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Abstract—Local pooling (LP) in configuration (feature) space
proposed by Boureau et al. explicitly restricts similar features
to be aggregated, which can preserve as much discriminative
information as possible. At the time it appeared, this method
combined with sparse coding achieved competitive classification
results with only a small dictionary. However, its performance
lags far behind state-of-the-art results as only zero-order in-
formation is exploited. Inspired by the success of high-order
statistical information in existing advanced feature coding or
pooling methods, we make an attempt to address the limitation
of LP. To this end, we present a novel method called high-
order local pooling (HO-LP) to leverage the information higher
than the zero-order one. Our idea is intuitively simple: we
compute the first- and second-order statistics per configuration
bin and model them as a Gaussian. Accordingly, we employ
a collection of Gaussians as visual words to represent the
universal probability distribution of features from all cl asses.
Our problem is naturally formulated as encoding Gaussians
over a dictionary of Gaussians as visual words. This problem,
however, is challenging since the space of Gaussians is not a
Euclidean space but forms a Riemannian manifold. We address
this challenge by mapping Gaussians into the Euclidean space,
which enables us to perform coding with common Euclidean
operations rather than complex and often expensive Riemannian
operations. Our HO-LP preserves the advantages of the original
LP: pooling only similar features and using a small dictionary.
Meanwhile, it achieves very promising performance on standard
benchmarks, with either conventional, hand-engineered features
or deep learning based features.

Index Terms—Image classification, high-order local pooling
(HO-LP), manifold of Gaussians.

I. I NTRODUCTION

In the past decade, great progress has been achieved in the
area of visual recognition [1–3]. One of the most effective
models is the Bag of visual Words (BoW) [1], which has
been successfully applied in scene categorization [4], object
classification [5], among others. The BoW framework is
composed of several consecutive processes: (1) extractionof
features in the input image, e.g., low-level, hand-engineered
SIFT [6] or high-level, deep learning based features [7]; (2)
encoding of these features over a dictionary of visual words
learned from the training examples; (3) pooling (aggregation)
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of coding vectors to obtain image-level representations, which
are then fed to a classifier such as support vector machine.

The pooling step is a necessary component of the BoW
framework, and has a great effect on improving recognition
accuracy [8]. The local spatial pooling plays a fundamental
role at either small patch-level or the overall image-level. For
image features such as SIFT, the gradients in a small patch
are typically aggregated in smaller spatial cells and orientation
cells, which are then concatenated to represent the properties
of local neighborhoods. To obtain image-level representations,
local pooling of coding vectors is widely used in the spatial
bins of a pyramid (sub-regions at different scales) [1].

The local pooling (LP) in configuration space was first
presented by Boureau et al. [9]. Its core idea is to only
aggregate the codes of similar features so that more dis-
criminative information can be preserved. Specifically, the
space of training features are first divided into multiple cells
(called configuration bins therein) using k-means clustering.
The codes of features assigned to the same configuration bin
are aggregated, leading to a pooling vector per configuration
bin. All such pooling vectors are concatenated to form the
final image representation. By considering the spatial pyramid
strategy as well, the LP method ensures that features to
be aggregated are close in the spatial-feature space. At the
time, the LP method combined with sparse coding (SC) [10]
achieved competitive results with only a small dictionary.

However, the main drawback of LP is lack of high-order in-
formation which limits its performance. Generally, exploiting
high-order statistics can contribute to more accurate feature
modeling and image representation. A recent work explicitly
showed the benefits of high-order information in feature pool-
ing method [11]. And numerous recent research exploiting
high-order statistics has experimentally shown great gains in
classification accuracy [12–14]. After extensive evaluations,
Huang et al. [15] reported that the Fisher vectors (FV) [16],
which exploits first- and second-order statistics, outperforms
those only using zero-order information (e.g. SC, LLC [17],
soft-assignment methods [18]), first-order statistics [19], or
combination of zero- and first-order ones [20]. In view of the
significance of LP yet its performance lagging behind state-of-
the-arts, it is interesting to study whether high-order statistics
can be leveraged for performance improvement under the LP
framework.

