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Outline

• Image restoration: the problem

• Sparse representation for image restoration
• Sparse coding
• Dictionary learning
• Nonlocally centralized sparse representation

• Low-rank minimization for image restoration
• Low-rank matrix approximation 
• Weighted nuclear norm minimization

• Deep learning for image restoration
• Discriminative learning vs. model based optimization
• Deep CNN methods for image restoration tasks
• Learn a deep denoiser for general image restoration 

• Open problems 
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Image restoration: the problem
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Image restoration: the problem

• Reconstruct the latent image from its degraded 
measurement
 noise, down-sampling, blur, damaged pixels, …

4

Noisy Blurred Low-resolution Damaged



General observation model

• Goal of image restoration:

Given observation 𝒚, recover the latent image 𝒙.

• Image restoration is a typical ill-posed inverse 
problem. Prior information is needed to solve it. 

𝒚 = 𝑯𝒙 + 𝒗

𝑯: The observation (degradation) matrix
𝒗: The additive noise
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Example applications

• Denoising
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𝑯 is an identity matrix.



Example applications

• Deblurring
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𝑯 is a blurring matrix.



Example applications

• Superresolution
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𝑯 is a compound matrix of 
blurring and downsampling.



Example applications

• Inpainting
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𝑯 is a 0-1 indication matrix 
of damaged pixels.



Example applications

• Single image separation
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= +

𝒚 = 𝒙𝟏 + 𝒙𝟐 + 𝒆



Filtering based methods

• Gaussian low-pass filtering
• Smoothing edges while removing noise

• PDE-based anisotropic diffusion
• Preserving better edges than low-pass filtering

• Bilateral filtering
• Exploiting both spatial and intensity similarity

• Nonlocal means filtering
• Exploiting the nonlocal self-similarity

• From local filtering to nonlocal (global) filtering, the 
image restoration performance is greatly improved.  
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(Linear) Transform based methods

• Fourier transform (“big” sine and cosine wave bases)

• Wavelet transform (“small” and “localized” bases)

• Curvelet transform 
• More redundant, able to better describe big structures

• Ridgelet transform, Bandlet transform, …
• More and more redundant, oriented, …  

• The bases are actually the dictionary atoms.

• From Fourier dictionary to curvelet dictionary and so 
on, the dictionary becomes more and more redundant
and over-complete. 
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Model based optimization

• Based on the image degradation process and the available 
image priors, build a model (objective function) and 
optimize it to estimate the latent image.

• General model:  

• Many state-of-the-art methods belong to this category.

• Key issues 
• Modeling of the degradation process 
• Good priors about the latent image
• Good objective function for minimization
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𝑚𝑖𝑛𝒙 𝐹 𝒙, 𝒚 + 𝜆 ∙ 𝑅(𝒙)

Fidelity Regularization (Prior)



Sparse representation for image 
restoration
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A linear system

• What is the solution 𝜶?

• It depends on the setting of matrix A
• If A is a full-rank square matrix, we have 𝜶 = 𝑨−1𝒃.

• If A is a full-rank but tall matrix (over-determined 
system), we can have an approximate solution by 
minimizing 𝑨𝜶 − 𝒃 2

2 . 

• We have:

𝑨𝜶 = 𝒃

𝑨
=
𝒃

𝜶
ෝ𝜶 = 𝑨𝑇𝑨 −1𝑨𝑇𝒃 = 𝑨†𝒃

𝑨† = 𝑨𝑇𝑨 −1𝑨𝑇 is called the pseudo-inverse of 𝑨.
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Underdetermined linear system

• How about if A is a fat matrix (underdetermined 
system)?

• There is no solution in general.

• Some constraint must be imposed to find a 
meaningful solution of 𝜶.

𝑨𝜶 = 𝒃

𝑨 = 𝒃𝜶

16



Solution

• Different objective functions 𝐽(𝜶) lead to different 
solutions to the underdetermined system. 

• A dense solution: 𝐽 𝜶 = 𝜶 2
2

𝑚𝑖𝑛𝜶 𝐽 𝜶 𝑠. 𝑡. 𝑨𝜶 = 𝒃

?
?

.

.

.

?
?

A dense 
solution
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Sparse solution

• The dense solution may not be useful or effective 
enough (e.g., not robust, not unique). 

• In many applications, we may need a “sparse” 
solution that has many zero or nearly zero entries 
(e.g., more robust, more unique). 

• So how to achieve this goal?
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A model for sparse solution

?
?

.

.

.

?
?

A dense 
solution

A sparse 
solution

𝑚𝑖𝑛𝜶 𝜶 0 𝑠. 𝑡. 𝑨𝜶 = 𝒃
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A convex model

𝑚𝑖𝑛𝜶 𝜶 0 𝑠. 𝑡. 𝑨𝜶 = 𝒃

𝐿0-norm minimization is non-convex and NP-hard.

𝐿1-norm minimization is tightest convex relaxation of 
𝐿0-norm minimization .

𝑚𝑖𝑛𝜶 𝜶 1 𝑠. 𝑡. 𝑨𝜶 = 𝒃
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𝐿2-norm vs. 𝐿1-norm

• Geometric illustration

𝛼1

𝛼2

𝜶 2
2

𝑨𝜶 = 𝑏

𝑚𝑖𝑛𝜶 𝜶 2
2 𝑠. 𝑡. 𝑨𝜶 = 𝒃 𝑚𝑖𝑛𝜶 𝜶 1𝑠. 𝑡. 𝑨𝜶 = 𝒃

𝛼1

𝛼2

𝜶 1

𝑨𝜶 = 𝑏
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A relaxed 𝐿1 sparse coding model

• This is the most widely 
used sparse coding 
model, which is easy
to solve and usually 
leads to a sparse 
solution. 

