M. Aharon, M. Elad, A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries
for sparse representation, IEEE Transactions on Signal Processing, 54 (11), 4311-4322.
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K-SVD

e Algorithm

* The coding phase can be solved by conventional sparse coding algorithms,
such as MP, OMP, et al.

a; = argming, ||aj||0 s.t.yj = Da;

* For the dictionary updating phase, K-SVD update dictionary column by
column:

K 2

Y — DA||% = HY— d.a,
k=1

K
<Y - Z diai> — dkak
i#k

Only select non-zeros in ato update corresponding d;,

F
2

= ||Ex — dyayll?
F

Rank 1
approximation of
matrix

IE Q) — diayQpll7°© ®

* Code available at: http://www.cs.technion.ac.il/~elad/software/
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L, dictionary learning

e Basic idea and algorithm

* Inspired by K-SVD, L, dictionary learning and adopt the same
strategy of alternatively updating dictionary and coefficients.

* Different from Ly norm which only cares about the number of non-
zeros, the coefficient value is also important in L; norm.

minp AIDA = Y13 + AllAlly, s.t. | ;]| < 1

Y

. 2
ming||DA = Y||% + Al A4 minp||DA = Y|Z,s.¢.||dj]|] < 1

* Meng Yang, et. al. "Metaface Learning for Sparse Representation based Face Recognition," In ICIP
2010. (Code: http://www4.comp.polyu.edu.hk/~cslzhang/code/ICIP10/Metaface_ICIP.rar)
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Multi-scale dictionary learning

* Motivation

The complexity of sparse coding increases exponentially with signal
dimension. Therefore, most methods work on small image patches. To
perform sparse coding on larger patches, multi-scale method can

provide a way to adaptively model simple structure in larger scales
and details in smaller scales.

I T o T
‘=[1'(]‘ + oy +a2[ +az Ml +ay + a5 +
<l

ag i + a7 +—|—(J:8 1] + g

:F.

+ g + ...

* J. Mairal, et al., Learning multiscale sparse representations for image and video
restoration. Multiscale Modeling & Simulation.
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Double sparsity: sparse dictionary
learning for high dimensional data

* Learn a sparse dictionary

* To model high-dimensional (e.g. large patch for image) data, we can
require the dictionary is sparse too.

* Double sparsity models the dictionary to be learned as D = @Z,
where @ is some pre-defined bases, such as DCT or wavelets.

* The objective function of double sparsity model is:

1,3 4.4 41 6,6 2,2 7.8
ens S oz, T K

11,8 11,4

sty <1, =« B - G A
N Dl 1=N

* R. Rubinstein, et. al. Double Sparsity: Learning Sparse Dictionaries for Sparse Signal Approximation.
IEEE Trans. on Signal Processing, 2010.
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Semi-coupled dictionary learning

* Flexible to model complex image structures

Dictionary Dx ! ' Sparse Sparse ! |

% ECOEfficient A prelearneq Coefficient Ay

: .; ‘ Mapping W 1l el

- Sparse Coding i § |” ’ ..Il ..... LG : E
AT CET IS, el FP.d."?E_S.t?;EE—'_i ____________ Sparse Domain TransformStage | | Reconstruction Stage ~ Style sy |

miﬂ{Dm,Dy.,W}”X - D:EAIHEF + Y — DyAy”EF
YAy = WAL|I% + Al Azt + Ay |Ay [l + Aw [[W]Z
S.L. ”dm,i“h <1 ||dy,?i“52 < 1';‘?’?'
* S. Wang, L. Zhang, Y. Liang, Q. Pan, "Semi-Coupled Dictionary Learning with Applications to

Image Super-Resolution and Photo-Sketch Image Synthesis," In CVPR 2012.

* http://www4.comp.polyu.edu.hk/~cslzhang/SCDL/SCDL Code.zip .



http://www4.comp.polyu.edu.hk/~cslzhang/SCDL/SCDL_Code.zip

Adaptive PCA dictionary selection

* Motivation
* Sparse coding is time consuming,

| A Dictionary
especially with large dictionaries. Selection
* Alarge over-complete dictionary is - -1
often required to model complex ;;E 4it:
image local structures. i_‘

 We can learn a set of PCA
dictionaries, and select one of them
to represent a given image patch.