In this paper, we propose a novel method called high-order
local pooling (HO-LP) to tackle this problem. It exploits high-
order information of the features and meanwhile maintain the
merits of the original local pooling method. Different fromLP
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which aggregates the coding vectors of similar features, wedi-
rectly perform high-order statistical pooling of featuresfalling
into the same configuration bin. Specifically, we estimate the
first- and second-order central moments in configuration bin,
which are viewed as parameters of a Gaussian distribution
(Gaussian for short). We first build a dictionary to represent
the universal distribution of features from all classes which
exploits both the center and covariance of each cluster to form
a Gaussian as a visual word. Then, our problem is formulated
ashow to encode Gaussians, collected in the joint spatial and
configuration bins, over the dictionary of Gaussians as visual
words 1.

Encoding of Gaussians is a challenging problem, which, as
far as we know, has not been studied previously. The main
difficulty is that the space of Gaussians is not a Euclidean
space but forms a Riemannian manifold [22]. This manifold
is different from the common manifolds, e.g., manifold formed
by symmetric positive definite (SPD) matrices, and thus the
corresponding methods [23] cannot be applied. Feature cod-
ing based on kernel methods via (dis)similarity measures of
Gaussians seems plausible, which however is not scalable
to large scale datasets. An alternative is to perform feature
coding by mapping them into Euclidean space. Unfortunately,
the existing mapping schemes are computationally demanding,
inappropriate to high-dimensional features.

To address this challenge, we present an effective method
to map Gaussians into the Euclidean space. This method is
suitable for statistical modeling of high-dimensional features,
for which the diagonal covariance assumption is commonly
adopted [16, 21]. In our method, we first identify Gaussians
as affine matrices, all of which are known to form a matrix
Lie group [24]. We proceed to map this matrix Lie group to
its Lie algebra, the tangent space at the identity matrix. We
show that the matrix logarithm is a diffeomorphism from this
Lie group to its Lie algebra, thus establishing their equivalent
relationship. In this way, we transform encoding of Gaussians
to that of common vectors in the Euclidean space defined by
this Lie algebra.

II. RELATED WORK

There are roughly two categories of methods leveraging
higher order information in image modeling.In the first cate-
gory, dictionaries built from training samples of all categories
are essentail for feature coding [12, 16, 25]. FV [16] learns
a universal Gaussian mixture model (GMM) as a dictionary,
and computes the derivatives of the likelihood function relative
to the parameters of GMM, normalized by Fisher Informa-
tion matrix. Motivated by FV, Kobayashi [12] proposed the
Dirichlet Fisher kernel for histogram feature transforming and
Dirichlet-derived GMM Fisher kernel; Klein et al. [25] derived
Fisher vector expressions with respect to Laplacian Mixture
Models and hybrid Gaussian-Laplacian Mixture Model. Li et
al. [13] proposed a dictionary of affine subspaces and per-
formed the first- and second-order coding of each feature over

1The dictionary consisting of a set of Gaussians has long beenused in
the BoW framework, e.g., spherical Gaussians in [18] and Gaussians with
diagonal covariances in [16, 21].

top-k nearest subspaces. Peng et al. [11] presented H-VLAD
to include second- or third-order statistics. Recently, Wang
et al. [26] developed a patch-level, end-to-end architecture
called PatchNet, upon which they proposed a novel encoding
method called vector of semantically aggregated descriptors
(VSAD). The VSAD method performed FV-like encoding,
where features extracted from one PatchNet pretrained on
scene dataset are combined with the probabilities from another
PatchNet pre-trained on ImageNet, achieving state-of-the-art
result on SUN-397 dataset [27].

The methodsin the second categorydo not need dictionary
for feature coding. They estimated a global covariance matrix
[28] or Gaussian distribution [14, 22, 29] to represent an
image. Since either covariance matrices or Gaussians do not
lie in the Euclidean space, their geometric structure needs
to be favorably considered. Carreira et al. [28] introduced
second-order pooling on free-form image regions, where the
covariance matrices are mapped to vector space by the Log-
Euclidean framework. Nakayama et al. [22] measured the simi-
larity of different Gaussians based on information geometry. In
[29], the covariance matrices are projected to the linear space
which are then concatenated with the mean vectors before clas-
sification. Wang et al. [14] first embedded Gaussians into the
space of SPD matrices and further mapped the SPD matrices
to vector space according to the Log-Euclidean framework.