𝑚𝑖𝑛𝜶 𝑨𝜶 − 𝒃 2
2 + 𝜆 𝜶 1

𝛼1

𝛼2

𝜶 1

𝑨𝜶 − 𝒃 2
2
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Sparse coding solvers

• Greedy Search for 𝐿0-norm minimization
• Matching pursuit (MP)

• Orthogonal matching pursuit (OMP)

• Convex Optimization for 𝐿1-norm minimization
• Linear programming

• Iteratively reweighted least squares

• Proximal gradient descent (Iterative soft-thresholding)

• Augmented Lagrangian methods (Alternating direction 
method of multipliers)
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How to adopt sparse coding for 
image restoration?

• Represent (encode) 𝒙 over a dictionary 𝑫, while 
enforcing the representation vector to be sparse:

• Together with 

we have:

• Solving 𝒙 turns to solving 𝜶.

𝑚𝑖𝑛𝜶 𝜶 1 s.t. 𝒙 = 𝑫𝜶

𝑚𝑖𝑛𝜶 𝑯𝑫𝜶 − 𝒚 2
2+ 𝜆 𝜶 1

𝑚𝑖𝑛𝒙 𝑯𝒙 − 𝒚 2
2+ 𝑅(𝒙),
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Sparse representation based Image 
restoration: basic procedures

1. Partition the degraded image into overlapped patches.

2. For each patch, solve the following nonlinear 𝐿1-norm 
sparse coding problem:

3. Reconstruct each patch by ෝ𝒙 = 𝑫ෝ𝜶.

4. Put the reconstructed patch back to the original image. 
For overlapped pixels between patches, average them. 

5. In practice, the above procedures can be iterated for 
several rounds to better reconstruct the image. 

25

ෝ𝜶 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜶 𝑯𝑫𝜶 − 𝒚 2
2+ 𝜆 𝜶 1



An example

• A noisy image and the denoised images in several 
iterations

26

Noisy Image Iter 1 Iter 3 Iter 5



Why sparse: neuroscience
perspective

• Observations on Primary Visual Cortex
 The Monkey Experiment by Hubel and Wiesel, 1968

Responses of a simple cell in 
monkeys’ right striate cortex. 

David Hubel and Torsten Wiesel
Nobel Prize Winner
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Why sparse: neuroscience
perspective

• Olshausen and Field’s Sparse Codes, 1996
 Goal: to achieve a coding strategy that succeeds in producing 

full set of natural images while keeping all the three 
properties: localized, oriented and bandpass. 

 Solution: a coding strategy that maximizes sparseness:

E = -[preserve information] – lambda[sparseness]

• Bruno A. Olshausen, “Emergence of simple-cell receptive field properties by 
learning a sparse code for natural images.” Nature, 381.6583 (1996): 607-609. 

• Bruno A. Olshausen and David J. Field. “Sparse coding with an overcomplete basis 
set: A strategy employed by VI?.” Vision Research, 37.23 (1997): 3311-3326. 
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Why sparse: neuroscience
perspective
• Olshausen and Field’s Sparse Codes, 1996

 The basis function can be updated by gradient descent:

Resulted basis functions. 

Courtesy by Olshausen
and Field, 1996
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Why sparse: Bayesian perspective

• Signal recovery in a Bayesian viewpoint

 Encode 𝒙 over a dictionary 𝑫

 Assume that the representation coefficients follow some 
exponential distribution (prior):

Likelihood Prior
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ෝ𝒙 = 𝑎𝑟𝑔𝑚𝑎𝑥𝒙 𝑃(𝒙|𝒚) ∝ 𝑎𝑟𝑔𝑚𝑎𝑥𝒙 𝑃 𝒚 𝒙 𝑃(𝒙)

𝒙 = 𝑫𝜶

𝜶~𝑒𝑥𝑝 −෍
𝑖
𝛼𝑖 𝑝



 The maximum a posteriori (MAP) solution:

We can see:
• If 𝑝 = 0, it is the 𝐿0-norm sparse coding problem.
• If 𝑝 = 1, it becomes the convex 𝐿1-norm sparse 

coding problem.
• If 0 < 𝑝 < 1, it will be the non-convex 𝐿𝑝-norm 

minimization.

Why sparse: Bayesian perspective
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ෝ𝜶 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜶 𝑃 𝜶 𝒚
= 𝑎𝑟𝑔𝑚𝑎𝑥𝜶 −𝑙𝑜𝑔 𝑃 𝒚 𝜶 − 𝑙𝑜𝑔𝑃 𝜶

= 𝑎𝑟𝑔𝑚𝑖𝑛𝜶 𝑯𝑫𝜶 − 𝒚 2
2+𝜆 𝜶 𝑝



• Is 𝑝 ≤ 1 a good prior of 𝜶? In general, yes!

• Empirical distribution of image coding coefficients on 
an over-complete dictionary. (Right: log-probability)
 𝐿1-norm minimization: MAP with Laplacian prior. 

 𝐿2-norm minimization: MAP with Gaussian prior.

Why sparse: Bayesian perspective
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• Some examples:

𝑁 pixels

𝐾 ≪ 𝑁 large
wavelet coefficients
(blue = 0)

𝑁 wideband
signal samples

𝐾 ≪ 𝑁 large
Gabor (TF)
coefficients

Courtesy by Baraniuk, 2012

Why sparse: signal processing 
perspective
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• 𝐾-sparse signal: 𝒙 is called 𝐾-sparse if it is a linear 
combination of only 𝐾 basis vectors. If 𝐾 ≪ 𝑁, it is 
called compressible.