. A4 2
ming||ly; — Day ||, + 4| e,

* W.Dong, L. Zhang, G. Shi, X. Wu, Image deblurring and
super-resolution by adaptive sparse domain selection
and adaptive regularization, TIP 2011.

* http://www4.comp.polyu.edu.hk/~cslzhang/ASDS data/
TIP_ASDS IR.zip
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Image nonlocal self-similarity prior

* In natural images, usually we can find many similar patches to a
given path, which may be spatially far from it. This is called image
nonlocal self-similarity.

* Nonlocal self-similarity has been widely and successfully used in
image restoration.

A. Buades, et al., A non-local algorithm for image denoising. CVPR 2005.
49



Non-locally centralized sparse
representation (NCSR)

* A neat but very effective sparse representation
model, which naturally integrates nonlocal self-
similarity (NSS) prior and sparse coding.

W. Dong, L. Zhang and G. Shi, “Centralized Sparse Representation for Image
Restoration”, in ICCV 2011.

W. Dong, L. Zhang, G. Shi and X. Li, “Nonlocally Centralized Sparse
Representation for Image Restoration”, IEEE Trans. on Image Processing,
vol. 22, no. 4, pp. 1620-1630, April 2013.

http://www4.comp.polyu.edu.hk/~cslzhang/code/NCSR.rar
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NCSR: The idea

* For true signal

a, = argming|la||,,s.t. [|x — Da||5 < ¢
* For degraded signal

a, = argming|lally,s.t. ||y — HDal|5 < ¢

 The sparse coding noise (SCN)

Vg = Ay—a,
* To better reconstruct x , we should reduce the SCN v :

X=X—x=Day,—Da, =Dv,
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NCSR: The objective function

* The proposed objective function

a, = argmin 4{|ly — HDa||3+2|la — @,ll, }

Key idea: Suppressing the SCN
* How to compute @, ?
The unbiased estimate: @, = E|a,]
The zero-mean property of SCN U, makes

a, =Ela,] ~ E|a,]



NCSR: The solution

* The nonlocal estimation of E[ay]
Hi = Zjeciwi,jai,jr Wi = exp(”ir\l- — 35\11”% /h)/W
* The simplified objective function

N
@, = argming {Ily - HDaII%HE, 1”“1’ - uillp}
1=

 The iterative solution:

N
. -1
") = argming {Iy - HDal3+ay. flai-u ] |
1=



NSCR: The parameters and dictionaries

* The L,-norm is set to L;-norm since SCN is generally
Laplacian distributed.

* The regularization parameter A is adaptively determined
based on the MAP estimation principle.

* Local adaptive PCA dictionaries are used, which are
learned from the given image.

= Cluster the image patches, and for each cluster, a PCA
dictionary is learned and used to code the patches within
this cluster.



Low-rank minimization for image
restoration
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Motivation

* Visual data often has an intrinsic low-rank structure

Face images

Surveillance video

Multispectral image




Data representation

Y = X + E

Each column corresponds The desired latent low- The residual matrix
to a sample rank matrix
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Group sparsity

* How to characterize the sparsity of a group of
correlated vectors?

* Group sparsity:
miny J(A) s.t.X =DA

* Group sparsity is still a kind of 1D encoding.

X

?27?

= e

A sparse A group sparse
solution solution
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From 1D to 2D: rank minimization

e Considering the fact (i.e., prior) that the input
vectors are highly correlated, we can take them as a
2D low rank matrix and minimize its rank:

Rank(X) = leai(X)IIo

 Rank minimization represents the input matrix over
a set of rank 1 basis matrices.

* However, minimization of Rank(X) is non-convex
and NP hard!