Our proposed HO-LP is different from the methods men-
tioned above. Specifically, we first performstatistical local
pooling, i.e., we determine assignments of features into spatial-
configuration bins, in each of which we compute mean and
covariance to form a Gaussian. Next, weencodeGaussians
with respect to a dictionary of Gaussians, and then concatenate
coding vectors from all bins. Our method is also different
from two-layer or multi-layer coding methods (e.g. [30, 31]),
whose structure are similar to the architecture of CNN: the
outputs of the current layer at finer spatial scale are fed to the
next, spatially coarser layer, with each layer subject to pooling
and coding operations. In contrast, our method only involves
one layer, i.e., statistical pooling per spatial-configuration bin
followed by coding with respect to a dictionary of Gaussians.

As far as we know, encoding Gaussians over a dictionary of
Gaussians has not been studied previously. To deal with this
challenge, one natural solution is to develop kernel methods
based on probability (dis)similarity measures (e.g. Kullback-
Leibler (KL) [32]). However, the kernel methods are com-
putationally expensive for both classifier training and test, not
scalable to large scale problems. The probability (dis)similarity
measures among Gaussians are coupled, and currently for
the kernels based on them there exist no approximate, finite-
dimensional feature mappings fit for linear classifiers. Harandi
et al. [33] proposed kernel-based Riemannian coding frame-
work to handle the problem of coding on general manifolds,
which maps points on one manifold into a reproducing kernel
Hilbert space (RKHS) with some Riemannian kernels and
performs SC or LLC in that RKHS. The proposed kernel LCC
(kLCC) coding method (i.e., LLC in RKHS) can be computed
analytically.

An alternative is to map Gaussians into the Euclidean space
where the coding can be performed. Li et al. [34] embedded
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Gaussians in the space of SPD matrices, which are then
mapped to the linear space via the Log-Euclidean framework.
Nakayama et al. [22] defined the space of Gaussians as a flat
manifold characterized by an affine coordinate system, and
the coordinates of Gaussians are further mapped to a common
tangent space. However, in [22, 34], computation of mapping
vectors is time consuming. Furthermore, for high-dimensional
features (over hundreds of dimensions) diagonal covariances
are generally used, the sizes of their mapping vectors are very
large and redundant, making subsequent coding operations
very expensive.

III. PROPOSEDMETHOD

We begin with an overview of the proposed method in
SectionIII-A . Then we introduce the formulation of the high-
order local pooling (HO-LP) in SectionIII-B . Finally we
describe how to encode Gaussians in SectionIII-C.

A. Overview of our classification method

The illustration of image classification using the proposed
high-order local pooling is shown in Fig.1. For input images,
we first extract either hand-engineered features or responses
of pre-trained CNN models. Our construction of configuration
bins and dictionary is similar to [9]. The difference is that
we independently estimate two GMMs2 rather than perform
simple k-means clustering, using the features extracted in
training images. One GMM is to partition the feature space
into multiple bins (called configuration bins) and the other
one serves as the dictionary to be used in feature coding. We
also divide images into smaller sub-regions as in the spatial
pyramid scheme [1]. Hence, we get a pre-defined, universal
spatial-configuration bins, which jointly partitions the space of
spatial position and the space of image features.

During coding process, we first assign features into the pre-
defined spatial-configuration bins, in each of which we per-
form statistical pooling by estimating a Gaussian distribution.
We map both per-bin Gaussian and the pre-trained dictionary
consisting of Gaussians to a vector space through the proposed
mappingφ = log ◦ψ (see SectionIII-C). After that, the classi-
cal coding methods in the Euclidean space such as LLC or SC
can be employed to encode the mapped Gaussians, leading to
a coding vector per spatial-configuration bin. Finally, these
coding vectors are weighted and concatenated as the final
image representation for training and test with a linear SVM.

B. High Order Local Pooling

We represent an image feature by a two-tuple[zT , fT ]T ,
wherez = [x, y] ∈ R2 denotes the spatial coordinate andf ∈
R

n is ann-dimensional feature, which is typically extracted
from the patch centered atz. The spatial pooling is performed
in the spatial bins, which consists of a fixed, predetermined
collection of possibly overlapping image regions. In practice,

2Note that for statistical modeling of high-dimensional features, GMMs
with full covariances incur numerical instability and heavy, computational
cost. Hence, GMMs with diagonal covariances are widely usedin litera-
ture [16, 21].

the spatial bins are the cells of the spatial pyramid [1], Z =
{Zm,m = 1, · · · ,M}, which enables us to capture the local
information at various scales.