• Measurement 𝒚 = 𝑯𝒙 = 𝑯𝑫𝜶 = 𝑨𝜶

34

Why sparse: signal processing 
perspective

𝒙 =෍
𝑖=1

𝐾

𝛼𝑖𝝍𝑖 = 𝑫𝜶

𝑯= 𝜶𝑫𝒚



Why sparse: signal processing 
perspective

• Reconstruction
• If 𝒙 is 𝐾-sparse, it is possible that we can reconstruct 𝒙

from 𝒚 with a number of measurements much less than 
the signal dimension (𝑀 ≪ 𝑁 ):

• But the measurement matrix 𝑨 should satisfy the RIP
condition.
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ෝ𝜶 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜶 𝜶 0 𝑠. 𝑡. 𝒚 = 𝑨𝜶



Why sparsity helps signal 
recovery?
An illustrative example

• You are looking for your another half.
• i.e., you are “reconstructing” the desired signal.

• You hope that she/he is “白-富-美”/ “高-富-帅”.
• i.e., you want a “clean” and “perfect” reconstruction.

• However, there are limited candidates.
• i.e., the dictionary is small. (For example, your search 

space is constrained to a class in PolyU.)

• Can you easily find your ideal another half?
36



Why sparsity helps signal 
recovery?
A illustrative example

• Candidate A is tall; however, he is too poor.

• Candidate B is rich; however, he is too fat.

• Candidate C is handsome; however, he is not healthy. 

• If you sparsely select one of them, none is ideal for you
• i.e., a sparse representation vector such as [0, 1, 0].

• How about a dense solution: (A+B+C)/3?
• i.e., a dense representation vector  [1, 1, 1]/3

• The “reconstructed one” is somewhat “高-富-帅”, but 
he is fat and unhealthy (i.e., noise) at the same time. 
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Why sparsity helps signal 
recovery?
A illustrative example

• So what’s the problem?
• This is because the dictionary is too small! 

• If you are able to find your another half from all 
candidates all over the world (i.e., a large enough 
dictionary) , there is a very high probability (nearly 1) 
that you will find the one.
• i.e., a very sparse solution [0, …, 1, …, 0]. 

• In summary, a sparse solution with an over-complete 
dictionary often works!

• Sparsity (coefficients) and redundancy (dictionary) 
are the two sides of the same coin.
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Dictionary

• Analytical dictionaries
• DCT bases
• Wavelets
• Curvelets
• Ridgelets, bandlets, …

• Learn dictionaries from natural images
• K-SVD
• Coordinate descent 
• Multi-scale dictionary learning
• Adaptive PCA dictionaries
• …
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Why dictionary learning?

• Sparse models with a learned over-complete 
dictionary often work better than analytically 
designed dictionaries such as DCT dictionary and 
wavelet dictionary. 

• Why learned dictionary works better?
• More adaptive to specific task/data.

• Less strict constraints on the mathematical properties of 
basis (dictionary atom). 

• More flexible to model data. 

• Tend to produce sparser solutions to many problems. 

40



Dictionary learning methods

• Input: Training samples 𝒀 = [𝒚1, 𝒚2, … , 𝒚𝑛]

• Output: Dictionary 𝑫 = 𝒅1, 𝒅2, … , 𝒅𝑚 , 𝑚 < 𝑛, such 

that 𝒀 ≈ 𝑫𝜦, and 𝜦 = [𝜶1, 𝜶2, … , 𝜶𝑛]

• Methods
• K-SVD (𝐿0-norm)

• Coordinate descent (𝐿1-norm)

• Others
• Multiscale dictionary learning

• Double sparsity dictionary learning 

• Adaptive PCA dictionary learning

41



K-SVD

• Basic idea

• K-means is a special case of sparse dictionary learning (approximate 
each sample with only one atom, i.e., the cluster center). The idea 
of alternatively updating cluster label and cluster center in k-means 
can be adopted for dictionary learning.

• Instead of approximating each sample using only one atom, we can 
learn a dictionary of 𝐾 atoms to approximate a sample:

• Since 𝐿0-norm is adopted, when updating 𝑫, we only care about 
the number of non-zeros in 𝜶 but not the values of them.

42

𝑚𝑖𝑛𝜶,𝑫෍
𝑗
𝑫𝜶𝒋 − 𝒚𝑗 2

2
, 𝑠. 𝑡. ∀𝑗, 𝜶𝑗 0

≤ 𝐿

• M. Aharon, M. Elad, A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries 
for sparse representation, IEEE Transactions on Signal Processing, 54 (11), 4311-4322.



K-SVD

• Algorithm
• The coding phase can be solved by conventional sparse coding algorithms, 

such as MP, OMP, et al.

• For the dictionary updating phase, K-SVD update dictionary column by 
column:

𝒀 − 𝑫𝜦 𝑭
2 = 𝒀 −෍

𝑘=1

𝐾

𝒅𝑘𝜶𝑘
𝑭

2

= 𝒀 −෍
𝑖≠𝑘

𝐾

𝒅𝑖𝜶𝑖 − 𝒅𝑘𝜶𝑘
𝑭

𝟐

= 𝑬𝑘 − 𝒅𝑘𝜶𝑘 𝑭
𝟐
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Only select non-zeros in 𝜶𝑘to update corresponding 𝒅𝑘

Rank 1 
approximation of 

matrix

• Code available at: http://www.cs.technion.ac.il/~elad/software/

ෞ𝜶𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜶𝑗 𝜶𝑗 0
𝑠. 𝑡. 𝒚𝑗 = 𝑫𝜶𝑗

𝑬𝑘𝛀𝑘 − 𝒅𝑘𝜶𝑘𝛀𝑘 𝐹
2



𝐿1 dictionary learning

• Basic idea and algorithm

• Inspired by K-SVD, 𝐿1 dictionary learning and adopt the same 
strategy of alternatively updating dictionary and coefficients.