Nuclear norm

Rank(X) = Z||ai<X>||o

* The above rank function is non-convex. A convex
relaxation of it is the so-called nuclear norm:

X1 = ) lloi (0l



Nuclear norm minimization

* Nuclear norm minimization (NNM) can be used to estimate
the latent low rank matrix X form Y via the following
unconstrained minimization problem:

X = argminy||Y — X||% + A||X]|.

e Closed form solution (Cai, et al., SIAM10)
X=US;(>)VT
where Y = UXVT is the SVD of ¥, and
A
52(&)y; = max (Zii —5.,0 )

e J.-F. Cai, E.J. Candés and Z. Shen, A singular value thresholding algorithm
for matrix completion, SIAM J. Optimiz., 20(4): 1956--1982, 2010.
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NNM: pros and cons

X = argming|lY — X||7 + AlIX][.
X=US; (2T

* Pros
v'Tightest convex envelope of rank minimization.
v'Closed form solution.

e Cons

x Treat equally all the singular values, ignoring the
different significances of matrix singular values.



Weighted nuclear norm
minimization (WNNM)

* Weighted nuclear norm

Xl = ) Iwioi (Ol

* WNNM model
X = argming||Y — X|Z + [|X]l,.

* Difficulties
* The WNNM is not convex for general weight vectors



Optimization of WNNM

Theorem 1. VY € R™*" letY = UXVT be its SVD. The
optimal solution of the WNNM problem:

X = argming||Y — X||7 + X[,
IS
X=UDVT
where D is a diagonal matrix with diagonal entries
d=[d, d,, ...,d,] (r = min(m,n)) determined by:
Mming, a,.d, 2i=1(di—0;)* + w; d;
S.t. dl > dzZ dT‘ >0. N1

 S.Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, L. Zhang, “Weighted Nuclear Norm
Minimization and Its Applications to Low Level Vision,” International Journal of
Computer Vision, 2017.



An important corollary

Corollary 1. If the weights satisfy 0 < w; < w, <
w,,, the non-convex WNNM problem has a closed
form optimal solution:

X =US,(>)VT
whereY = UXVT is the SVD of Y, and
Sw(2)i; = max (Z‘ii — %, 0 ) _

 S.Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, L. Zhang, “Weighted Nuclear Norm
Minimization and Its Applications to Low Level Vision,” International Journal of
Computer Vision, 2017.

65



Application of WNNM to image
denoising

AN

X = argming||Y — X||5 + || X||w .

1) For each noisy patch, search in the image for its
nonlocal similar patches to form matrix Y.

2) Solve the WNNM problem to estimate the clean
patches X from'Y.

3) Put the clean patch back to the image.

4) Repeat the above procedures several times to
obtain the denoised image.



WNNM based image denoising

 S.Gu,L.Zhang, W. Zuo and X. Feng, “Weighted Nuclear Norm
Minimization with Application to Image Denoising,” CVPR 2014.
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The weights

* Model

X — argminxllY — X”12:' T ”X”W,*

* Weights

cyn

T 6,(X) + ¢

Wi

where
6;(X) = max{o;(Y) — no,?, 0}
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Experimental results

(@) Ground truth (b) N0|sy |mage ( PSNR 8. 10dB) (c) BM3D (PSNR: 22.52dB) (d) EPLL (PSNR: 22. 23dB)

(e) SSC (PSNR: 22. 24dB) (f) NCSR (PSNR: 22. 11dB) ' (g) SAIST (PSNR: 22. 61dB) (h) WNNM (PSNR: 22. 91dB)
Denoising results on image Monarch by different method (noise level sigma=100).
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Robust PCA (RPCA)

* In some applications, the residual E = Y — X may
not be Gaussian distributed or may be sparse, then
lY — X||% will not be a good way to model residual.