The configuration pooling is performed in a set of config-
uration bins, i.e., predetermined multi-dimensional regions in
the configuration space. The configuration bins, denoted by
F = {Fk, k = 1, · · · ,K}, can be constructed by Voronoi
tessellation of the configuration space via the k-means clus-
tering [9]. A better way is to employ the Gaussian mixture
model (GMM). In this case, we compute the responsibility
(or posterior probability) of one feature and assign it to the
cluster with maximal responsibility. The configuration bins
constructed by k-means have linear boundaries, while those
by GMM have quadratic ones.

Our local pooling is performed in the product space

Z×F = {(Zm,Fk)}m=1,...,M,k=1,...,K . (1)

Clearly the pooling operations take place locally both in the
space of spatial position and in the configuration space. Hence,
only similar features in the spatial-configuration space are to
be aggregated while dissimilar ones are not. Specifically, given
an input image, we determine the assignments of featuresf ,
then we estimate the “personalized” statistics of featuresfor
each bin(Zm,Fk), by computing their first- and second-order
moments viewed as parameters of a Gaussian:

g(f |µ̂(m,k), Σ̂(m,k)) = (2)

|2πΣ̂(m,k)|
− 1

2 exp(−
1

2
(f − µ̂(m,k))

T Σ̂−1
(m,k)(f − µ̂(m,k))),

where| · | denotes the matrix determinant,µ̂(m,k) andΣ̂(m,k)

are respectively the mean vector and covariance matrix, esti-
mated by maximum likelihood estimation from the features in
cell (Zm,Fk). This kind of pooling is in the statistical sense,
clearly different from the commonly used average pooling or
max pooling. It is natural since we are concerned with high-
order statistics.

As in [9], we build the dictionary from the training sample
corpus by the clustering methods, independent of construction
of the configuration bins. In practice, we build dictionary
by estimating a universal GMM based on the expectation
maximization (EM) algorithm [16, 21]. Hence, our dictionary
consists of a collection of Gaussians

G = {g(f |µj,Σj)}j=1,··· ,N , (3)

whereg(f |µj ,Σj) is the j-th component of the GMM. Dif-
ferent from [9] where only cluster centers (first-order) are
employed as visual words, we consider both the centers (first-
order) and the shapes (second-order) of clusters, which allow
us to describe the distribution of features more accurately.

As a consequence of HO-LP, we face the following
encoding problem: How to encode a Gaussian
g(f |µ̂(m,k), Σ̂(m,k)) over a dictionary of Gaussians
{g(f |µ1,Σ1), . . . , g(f |µN ,ΣN )}? This problem is
challenging as the the space of Gaussians is not a vector
space but forms a Riemannian manifold. Our idea is, by
mapping Gaussians to a vector space via some functionφ(·),
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Fig. 1. Illustration of image classification using the proposed higher-order local pooling (HO-LP). For an input image,we extract features and assign them
into pre-defined spatial-configuration bins, in each of which statistical pooling is performed to construct a Gaussian.Both the Gaussians estimated in spatial-
configuration bins and the dictionary composed of Gaussiansare mapped to vector space using the proposed mappingφ = log ◦ψ. Hence, encoding of
Gaussians on the Gaussian manifold is transformed to the classical, vector coding in the Euclidean space, and so the common methods such as SC or LLC
can be used. The per-bin coding vectors are weighted and concatenated as the final image representation for classification with a linear SVM.

we transform encoding of Gaussians to the classical encoding
of vectors in the Euclidean space

p(m,k) = argmin
x

‖φ(g(m,k))−
N∑

j=1

xjφ(gj)‖
2
2 + λr(x), (4)

whereg(m,k) andgj are abbreviations ofg(f |µ̂(m,k), Σ̂(m,k))
andg(f |µj ,Σj), respectively,λ > 0 andr(x) is a regularizing
function. The coding vectorp(m,k) of Gaussiang(m,k) is
weighted to reflect relative importance among all coding
vectors,

h(m,k) = w(m,k)(α) · p(m,k). (5)

Herew(m,k)(α) takes the following form:

w(m,k)(α) =

(
N̂(m,k)/

∑K

k′=1
N̂(m,k′)

)α

, (6)

where0 ≤ α ≤ 1 andN̂(m,k) is the occurrence of features in
(Zm,Fk). Indeed,w(m,k) represents the zero-order statistics in
our model. We will see in SectionIV-B that appropriate choice
of the value ofα brings performance improvement. The final
coding vector (image-level representation) is a concatenation
of the coding vectors of all bins, i.e.,h(m,k), m = 1, · · · ,M ,
k = 1, . . . ,K, which is of sizeM ×K ×N .