• Different from 𝐿0 norm which only cares about the number of non-
zeros, the coefficient value is also important in 𝐿1 norm. 

44

𝑚𝑖𝑛𝑫,𝜦 𝑫𝜦 − 𝒀 𝐹
2 + 𝜆 𝜦 𝟏, 𝑠. 𝑡. 𝒅𝒋 2

2
≤ 1

• Meng Yang, et. al. "Metaface Learning for Sparse Representation based Face Recognition," In ICIP 
2010. (Code: http://www4.comp.polyu.edu.hk/~cslzhang/code/ICIP10/Metaface_ICIP.rar)

𝑚𝑖𝑛𝜦 𝑫𝜦 − 𝒀 𝐹
2 + 𝜆 𝜦 𝟏

𝑚𝑖𝑛𝑫 𝑫𝜦 − 𝒀 𝐹
2 , 𝑠. 𝑡. 𝒅𝒋 2

2
≤ 1



Multi-scale dictionary learning

• Motivation

The complexity of sparse coding increases exponentially with signal 
dimension. Therefore, most methods work on small image patches. To 
perform sparse coding on larger patches, multi-scale method can 
provide a way to adaptively model simple structure in larger scales 
and details in smaller scales.

45

• J. Mairal, et al., Learning multiscale sparse representations for image and video 
restoration. Multiscale Modeling & Simulation.



Double sparsity: sparse dictionary 
learning for high dimensional data 

• Learn a sparse dictionary

• To model high-dimensional (e.g. large patch for image) data, we can 
require the dictionary is sparse too.

• Double sparsity models the dictionary to be learned as 𝑫 = 𝜱𝒁, 
where 𝜱 is some pre-defined bases, such as DCT or wavelets.

• The objective function of double sparsity model is:

46

• R. Rubinstein,  et. al. Double Sparsity: Learning Sparse Dictionaries for Sparse Signal Approximation. 
IEEE Trans. on Signal Processing, 2010.

𝑚𝑖𝑛𝜱,𝒁,𝜦෍ 𝒀−𝜱𝒁𝜦 𝐹
2 ,

𝑠. 𝑡. ∀𝑗, 𝜶𝑗 0
≤ 𝐿, 𝒛𝑗 0

= 𝐾



Semi-coupled dictionary learning

• Flexible to model complex image structures

47

• S. Wang, L. Zhang, Y. Liang, Q. Pan, "Semi-Coupled Dictionary Learning with Applications to 
Image Super-Resolution and Photo-Sketch Image Synthesis," In CVPR 2012.

• http://www4.comp.polyu.edu.hk/~cslzhang/SCDL/SCDL_Code.zip

http://www4.comp.polyu.edu.hk/~cslzhang/SCDL/SCDL_Code.zip


Adaptive PCA dictionary selection

• Motivation
• Sparse coding is time consuming, 

especially with large dictionaries.

• A large over-complete dictionary is 
often required to model complex 
image local structures.

• We can learn a set of PCA 
dictionaries, and select one of them 
to represent a given image patch.

48

Dictionary 
Selection

𝑚𝑖𝑛𝜶 𝒚𝑗 − 𝑫𝜶𝑗 2

2
+ 𝜆 𝜶𝑗 1

• W. Dong, L. Zhang, G. Shi, X. Wu, Image deblurring and 
super-resolution by adaptive sparse domain selection 
and adaptive regularization, TIP 2011.

• http://www4.comp.polyu.edu.hk/~cslzhang/ASDS_data/
TIP_ASDS_IR.zip

http://www4.comp.polyu.edu.hk/~cslzhang/ASDS_data/TIP_ASDS_IR.zip


Image nonlocal self-similarity prior

• In natural images, usually we can find many similar patches to a 
given path, which may be spatially far from it. This is called image 
nonlocal self-similarity.

• Nonlocal self-similarity has been widely and successfully used in 
image restoration. 

49
• A. Buades, et al., A non-local algorithm for image denoising. CVPR 2005.



Non-locally centralized sparse 
representation (NCSR)

• A neat but very effective sparse representation 
model, which naturally integrates nonlocal self-
similarity (NSS) prior and sparse coding.

W. Dong, L. Zhang and G. Shi, “Centralized Sparse Representation for Image 
Restoration”, in ICCV 2011.

W. Dong, L. Zhang, G. Shi and X. Li, “Nonlocally Centralized Sparse 
Representation for Image Restoration”, IEEE Trans. on Image Processing, 
vol. 22, no. 4, pp. 1620-1630, April 2013. 

http://www4.comp.polyu.edu.hk/~cslzhang/code/NCSR.rar

50

http://www4.comp.polyu.edu.hk/~cslzhang/code/NCSR.rar


NCSR: The idea

• For true signal

• For degraded signal

• The sparse coding noise (SCN)

• To better reconstruct 𝒙 , we should reduce the SCN 𝝊𝜶:

51

𝝊𝜶 = 𝜶𝒚𝜶𝒙

𝜶𝒙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜶 𝜶 1, 𝑠. 𝑡. 𝒙 − 𝑫𝜶 2
2≤ 𝜀

𝜶𝒚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜶 𝜶 1, 𝑠. 𝑡. 𝒚 − 𝑯𝑫𝜶 2
2≤ 𝜀

෥𝒙 = ෝ𝒙 − 𝒙 ≈ 𝑫𝜶𝒚 −𝑫𝜶𝒙 =𝑫



NCSR: The objective function

• The proposed objective function

• Key idea: Suppressing the SCN

• How to compute ෝ𝜶𝒙?