* The Li—norm is more robust to characterize sparse
errors. We have the following robust PCA (RPCA)
model:

miny || X||. + ||X — Y|4

miny || X||. + [|E|l4
s.t. Y=X+4+E



Extension of WNNM to RPCA

* The objective function:

miny |[X|l,, . + |[E]l;
s.t. Y=X+4+E

e We can use the ALM method to solve it:

LIX,E,Y,u) = ||X]
u

_|__

2

ws + ||El|, +(¥,D — A~ E)
D-A-E|
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Background modeling

Foreground

72



Extension to matrix completion

* The objective function:

miny || Xl .
S. L. PQ(X)z PQ(Y)

e We can use the ALM method to solve it:
=Xl +||El|, +{L,Y — X — E)
u 2
+§HY—X—HM



(e) VNL (PSNR: 24.36 dB) (f) BPDL (PSNR: 26.57 dB) (2) NNM (PSNR: 25.45 dB) (h) WNNM (PSNR: 27.11 dB)
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Deep learning for image
restoration

75



Discriminative learning for image
restoration

* Learn a compact inference or a mapping function
from a training set of degraded-latent image pairs.

* General formulation:

Loss function  Set of parameters to be learned
mingloss(xX,x) s.t.Xx =F(y,H;0)

* Key issues
* The availability of paired training data
* The design of learning architecture
* The definition of loss function
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Shrinkage fields

~ A
X = argmin, Z|ly — X5 + Xie1 Beec Pi(F X))

Cliques otential function

e.g., student-t, GMM

student-t

1
x) =log(1+ =

Potential
(heavy-tailed)

U. Schmidt and S. Roth. Shrinkage fields for effective image restoration. In CVPR 2014

N convolution
ilters, e.q.,

S |
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Shrinkage fields

n
. =
Stage 1, L = 4.841 Stage 2, & = 0.558

= 1 §

150}

T

200

150 ¢

shrinkage shrinkage _

100}
ull ol
of of

50} .lf -50|

~100} H .:. ~100}

~150} _150|

-200 & . . . | -lﬁ —200 & . . . -
-200 100 0 100 200 —200  -100 0 100 200

= [

Shrinkage functions are not limited to monotonic functions.

First two stages of learned csf3x3 model. The shrinkage functions

are color-matched with their corresponding filters.
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Convolutional sparse coding for

Image super-resolution
s The Training Phase RN

— o o o e

—————————— .‘1-—————————— —_— e = = = -
| ig®Mapp. Fun?
..‘ 'P

M HR feature maps
I NLR fea* | maps
L]
e @
N —_"_"
Decomposition \ N

|
I
o ~ -
L T I |
I} |
. :
SIBCSC LR Filtér . BP0, HR Filter VESNCA |
- | 7 Learning Learning &! :
| ® /
/ he Testing Phase
' Estimation X :
\. W Wy
S. Gu, W. Zuo, Q. Xie, D. Meng, X. Feng, L. Zhang, "Convolutional Sparse Coding for Image Super-

t
Learning
N LR filters
resolution," in ICCV 2015.

Mapp. Func.

HR Feature Map

79



Model based optimization vs.
discriminative learning

* Model based optimization methods
v'General to handle different image restoration problems
v'Clear physical meaning
x The hand-crafted prior may not be strong enough
x The optimization process can be time consuming

e Discriminative learning based methods
v'Data driven end-to-end learning
v'Can be very efficient in the testing stage
x The generality of learned models is limited
x The interpretability of learned models is limited



Why deep learning?

e Strong learning capacity
* End-to-end learning for the inference/mapping function
* Deeper architecture for strong and distinct image priors

* Architecture design
* Residual learning or other structures
* Batch normalization and other network regularizations
* Various blocks, e.g., Conv, Deconv, Pooling, ...

* Optimization algorithms

* SGD, momentum SGD, Adam
* Speed

* GPU



General pipeline: training

* Training Phase

The problem [ 4 Archltc?cture 4 I?rf_’p e Ld Model training
design training data

Input: degraded-latent sample pairs (and H)
Output: Trained model
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General pipeline

e Testing Phase

Degraded image »

Input: Degraded images
Output: Restored images

. testing

_ M Restored image

83



Super-resolution via CNN (SRCNN)

1) feature maps 7y feature maps
of low-resolution image of high-resolution image

-|'

"1. hixh Ja X fo fax fa
Low-resolution § t _h,___::: - N ==
image (input) f I ~~E§—"‘_‘ﬂ‘_f@id,

W7

| | . J

Patch extraction

and representation
Fig. 2. Given a low-resolution image Y, the first convolutional layer of the SRCNN exiracts a set of feature maps. The
second layer maps these feature maps nonlinearly to high-resolution patch representations. The last layer combines
the predictions within a spatial neighbourhood to produce the final high-resolution image F(Y).