An alternative method to handle our coding problem is using
the kernel-based Riemannian coding framework proposed by
Harandi et al. [33]. Specifically, we can first map the Gaussian
distributions into RKHS with some Riemannian kernels and
then perform LLC in that RKHS as kLCC has analytical
solution. Comparisons between the proposed mapping scheme
and kLCC are conducted in the experimental section.

C. Encoding of Gaussians

In this section, we begin with an introduction of identifying
Gaussians as affine matrices, and then describe how to map
the affine matrices into the Euclidean space, where coding is
actually performed.

1) Shape of Gaussians and Geodesic Distance:The theory
of shape of Gaussians (SoG) was introduced in [24]. Assume
that f0 is an n-dimensional random vector following the
standard (multivariate) Gaussian distribution, and thatΣ is an
SPD matrix. It is well known thatΣ has a unique Cholesky
factorizationΣ = LLT , whereL is a lower triangular matrix
with positive diagonals. Consider the affine transformation,
f = Lf0+µ, or equivalently in homogeneous coordinate form,

[
f

1

]
=

[
L µ

0 1

] [
f0
1

]
, (7)

where0 denotes a1×n zero vector. According to the property
of Gaussians, we know that the probability density function
of random vectorf is a Gaussian with the mean vectorµ
and covariance matrixΣ = LLT . Eq. (7) is called positive
definite lower triangular affine transformation(PDLTAT), and
the affine matrix involved is called PDLTAT matrix. In this
way, an arbitrary Gaussiang(f |µ,Σ) can be uniquely mapped
to the corresponding PDLTAT matrix through

ψ : g(f |µ,Σ) →

[
L µ

0 1

]
(8)

Consider the set of all PDLTAT matrices,

G(n+ 1) =

{
PL,µ

△

=

[
L µ

0 1

] ∣∣∣L ∈ L+(n),µ ∈ Rn

}
(9)

where L+(n) denotes the set ofn × n lower triangular
matrices with positive diagonals.G(n + 1) is closed under
regular matrix multiplication and matrix inversion, both of
which are evidently smooth. Hence,G(n+ 1) is a Lie group
which forms a Riemannian manifold. The distance between
g(f |µ1,Σ1) and g(f |µ2,Σ2) are measured by the geodesic
length ρ connecting their corresponding PDLTAT matrices
PL1,µ1

andPL2,µ2
, which is of the form

ρ(PL1,µ1
,PL2,µ2

) =
∥∥ log(P−1

L1,µ1
PL2,µ2

)
∥∥
F
, (10)

wherelog(·) denotes the matrix logarithm and‖·‖F the matrix
Frobenius norm. SinceG(n + 1) is a Riemannian manifold,
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the common Euclidean operations cannot be applied to it.
The geodesic distance (10) is not decoupled, and therefore,
if employed in coding methods, one will have to turn to the
kernel methods which are known to be unscalable to large-
scale problems. Above all, it is unclear whether the kernels
based on (10) are positive definite.

2) MappingG(n + 1) to Its Lie Algebra: A Lie group
is a differentiable manifold which is locally Euclidean. The
Riemannian metric, which defines the inner product on the
tangent space, varies from point to point on the manifold. The
Lie algebra of a Lie group is a vector space, more specifically,
the tangent space at the identity element. The Lie algebra of
G(n+ 1), denoted byg(n+ 1), can be written as [35]

g(n+ 1) =

{[
X t

0 0

] ∣∣∣X ∈ L(n), t ∈ Rn

}
, (11)

whereL(n) is the set ofn× n lower triangular matrices.
The matrix exponential establishes a mapping between a

matrix Lie group and its Lie algebra. However, this mapping
may be neither one to one nor onto, and indeed, in general it is
only locally one to one and onto: there exists a neighborhood
(containing the zero element) of the Lie algebra which can be
homomorphically mapped to some neighborhood (containing
the identity) of the corresponding Lie group [36, Chap. 2.7].
Hence, an element in the Lie group usually can not be mapped
uniquely to its Lie algebra. Fortunately, for our case, we find
that the exponential (or its inverse, the logarithm) is a smooth
bijection betweenG(n + 1) and its Lie algebrag(n + 1), as
described in the following theorem:

Theorem 1:The matrix logarithm

log : G(n+ 1) → g(n+ 1), PL,µ 7→ log(PL,µ) (12)

is a diffeomorphism. In particular, for a Gaussian
g(f |µ, diag(σ2

i )) with mean vectorµ = [µi] and diagonal
covariance matrixdiag(σ2

i ), the logarithm of its PDLTAT
matrix has closed-form:

log

[
diag(σi) [µi]

0 1

]
=

[
diag(log σi)

[
µi log σi

σi−1

]

0 1

]
. (13)

Here[µi] is an abbreviation of the vector[µ1, . . . , µn]
T . Proof

of Theorem1 is given in Appendix A.
We clarify that the conclusion thatlog : G(n+1) → g(n+1)

is a diffeomorphism, as stated in Theorem1, has not ap-
peared either in [24] or other previous literature. We noticed
that Cheng et al. [37] mentioned the existence of mappings
between the Lie group formed by PDLTAT matrices with
full covariance matrices and their Lie algebra. And Li et al.
[38] identifies the Gaussian distribution as an upper triangular
matrix and discloses the Lie group structure of Gaussian dis-
tributions in the Log-Euclidean framework. Although sharing
some similarity with them, Theorem1 mathematically proves
that PDLTAT matrices with diagonal covariance matrices can
be uniquely mapped into their Lie algebra (linear space) with
matrix logarithm and derives an explicit mapping expression
which is clearly distinct from both of them. We have three
remarks regarding Theorem1 as follows:
(1) It establishes the equivalence between Lie groupG(n +

1) and its Lie algebrag(n + 1), so that the Riemannian

operations onG(n+ 1) can be transformed, through the
logarithm, to the Euclidean operations ing(n+ 1).

(2) Under the logarithm, the geodesic distance between any
two PDLTAT matrices is preserved (to the first order
approximation) in its Lie algebra [35, Section 4.1]:

‖ log(P−1
L1,µ1

PL2,µ2
)‖F ≈ ‖ log(PL1,µ1

)− log(PL2,µ2
)‖F

(14)

(3) The widely used features are of high dimension, for
which Gaussians with diagonal covariances are usually
employed for statistical modeling. Such Gaussians can
be mapped to the Euclidean space at negligible cost via
Eq. (13).

As a Lie group is a manifold involving complicated, expen-
sive Riemannian operations, it is a common practice to map
the elements to its Lie algebra, which is a vector space and
where simple and efficient Euclidean operations can be used.
For example, on the Lie group of SPD matrices, the well-
known Log-Euclidean metric [39], maps through the logarithm
the SPD matrices to the corresponding Lie algebra where
the Euclidean distances are measured. Similar to Eq. (14),
in terms of Baker-Campbell-Hausdorff formula [35, Section
4.1], this metric is the first-order approximation of the geodesic
distance (a.k.a. affine Riemannian metric). For such first-order
approximations, it is often difficult to analyze theoretically
how good the approximation is, as in most cases closed-
form error functions can not be obtained. Instead, researchers
[35, 39] including us are more concerned with the effectiveness
and efficiency in light of experimental validation.

3) Encoding of Gaussians in vector space:
For an input image, we estimate a collection
{g(f |µ̂(m,k), Σ̂(m,k))}m=1,··· ,M,k=1,··· ,K of Gaussians
with diagonal covariances, and our task is to encode them
over a dictionary of Gaussians with diagonal covariances,
i.e. {g(f |µj ,Σj)}j=1,··· ,N . For notational simplicity, we
transform two-dimensional indexes(m, k) of bins (Zm,Fk)
to one-dimensional ones, e.g., by lettingt = (m − 1)K + k,
t = 1, . . . ,K×M . Let P