• The unbiased estimate:

• The zero-mean property of SCN 𝝊𝜶 makes 
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𝜶𝒚 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝜶 𝒚 −𝑯𝑫𝜶 2
2+𝜆 𝜶 − ෝ𝜶𝒙 𝑝

ෝ𝜶𝒙 = 𝐸 𝜶𝒙

ෝ𝜶𝒙 = 𝐸 𝜶𝒙 ≈ 𝐸 𝜶𝒚



• The nonlocal estimation of 𝐸 𝜶𝒚

• The simplified objective function

• The iterative solution: 

NCSR: The solution

53

𝝁𝑖 = σ𝑗∈𝐶𝑖
𝜔𝑖,𝑗𝜶𝑖,𝑗, 𝜔𝑖,𝑗 = 𝑒𝑥𝑝 ෝ𝒙𝑖 − ෝ𝒙𝑖,𝑗 2

2 /ℎ /𝑊

𝜶𝒚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜶 𝒚 − 𝑯𝑫𝜶 2
2+𝜆෍

𝑖=1

𝑁

𝜶𝑖 − 𝝁𝑖 𝑝

𝜶𝑖
(𝑛)

= 𝑎𝑟𝑔𝑚𝑖𝑛𝜶 𝒚 − 𝑯𝑫𝜶 2
2+𝜆෍

𝑖=1

𝑁

𝜶𝑖 − 𝝁𝑖
(𝑛−1)

𝑝



• The 𝐿𝑝-norm is set to 𝐿1-norm since SCN is generally 

Laplacian distributed. 

• The regularization parameter 𝜆 is adaptively determined 

based on the MAP estimation principle. 

• Local adaptive PCA dictionaries are used, which are 

learned from the given image.

 Cluster the image patches, and for each cluster, a PCA 

dictionary is learned and used to code the patches within 

this cluster. 

NSCR: The parameters and dictionaries
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Low-rank minimization for image 
restoration

55



Motivation

• Visual data often has an intrinsic low-rank structure

Face images

Surveillance video

Multispectral image

Well aligned face images lie on a low-
dimensional subspace.

Video background of a static scene is 
always of very low-rank structure.

Different bands of a multi-spectral 
image are highly correlated, holding a 
low-rank property along spectrum
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Data representation 

57

Each column corresponds 
to a sample

𝒀 = 𝑿 + 𝑬

The desired latent low-
rank matrix

The residual matrix



Group sparsity

• How to characterize the sparsity of a group of 
correlated vectors? 

• Group sparsity:
𝑚𝑖𝑛𝜦 𝐽 𝜦 𝑠. 𝑡. 𝑿 = 𝑫𝜦

• Group sparsity is still a kind of 1D encoding.
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A sparse 
solution

A group sparse 
solution



From 1D to 2D: rank minimization

59

• Considering the fact (i.e., prior)  that the input 
vectors are highly correlated, we can take them as a 
2D low rank matrix and minimize its rank:

𝑅𝑎𝑛𝑘 𝑿 =෍ 𝜎𝑖(𝑿) 0

• Rank minimization represents the input matrix over 
a set of rank 1 basis matrices.

• However, minimization of 𝑅𝑎𝑛𝑘 𝑿 is non-convex 
and NP hard!



Nuclear norm

𝑅𝑎𝑛𝑘 𝑿 =෍ 𝜎𝑖(𝑿) 0

• The above rank function is non-convex. A convex 
relaxation of it is the so-called nuclear norm: 

𝑿 ∗ =෍ 𝜎𝑖(𝑿) 1
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Nuclear norm minimization

61

• Nuclear norm minimization (NNM) can be used to estimate 
the latent low rank matrix 𝑿 form 𝒀 via the following 
unconstrained minimization problem:

෡𝑿 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑿 𝒀 − 𝑿 𝐹
2 + 𝜆 𝑿 ∗

• Closed form solution (Cai, et al., SIAM10)

෡𝑿 = 𝑼𝑆𝜆(𝜮)𝑽
𝑇

where 𝒀 = 𝑼𝜮𝑽𝑇 is the SVD of 𝒀, and

𝑆𝜆(𝜮)𝑖𝑖 = max 𝜮𝑖𝑖 −
𝜆

2
, 0

• J.-F. Cai, E.J. Candès and Z. Shen, A singular value thresholding algorithm 
for matrix completion, SIAM J. Optimiz., 20(4): 1956--1982, 2010.



NNM: pros and cons

• Pros
Tightest convex envelope of rank minimization. 

Closed form solution.

• Cons
Treat equally all the singular values, ignoring the 

different significances of matrix singular values. 
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෡𝑿 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑿 𝒀 − 𝑿 𝐹
2 + 𝜆 𝑿 ∗

෡𝑿 = 𝑼𝑆𝜆(𝜮)𝑽
𝑇



Weighted nuclear norm 
minimization (WNNM)

63

• Weighted nuclear norm

𝑿 𝑤,∗ =෍ 𝑤𝑖𝜎𝑖(𝑿) 1

• WNNM model 

෡𝑿 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑿 𝒀 − 𝑿 𝐹
2 + 𝑿 𝑤,∗

• Difficulties
• The WNNM is not convex for general weight vectors



Optimization of WNNM

64

Theorem 1. ∀𝒀 ∈ 𝑅𝑚×𝑛, let 𝒀 = 𝑼𝜮𝑽𝑇 be its SVD. The 
optimal solution of the WNNM problem:

෡𝑿 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑿 𝒀 − 𝑿 𝐹
2 + 𝑿 𝑤,∗

is 

෡𝑿 = 𝑼𝑫𝑽𝑇

where 𝑫 is a diagonal matrix with diagonal entries 
𝒅=[𝑑1, 𝑑2, … , 𝑑𝑟] (𝑟 = 𝑚𝑖𝑛(𝑚, 𝑛)) determined by:

𝑚𝑖𝑛𝑑1, 𝑑2…𝑑𝑛 σ𝑖=1
𝑟 (𝑑𝑖−𝜎𝑖)

2 + 𝑤𝑖 𝑑𝑖
𝑠. 𝑡. 𝑑1 ≥ 𝑑2≥ 𝑑𝑟 ≥0.  