Non-linear mapping Reconstruction

256x%256 (input, bicubic interpolation) — 256 x 256 x 64 (feature map of

Convl) — 256 x 256 x 32 (feature map of Conv2) — 256 x 256 (output)

Dong, Chao, et al. "Image super-resolution using deep convolutional networks." IEEE PAMI 38.2 (2016):

295-307.
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SRCNN: example feature maps
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Very deep CNN for SR (VDSR

Conv.ly

Figure 2: Our Network Structure. We cascade a pair of layers (convolutional and nonlinear) repeatedly. An interpolated low-resolution
(ILR) image goes through layers and transforms into a high-resolution (HR) image. The network predicts a residual image and the addition
of ILR and the residual gives the desired output. We use 64 filters for each convolutional layer and some sample feature maps are drawn
for visualization. Most features after applying rectified linear units (ReLu) are zero.

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. "Accurate image super-resolution using very deep
convolutional networks." CVPR, 2016.
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VDSR with and without residual
learning

Epoch 10 20 40) 80
Residual 36.74 | 36.87 | 36.91 | 36.93
Non-Residual || 30.33 | 33.59 | 36.26 | 36.42
Difference 6.41 3.28 0.65 0.52

Performance table (PSNR) for residual and non-residual networks (‘Set5’
dataset, X2). Residual networks rapidly approach their convergence within
10 epochs.



Main points of VDSR

* Residual learning is effective

* The deeper, the better
* Single network for multiple scaling factors

PSNR (dB)

- /
e A a
/ |

Depth

(a) Test Scale Factor 2

PSNR (dB)

I
S
328 /

327 I:"
.,

/-—*" T —/

,/
g
/

,f"'

Depth

(b) Test Scale Factor 3

PSNR (dB)

Depth

(c) Test Scale Factor 4
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7‘&5

.
! ! |

'
25|
SRCNN

VDSR: single network, multiple

scaling factors
VDSR
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: examples

VDSR

VDSR (Ours)

SRCNN [5]
(23.15, 0.7487)

SelfEx [11]

(23.00, 0.7439)

RFL [1¥]
(22.90, 0.7332)

Ground Truth
(PSNR, SSIM)

(23.50, 0.7777)

(22.92,0.7379)
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Drawback of SRCNN and VDSR

The second pipeline is much faster!



Efficient sub-pixel CNN (ESPCNN)

Reshape

Low-resolution image (input) n, feature maps N, feature maps r? channels

[T 1T LT 1 T 1 1
[ 1 | 1 1 1 I I | I

High-resolution image (output)

Hidden layers Sub-pixel convolution layer

Figure 1. The proposed efficient sub-pixel convolutional neural network (ESPCN), with two convolution layers for feature maps extraction,
and a sub-pixel convolution layer that aggregates the feature maps from LR space and builds the SR image in a single step.

Wenzhe Shi, et al. "Real-time single image and video super-resolution using an efficient sub-pixel
convolutional neural network." CVPR, 2016.
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ESPCNN: last layer

Last layer of ESPCN (X2)
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State-of-the-art by PSNR How about this one?

Scaling factor: x4
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SR by GAN (SRGAN): motivation

Natural Image Manifold
MSE-based Solution

"pixel-wise average
of possible solutions”

* MSE-based solution appears overly smooth due to the pixel-wise average of possible
solutions in the pixel space.