L̂t,µ̂t
be the corresponding PDLTAT

matrix of g(f |µ̂t, Σ̂t), where Σ̂t = diag(σ̂2
ti) is a diagonal

covariance matrix. Since the logarithm of a PDLTAT (Log-
PDLTAT for short) matrix is in the Euclidean space, for easy
manipulation we vectorize it as follows:

qt =
[
log σ̂t1, . . . , log σ̂tn,

µ̂t1 log σ̂t1
σ̂t1 − 1

, . . . ,
µ̂tn log σ̂tn
σ̂tn − 1

.
]T

(15)

Correspondingly, we denote bydj the Log-PDLTAT matrix
of g(f |µj ,Σj) in the dictionaryG. Computation ofqt only
takesO(2n) time.

In the vector space formed by the Lie algebra ofG(n+1),
we employ the locality-constrained linear coding (LLC) [17].
We select LLC rather than sparse coding (SC) [10] because
LLC is much faster, while guaranteeing that similar features
have similar codes, a desirable property that SC fails to have.
Note that the locality constraint directly leads to the sparsity.
Let Np(qt) be the set of top-p nearest neighbors ofqt in
{dj}j=1,··· ,N . Let K = {1, 2, · · · , N}. We denote byKt the
set of indexes for whichdj ∈ Np(qt), i.e., Kt = {j|j ∈



ACCEPTED BY IEEE TRANSACTIONS ON IMAGE PROCESSING 6

K,dj ∈ Np(qt)}. The objective function of the LLC can be
written as

pt = arg min
∀xtj,j∈Kt

∥∥qt −
∑

j

xtjdj

∥∥2
2

s.t.
∑

j

xtj = 1. (16)

For coding vectorxt = [xt1, · · · , xtN ], if j ∈ Kt, xtj is
computed according to (16), and otherwise we setxtj = 0.
The problem (16) can be solved by the Least Square method
whose complexity isO(2np2) [40].
Mapping scheme in [34]: Li et al. proposed to embed
n−dimensional Gaussians in the space of(n + 1) × (n + 1)
SPD matrices, which are further mapped to the vector space
based on the Log-Euclidean framework [41]. For Gaussian
g(f |µ̂t, Σ̂t) with diagonal covariance matrix, the mapping
vector takes the following form:

q̃t = vec

(
log

[
diag(σ̂2

ti) + µ̂tµ̂
T
t µ̂t

µ̂
T
t 1

])
, (17)

where vec(A) denotes the operation which vectorizes the
upper triangular entries ofA. Note that the dimension of̃qt is
(n+1)(n+2)/2. The computation of̃qt costsO(10(n+1)3)
operations via eigen-decomposition [34] while the solution to
LLC costsO((n + 1)(n+ 2)p2/2).
Mapping scheme in [22]: Nakayama et al. defined a flat
manifold by taking an appropriate affine coordinate system
η, in which the tangent spaces are flatly connected. This
coordinate system is interpreted as the space of sufficient
statistics. Letg(f |µ,Σ) be the “average” Gaussian estimated
from the features of the entire training corpus, andF(µ,Σ) the
corresponding Riemannian metric. Any Gaussiang(f |µ̂t, Σ̂t)
can be mapped to the tangent space of the average Gaussian:

q̂t = F
1

2 (µ,Σ)
[
µ̂

T
t , (vec(diag(σ̂

2
ti) + µ̂tµ̂

T
t ))

T
]T
, (18)

whereF
1

2 denotes the square root ofF. The dimension of
q̂t is n(n + 3)/2. One needsO(n2(n + 3)2/4) time and
O(n(n + 3)p2/2) time to computeq̂t and solve the LLC
problem, respectively.

IV. EXPERIMENTS

We start with an introduction of the benchmarks and the
experimental setup. Then we evaluate the proposed HO-
LP from several respects and also make a comparison with
LP. Finally, we compare HO-LP with other methods under
different feature settings.

A. Benchmarks and experimental setup

We employ six widely used image benchmarks in the
experiments. Some sample images from these datasets are
shown in Fig.2.

Scene-15[1] This dataset contains 4,485 images of 15 scene
categories. According to the standard experimental setup,we
randomly select 100 training images per category and the re-
maining ones for testing. We randomly repeat the experiments
5 times and report the average accuracy.