• S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, L. Zhang, “Weighted Nuclear Norm 
Minimization and Its Applications to Low Level Vision,” International Journal of 
Computer Vision, 2017.



An important corollary
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Corollary 1. If the weights satisfy 0 ≤ 𝑤1 ≤ 𝑤2≤
𝑤𝑛, the non-convex WNNM problem has a closed 
form optimal solution:

෡𝑿 = 𝑼𝑆𝑤(𝜮)𝑽
𝑇

where𝒀 = 𝑼𝜮𝑽𝑇 is the SVD of 𝒀, and

𝑆𝑤(𝜮)𝑖𝑖 = 𝑚𝑎𝑥 𝜮𝑖𝑖 −
𝑤𝑖

2
, 0 . 

• S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, L. Zhang, “Weighted Nuclear Norm 
Minimization and Its Applications to Low Level Vision,” International Journal of 
Computer Vision, 2017.



Application of WNNM to image 
denoising

1) For each noisy patch, search in the image for its 
nonlocal similar patches to form matrix 𝒀.

2) Solve the WNNM problem to estimate the clean 
patches 𝑿 from 𝒀.

3) Put the clean patch back to the image.

4) Repeat the above procedures several times to 
obtain the denoised image. 
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෡𝑿 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑿 𝒀 − 𝑿 𝐹
2 + 𝑿 𝑤,∗



WNNM based image denoising
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… …WNNM

• S. Gu, L. Zhang, W. Zuo and X. Feng, “Weighted Nuclear Norm 
Minimization with Application to Image Denoising,” CVPR 2014. 



The weights

68

• Model

෡𝑿 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑿 𝒀 − 𝑿 𝐹
2 + 𝑿 𝑤,∗

• Weights

𝑤𝑖 =
𝑐 𝑛

ො𝜎𝑖 𝑿 + 𝜀

where

ො𝜎𝑖 𝑿 = 𝑚𝑎𝑥{𝜎𝑖 𝒀 − 𝑛𝜎𝑛
2, 0}



Experimental results
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(a) Ground truth (b) Noisy image ( PSNR: 8.10dB) (c) BM3D (PSNR: 22.52dB) (d) EPLL (PSNR: 22.23dB) 

    
(e) SSC (PSNR: 22.24dB) (f) NCSR (PSNR: 22.11dB) (g) SAIST (PSNR: 22.61dB) (h) WNNM (PSNR: 22.91dB) 

Denoising results on image Monarch by different method (noise level sigma=100). 

 



Robust PCA (RPCA)

• In some applications, the residual 𝑬 = 𝒀 − 𝑿 may 
not be Gaussian distributed or may be sparse, then 
𝒀 − 𝑿 𝐹

2 will not be a good way to model residual.

• The 𝐿1–norm is more robust to characterize sparse 
errors. We have the following robust PCA (RPCA) 
model:

𝑚𝑖𝑛𝑿 𝑿 ∗ + 𝑿 − 𝒀 1

𝑚𝑖𝑛𝑿 𝑿 ∗ + 𝑬 1
𝑠. 𝑡. 𝒀 = 𝑿 + 𝑬
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Extension of WNNM to RPCA

• The objective function:

𝑚𝑖𝑛𝑿 𝑿 𝑤,∗ + 𝑬 1
𝑠. 𝑡. 𝒀 = 𝑿 + 𝑬

• We can use the ALM method to solve it:

𝐿 𝑿, 𝑬, 𝒀, 𝜇 = 𝑿 𝑤,∗ + 𝑬
1
+ 𝒀,𝑫 − 𝑨 − 𝑬

+
𝜇

2
𝑫− 𝑨 − 𝑬

𝐹

2
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Background modeling

RPCA-
NNM

RPCA-
WNNM

Original  video Background Foreground
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Extension to matrix completion

• The objective function:

𝑚𝑖𝑛𝑿 𝑿 𝑤,∗

𝑠. 𝑡. 𝑃𝛺(𝑿)= 𝑃𝛺(𝒀)

• We can use the ALM method to solve it:

𝛤 = 𝑿 𝑤,∗ + 𝑬
1
+ 𝑳, 𝒀 − 𝑿 − 𝑬

+
𝜇

2
𝒀 − 𝑿 − 𝑬

𝐹

2
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Image inpainting
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Deep learning for image 
restoration

75



Discriminative learning for image 
restoration
• Learn a compact inference or a mapping function 

from a training set of degraded-latent image pairs.

• General formulation:  

• Key issues 
• The availability of paired training data
• The design of learning architecture
• The definition of loss function

76

𝑚𝑖𝑛𝑙𝑜𝑠𝑠 ෝ𝒙, 𝒙 𝑠. 𝑡. ෝ𝒙 = 𝐹 𝒚,𝑯;

Loss function Set of parameters to be learned



Shrinkage fields

ෝ𝒙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒙
𝜆

𝟐
𝒚 − 𝒙2

2 + σ𝒊=𝟏
𝑵 σ𝒄∈∁𝝆𝒊(f𝒊

T𝒙(𝒄))

N convolution 
filters, e.g.,

Cliques Potential function
e.g., student-t, GMM

𝝆(𝒙) = log(𝟏 +
𝟏

𝟐
𝒙𝟐)

student-t

U. Schmidt and S. Roth. Shrinkage fields for effective image restoration. In CVPR 2014
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Shrinkage fields

First two stages of learned csf33 model. The shrinkage functions
are color-matched with their corresponding filters.