* Using GAN (Generative Adversarial Network) to drive the reconstruction towards the
natural image manifold producing perceptually more convincing solutions.
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SRGAN

Generator Network B residual blocks

A
n64s1 "n64s1  n64s1 ' n64s1 n256s1 n3s1
16451 n6ds1 13s

4

! - » ISR

o
x
&
7]

=

e
S

=

]
[

=

a

— R

skip connection

Discriminator Network

n64s1 n64s2 n128s1 n128s2 n256s1 n256s2 n512s1

n512s2

)
Q
)
c
%

(a]

Leaky RelU
Leaky RelLU
Dense (1024
Leaky RelU

Figure 4: Architecture of Generator and Discriminator Network with corresponding number of feature maps (n) and stride
(s) indicated for each convolutional layer.

C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, W. Shi,
“Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, CVPR, 2017
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SRGAN: perceptual loss function

Perceptual loss = content loss + adversarial loss

Content loss

1 2
lVGG/content(eG) = E ”(P(IHR) - (p(GeneratorHG (ILR))”F

@: feature map

Adversarial loss

Ladaversariai(0g) = ) —Discriminatory, (Generatory (I%))

n=1
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SRGAN: examples

Bicubic SRResNet SRGAN Ground-truth
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DNCNN: deep residual learning
neyond Gaussian denoising

0 (@) [R)
o o o o
> = 2 =z <
o S e S
o
e : : :
S =~ B e o - -
) (0] )
— — —
c cC c
Noisy Image Residual Image

e Batch normalization and residual learning are particularly beneficial to
Gaussian noise removal

* Single model for multiple tasks

K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, "Beyond a Gaussian Denoiser: Residual Learning of Deep CNN
for Image Denoising," IEEE Trans. on Image Processing, 2017.

Code: https://github.com/cszn/DnCNN
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Effect of batch normalization and
residual learning

292 29.2
29 29
288 28.8
o )
=] =]
¥ 28.6 & 288
= =
& o
a 284 & 284
& o
& 282 S 282
>
< ——— With RL, with BN S ——— With RL, with BN
28 With RL, without BN ] 28 With RL, without BN
——— Without RL, with BN —— Without RL, with BN
2181 ——— Without RL, without BN | 21.8 ——— Without RL, without BN ]
276+ 8 27.6 .
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 5 10 15 20 25 30 35 40 45 50 1 5 10 15 20 25 30 35 40 45 50
Epochs Epochs
(a) SGD (b) Adam

The Gaussian denoising results of four models under two gradient-based optimization algorithms,
i.e., (a) SGD, (b) Adam, with respect to epochs. The four specific models are in different combinations
of residual learning (RL) and batch normalization (BN) and are trained with noise level 25. The results
are evaluated on 68 natural images from Berkeley segmentation dataset.
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Gaussian denoising results

The averaged PSNR(dB) results of different methods on BSD68 dataset.

Methods BM3D WNNM EPLL MLP CSF TNRD DNnCNN
15 31.07 31.37 31.21 - 31.24 31.42 31.73
25 28.57 28.83 28.68 28.96 28.74 28.92 29.23
50 25.62 25.87 25.67 26.03 - 25.97 26.23

(a) Noisy / 14.76dB

(c) WNNM / 26.51dB

(d) TNRD / 26.59dB

(e) DnCNN / 26.92dB
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A single model for multiple tasks

Dataset Noise Level BM3D TNRD DnCNN-3
15 31.08 31.42 31.46
BSD68 25 28.57 28.92 29.02
50 25.62 25.97 26.10
~ singleimageSuperResolution
Dataset Scale TNRD VDSR DnCNN-3
2 36.86 37.56 37.58
Setd 3 33.18 33.67 33.75
4 30.85 31.35 31.40
2 32.51 33.02 37.58
Setl4 3 29.43 29.77 29.81
4 27.66 27.99 28.04
.~ IPEGlmageDeblocking
Dataset Quality ARCNN TNRD DnCNN-3
10 28.96 29.28 29.19
LIVEL 20 31.29 31.47 31.59
30 32.67 32.78 32.98

40 33.63 - 33.96 10



An example

Input image Output residual image Restored image

Gaussian denoising, single image super-resolution and JPEG image deblocking
via a single model!
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'terCNN for deblurring

noisy horizontal gradie:

s denoised
: horizontal gradients

deconvolution
module

kernel

blurred image initial deconvolution

deconvolution
module

Initi Step (a)

noisy vertical gradients

deconvolution

denoised
vertical gradients

Figure 1. Network structure. Our network first deconvolves blurry input images by the deconvolution module and then performs convolu-
tions to the vertical and horizontal gradients to generate the results with fewer noises. Finally, the deconvolution module is applied to the
denoised gradients to generate the clear images. See text for more details.

ming lly = ks 23 +4- ) R(p+x)
l=hw
Py and p,, are horizontal and vertical gradient operators.