Shrinkage functions are not limited to monotonic functions.

shrinkage shrinkage
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Convolutional sparse coding for 
image super-resolution

79

S. Gu, W. Zuo, Q. Xie, D. Meng, X. Feng, L. Zhang, "Convolutional Sparse Coding for Image Super-
resolution," in ICCV 2015.



Model based optimization vs. 
discriminative learning 

• Model based optimization methods
General to handle different image restoration problems
Clear physical meaning
 The hand-crafted prior may not be strong enough
 The optimization process can be time consuming 

• Discriminative learning based methods
Data driven end-to-end learning
Can be very efficient in the testing stage
 The generality of learned models is limited
 The interpretability of learned models is limited
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Why deep learning?

• Strong learning capacity
• End-to-end learning for the inference/mapping function
• Deeper architecture for strong and distinct image priors

• Architecture design
• Residual learning or other structures
• Batch normalization and other network regularizations
• Various blocks, e.g., Conv, Deconv, Pooling, …

• Optimization algorithms
• SGD, momentum SGD, Adam

• Speed
• GPU

81
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• Training Phase

Architecture 
design

The problem
Prepare 

training data
Model training

Denoising; 
super-

resolution; 
debluring; …

Network 
structure; loss 

function; 
receptive 
filed; …

Degraded-
latent sample 

pairs;
degradation 

model 
parameters

Learn to 
predict the 

latent image 
with the given 

input

Input: degraded-latent sample pairs (and H)
Output: Trained model

General pipeline: training
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• Testing Phase

Degraded image
Trained deep 

network
Restored image

Input: Degraded images
Output: Restored images

General pipeline: testing



Super-resolution via CNN (SRCNN)

256256 (input, bicubic interpolation)  256  256  64 (feature map of 
Conv1)  256  256  32 (feature map of Conv2)  256  256 (output)

84

Dong, Chao, et al. "Image super-resolution using deep convolutional networks." IEEE PAMI 38.2 (2016): 
295-307.



SRCNN: example feature maps

85



Very deep CNN for SR (VDSR)

86

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. "Accurate image super-resolution using very deep 
convolutional networks." CVPR, 2016.



VDSR with and without residual 
learning

87

Performance table (PSNR) for residual and non-residual networks (‘Set5’
dataset, X2). Residual networks rapidly approach their convergence within
10 epochs.



Main points of VDSR

• Residual learning is effective

• The deeper, the better

• Single network for multiple scaling factors

88



89

VDSR: single network, multiple 
scaling factors

VDSR

SRCNN



VDSR: examples
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Drawback of SRCNN and VDSR
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CNN

CNN

The second pipeline is much faster!



Efficient sub-pixel CNN (ESPCNN)
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Reshape

Wenzhe Shi, et al. "Real-time single image and video super-resolution using an efficient sub-pixel 
convolutional neural network." CVPR, 2016.



ESPCNN: last layer
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Last layer of ESPCN (X2)

Reshape



Is PSNR a good metric for SR?
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State-of-the-art by PSNR How about this one?

Scaling factor: x4



SR by GAN (SRGAN): motivation

95

• MSE-based solution appears overly smooth due to the pixel-wise average of possible 
solutions in the pixel space.

• Using GAN (Generative Adversarial Network) to drive the reconstruction towards the 
natural image manifold producing perceptually more convincing solutions.



SRGAN

96

C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, W. Shi, 
“Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”,  CVPR, 2017



SRGAN: perceptual loss function

97

Content loss

Perceptual loss = content loss + adversarial loss

𝒍𝑽𝑮𝑮/𝒄𝒐𝒏𝒕𝒆𝒏𝒕(𝜽𝑮) =
𝟏

𝟐
𝝋 𝑰𝑯𝑹 −𝝋(𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒐𝒓𝜽𝑮 (𝑰

𝑳𝑹))
𝑭

𝟐

𝝋: feature map

Adversarial loss

𝒍𝑨𝒅𝒂𝒗𝒆𝒓𝒔𝒂𝒓𝒊𝒂𝒍(𝜽𝑮) = ෍

𝒏=𝟏

𝑵

−𝑫𝒊𝒔𝒄𝒓𝒊𝒎𝒊𝒏𝒂𝒕𝒐𝒓𝜽𝑫 (𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒐𝒓𝜽𝑮(𝑰𝒏
𝑳𝑹))



SRGAN: examples
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Bicubic SRResNet SRGAN Ground-truth



DnCNN: deep residual learning 
beyond Gaussian denoising

K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, "Beyond a Gaussian Denoiser: Residual Learning of Deep CNN 
for Image Denoising," IEEE Trans. on Image Processing, 2017.

Code: https://github.com/cszn/DnCNN
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• Batch normalization and residual learning are particularly beneficial to 
Gaussian noise removal

• Single model for multiple tasks

Noisy Image Residual Image

         C
o
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      C
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o
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      C
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Effect of batch normalization and 
residual learning

100

The Gaussian denoising results of four models under two gradient-based optimization algorithms,
i.e., (a) SGD, (b) Adam, with respect to epochs. The four specific models are in different combinations
of residual learning (RL) and batch normalization (BN) and are trained with noise level 25. The results
are evaluated on 68 natural images from Berkeley segmentation dataset.



Gaussian denoising results
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Methods BM3D WNNM EPLL MLP CSF TNRD DnCNN

15 31.07 31.37 31.21 - 31.24 31.42 31.73

25 28.57 28.83 28.68 28.96 28.74 28.92 29.23

50 25.62 25.87 25.67 26.03 - 25.97 26.23

The averaged PSNR(dB) results of different methods on BSD68 dataset.