Jiawei Zhang, et al. "Learning Fully Convolutional Networks for Iterative Non-blind Deconvolution." CVPR, 2017.
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One motivation

* Model based optimization methods
v'General to handle different image restoration problems
x The hand-crafted prior may not be strong enough

* Discriminative learning based methods
v'Data driven end-to-end learning
x The generality of learned models is limitted

* Can we integrate the model based optimization and
discriminative learning to develop a general image
restoration method?



Half quadratic splitting

* The general model for image restoration
min, 0.5||y — Hx||5 + A - R(x)

* Introducing an auxiliary variable z (z = x)
min, , 0.5|y — Hx|j% + 1+ R(2) + 0.5u||z — x]|3

* Solving x and z alternatively and iteratively

() (a) min, ||y — Hx||§ + ul|z — x||§ % Data proximal operator

(b) min, 0.5u||lx — ZH% +A-R(z) «% Denoising sub-problem
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Image restoration with deep CNN
denoiser prior (IRCNN)

* Plugging the strong CNN denoiser prior into model-
based optimization

e Step (a): analytical solution
 Step (b): deep CNN denoiser

f-\ —
N N
= g
T +
> >
z E
—_ » ;T/-\
= I—
s N4
a5 +
= =
| = -
T T "Nosiy Image
> | e

K. Zhang, W. Zuo, S. Gu, L. Zhang. "Learning Deep CNN Denoiser Prior for Image Restoration." CVPR 2017.
Code: https://github.com/cszn/ircnn
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https://github.com/cszn/ircnn

CNN denoiser

2-DConv 1-DConv

3-DConv

4-DConv

3-DConv

12y +WJIONg
N19Y +WJIONg
N12Y +WIoNg

N2 +WIONg

N1y
N192Y +WJioNg

Noisy Image Residual Image

“s-DConv” denotes s-dilated convolution, s =1, 2, 3 and 4. A dilated filter with
dilation factor s can be simply interpreted as a sparse filter of size (2s+1) x
(2s+1) where only 9 entries of fixed positions are non-zeros.
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Denoising results

The average PSNR(dB) results of different methods on (gray) BSD68 dataset.

mmmm--

c=15 31.07 31.37 31.42 31.63
0=25 28.57 28.83 28.92 28.96 29.15
c=50 25.62 25.87 25.97 26.03 26.19

The average PSNR(dB) results of CBM3D and proposed CNN denoiser on (color)
BSD68 dataset.

Noiselevel| 5 | 15 | 25 | 35 | 50

CBM3D 40.24 33.52 30.71 28.89 27.38
IRCNN 40.36 33.86 31.16 29.50 27.86
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IRCNN (30.42dB)
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Denoising results

Noisy (17.70dB) CBM3D (27.25dB) IRCNN (28.06dB)
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Debluring results

Methods o C.man | House | Lena Monar. | Leaves| Parrots
Gaussian blur with standard deviation 1.6
IDDBM3D 27.08 | 3241 | 30.28 || 27.02 | 26.95 | 30.15
NCSR ) 27.99 | 33.38 | 30.99 (| 28.32 | 27.50 | 30.42
MLP 27.84 | 3343 | 31.10 || 28.87 | 2891 | 31.24
IRCNN 28.12 | 33.80 | 31.17 || 30.00 | 29.78 | 32.07
Kernel 1 (19x 19)
EPLL )55 2043 | 3148 | 31.68 28.75 27.34 | 30.89
IRCNN T 3207 | 35.17 | 33.88 || 33.62 | 33.92 | 35.49
EPLL 765 25.33 | 28.19 | 27.37 || 22.67 | 21.67 26.08
IRCNN o 2811 | 32.03 | 29.51 2920 | 29.07 | 31.63
Kernel 2 (17x17)
EPLL 7 55 29.67 | 32.26 | 31.00 || 27.53 | 26.75 | 30.44
IRCNN 7| 31.69 | 35.04 | 33.53 || 33.13 | 33.51 | 35.17
EPLL 765 24.85 | 28.08 | 27.03 || 21.60 | 21.09 | 25.77
IRCNN T 27770 | 31.94 | 2927 || 28.773 | 28.63 | 31.35