A single model for multiple tasks
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Gaussian Denoising

Dataset Noise Level BM3D TNRD DnCNN-3

BSD68

15 31.08 31.42 31.46

25 28.57 28.92 29.02

50 25.62 25.97 26.10

Single Image Super-Resolution

Dataset Scale TNRD VDSR DnCNN-3

Set5

2 36.86 37.56 37.58

3 33.18 33.67 33.75

4 30.85 31.35 31.40

Set14

2 32.51 33.02 37.58

3 29.43 29.77 29.81

4 27.66 27.99 28.04

JPEG Image Deblocking

Dataset Quality ARCNN TNRD DnCNN-3

LIVE1

10 28.96 29.28 29.19

20 31.29 31.47 31.59

30 32.67 32.78 32.98

40 33.63 - 33.96



An example
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Gaussian denoising, single image super-resolution and JPEG image deblocking
via a single model!

Input image Output residual image Restored image



IterCNN for deblurring
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Initi Step (a)

Step (b) Step (a)

Jiawei Zhang, et al. "Learning Fully Convolutional Networks for Iterative Non-blind Deconvolution." CVPR, 2017.

𝑚𝑖𝑛𝒙 𝒚 − 𝒌 ∗ 𝒙2
2 + 𝜆 ∙෍

𝒍=𝒉,𝒘
𝑅 𝒑𝒍 ∗ 𝒙

𝒑𝒉 and 𝒑𝒘 are horizontal and vertical gradient operators.



One motivation

• Model based optimization methods
General to handle different image restoration problems

 The hand-crafted prior may not be strong enough

• Discriminative learning based methods
Data driven end-to-end learning

 The generality of learned models is limitted

• Can we integrate the model based optimization and 
discriminative learning to develop a general image 
restoration method?
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Half quadratic splitting

• The general model for image restoration 

• Introducing an auxiliary variable 𝒛 (𝒛 ≈ 𝒙)

• Solving 𝒙 and 𝒛 alternatively and iteratively 

106

𝑚𝑖𝑛𝒙 0.5𝒚 − 𝑯𝒙2
2 + 𝜆 ∙ 𝑅 𝒙

𝑚𝑖𝑛𝒙,𝒛 0.5𝒚 − 𝑯𝒙2
2 + 𝜆 ∙ 𝑅 𝒛 + 0.5𝜇𝒛 − 𝒙2

2

(a) 𝑚𝑖𝑛𝒙 𝒚 −𝑯𝒙2
2 + 𝜇𝒛 − 𝒙2

2

(b) 𝑚𝑖𝑛𝒛 0.5𝜇𝒙 − 𝒛2
2 + 𝜆 ∙ 𝑅 𝒛

% Data proximal operator

% Denoising sub-problem



Image restoration with deep CNN 
denoiser prior (IRCNN)
• Plugging the strong CNN denoiser prior into model-

based optimization

• Step (a): analytical solution

• Step (b): deep CNN denoiser

107

K. Zhang, W. Zuo, S. Gu, L. Zhang. "Learning Deep CNN Denoiser Prior for Image Restoration." CVPR 2017.
Code: https://github.com/cszn/ircnn

https://github.com/cszn/ircnn


CNN denoiser 

108

“s-DConv” denotes s-dilated convolution, s = 1, 2, 3 and 4. A dilated filter with 
dilation factor s can be simply interpreted as a sparse filter of size (2s+1) ×
(2s+1) where only 9 entries of fixed positions are non-zeros. 



Denoising results
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Methods BM3D WNNM TNRD MLP IRCNN

=15 31.07 31.37 31.42 - 31.63

=25 28.57 28.83 28.92 28.96 29.15

=50 25.62 25.87 25.97 26.03 26.19

Noise Level 5 15 25 35 50

CBM3D 40.24 33.52 30.71 28.89 27.38

IRCNN 40.36 33.86 31.16 29.50 27.86

The average PSNR(dB) results of different methods on (gray) BSD68 dataset.

The average PSNR(dB) results of CBM3D and proposed CNN denoiser on (color) 
BSD68 dataset.



Denoising results

110

CBM3D (29.90dB) IRCNN (30.42dB)Noisy (17.75dB)



Denoising results
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CBM3D (27.25dB) IRCNN (28.06dB)Noisy (17.70dB)



Debluring results
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IRCNN

IRCNN

IRCNN

IRCNN

IRCNN



Debluring results
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Ground-truth Blurred and noisy

IDDBM3D (25.32dB) IRCNN (27.89dB)



Debluring results
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Ground-truth Blurred and noisy

NCSR (29.00dB) IRCNN (31.65dB)



Super-resolution results
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Super-resolution results
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Ground-truth Zoomed LR image

NCSR (28.05dB) IRCNN (29.32dB)



Super-resolution results
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Ground-truth Zoomed LR image

BM3D (26.88dB) IRCNN (29.29dB)



Open problems
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Camera pipeline

119

• The digital imaging process is very complex



Blind real image restoration

120

• The degradations in real images are too complex to 
be described by simple models
• Non-Gaussian noise, signal dependent, non-uniform 

blur, compression artifacts, system distortions, … 



Deep learning?

• Deep learning for blind real image restoration!?

• Good idea! But where are the ground-truth images 
for supervised learning?

• How can we do deep learning based image 
restoration without paired data?

• Is GAN a solution for this challenging problem?

121

Ground-truth 
image?



Summary
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Summary

• Image sparsity and low-rankness priors have been 
dominantly used in past decades.

• Recently the CNN based models have been rapidly 
developed to learn deep image priors.

• There remain many challenging issues for deep 
learning based image restoration. 
 Key issue: the lack of training image pairs in real-world 

blind image restoration applications. 

• It is still an open problem to train deep image 
restoration models without using image pairs.
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