Debluring results

IRCNN (27.89dB) 113

IDDBM3D (25.32dB)



Debluring results

Blurred and noisy

. wig |
NCSR (29.00dB) IRCNN (31.65dB) 114



Super-resolution results

Dataset Scale Kernel Channel SRCNN VDSR NCSR SPMSR SRBM3D | SRBM3Dg SRBM3D¢| Proposed | Proposed-
) Bicubic Y 36.65 37.56 - 36.11 37.10 36.34 36.25 37.40 37.26
RGB 3445 35.16 - 33.94 - 34.11 3422 35.02 35.12
Set 3 Bicubic Y 3275 33.67 - 3231 33.30 32.62 32.54 3335 3322
RGB 30.72 31.50 - 30.32 - 30.57 30.69 31.23 31.30
3 Gaussian Y 30.42 30.54 33.02 3227 - 32.66 32.59 33.39 3326
RGB 28.50 28.62 30.00 30.02 - 30.31 30.74 3093 31.35
p Bicubic Y 3243 33.02 - 31.96 32.80 32.09 3225 32.85 32.85
RGB 30.43 30.90 - 30.05 - 30.15 30.32 30.76 30.84
Setld 3 Bicubic Y 2927 29.77 - 28.93 29.60 29.11 29.27 29.58 29.55
RGB 2744 27.85 - 27.17 - 27.32 27.47 27.70 2172
3 Gaussian Y 2771 27.80 29.26 28.89 - 29.18 29.39 29.63 29.62
RGB 26.02 26.11 26.98 27.01 - 27.24 27.60 27.59 27.80

»
(d) VDSR (24.73dB) (e) Proposed; (29.30dB)

(a) Ground-truth (b) Zoomed LR image (c) SRCNN (24.46dB)

Single image super-resolution performance comparison for Butterfly image from Set5 (the blur kernel is 7 x 7 Gaussian kernel with standard
deviation 1.6, the scale factor is 3).
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Super-resolution results

3 N-

NCSR (28.05dB) IRCNN (29.32dB) 116



Super-resolution results

e = ) 3 —a— -

BM3D (26.88dB IRCNN (29.29dB) 117



Open problems



Camera pipeline

* The digital imaging process is very complex

Pipeline for sRGB (JPEG)

-

®-

Sensor with color filter array
(CCD/CMOS)

Color Space

Color Preferences

JPEG - Exif File Info ‘

Compression

Gain Control
A/D Converter
Possible LUT

AFE — AnalogFront End
Sensor related processing

-

Noise

Tone .
- Transform+ - Reduction/
Reproduction

Sharpening

Saveto
storage

White
Balance

!

CFA
Demoasicing
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Blind real image restoration

* The degradations in real images are too complex to
be described by simple models

* Non-Gaussian noise, signal dependent, non-uniform
blur, compression artifacts, system distortions, ...
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Deep learning?

* Deep learning for blind real image restoration!?

* Good idea! But where are the ground-truth images
for superwsed learning?

-

* How can we do deep learning based image
restoration without paired data?

* Is GAN a solution for this challenging problem?
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summary
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Summary

* Image sparsity and low-rankness priors have been
dominantly used in past decades.

* Recently the CNN based models have been rapidly
developed to learn deep image priors.

* There remain many challenging issues for deep
learning based image restoration.
» Key issue: the lack of training image pairs in real-world
blind image restoration applications.

* It is still an open problem to train deep image
restoration models without using image pairs.
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