FMD [42] This dataset is composed of 1,000 material
images of 10 material categories. Following the common
protocol, for each category, we randomly select 50 images for

(d) Caltech-256 

(b) FMD

(e) SUN-397

(c) VOC 2007

(a) Scene-15

(f) Imagenet

Fig. 2. Some sample images from (a) Scene-15, (b) FMD, (c) VOC2007,
(d) Caltech-256, (e) SUN-397 and (f) ImageNet.

training and the remaining 50 images for testing without using
the provided binary mask. We report the average accuracy over
five trials.

PASCAL VOC 2007 [2] This dataset contains 20 cate-
gories and a total of 9,963 images. We follow the standard
protocol: the training, validating and testing are performed
on the “train”, “val” and “test” sets, respectively. We employ
the mean Average Precision (mAP) over 20 categories for
performance measurement.

Caltech-256 [43] This dataset includes 256 object cate-
gories and a background class, with 30,607 images in total.
Following the usual practice [16], we conduct experiments
with varying number of training images per category: 15,
30, 45, 60. The remainder of images is used for testing. We
average the classification accuracy over five random train/test
splits.

SUN-397 [27] This dataset contains 108,754 images of
397 different scene categories. Following the protocol in [27],
we use the pre-defined ten splits for evaluation and test the
performance using 5, 10, 20 or 50 samples per class for
training and 50 samples for testing. The average accuracy of
ten rounds is reported.

ImageNet [44] This is large-scale dataset for object recog-
nition. It provides a training set consists of 1.2 million labeled
images in 1000 categories, with 732 to 1300 images for
each category. It also provides a validation set containing50
samples from each category and a test set with 100 samples
for each category. The top1 and top5 error rates are usually
employed to measure the performance on this dataset.

Recent works [7, 45–47] have shown that responses of CNN
pre-trained on large ImageNet as features (which we call CNN
features) achieved state-of-the-art results on a variety of vision
tasks. In this paper, we make experiments using both SIFT, one
of the most widely used hand-engineered features, and CNN-
based features. Our purpose is to test whether the proposed
HO-LP can generalize well to traditional, low-level features
(e.g. SIFT) and novel, high-level features (e.g. CNN features).

Several efforts have been made in order to estimate mean-
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ingful high-order statistics (i.e. covariances) in each config-
uration and spatial bin. This first and most important one is
that we use diagonal covariances rather than full covariances,
which alleviates the demand of samples. Secondly, we use
multi-scale strategy to extract a large number of features per
image. Specifically, about 70,000 SIFT features are extracted
from each image on multi-scale square patches of sizer =
24+i/2 with r/4 pixel strides,i = 0, 1, · · · , 4, which indicates
several hundred of SIFT features are on average assigned to
each bin. The feature allocation of three sample images are
shown in the middle of Fig.3. The SIFT features are further
reduced ton = 64 by PCA to make the diagonal assumption
more suitable. The local spatial pooling is performed inside a
three-level pyramid (1×1, 3×1 and 2×2 sub-regions) on all
benchmarks.

Following [7, 45], the CNN featuresare extracted as the
responses of the last convolutional layer (immediately after
the ReLU operation). Specifically, we resize isotropicallyeach
image so that its maximum side is no more than 500 pixels.
Then we rescale isotropically the resized image at 5 scales
2s, s = −0.8,−0.4, 0, 0.4, 0.8. In this way, we can extract
around 4,000 CNN features for each image. For this case,
we do not use the spatial pyramid strategy which encourages
more features to be assigned into each bin. More importantly,
we experimentally find that the feature allocation tends to
be sparse in the case of high dimensional CNN features. As
illustrated in the right of Fig.3, only several bins receive most
of the features, and similar observation is also found in [46].
Hence, we can estimate diagonal covariances in the bins with
sufficient features.

In addition, the weighting strategy (Eq.5) helps us further
control the impact of number of features on their coding
vectors. For the bins having few features, we directly set their
weights to zero. Such bins never contribute to the final image
representation. Finally, a small positive number (1e-4) isadded
to the diagonal covariances for numerical stability throughout
the experiments.

Similar to [9], we separately estimate one GMM for building
configuration bins and a second GMM as the dictionary. We
determine the number of neighbors in LLC by cross validation.
The final coding vector isℓ2-normalized before fed to a linear
SVM. The SIFT extraction, k-means algorithm or GMM esti-
mation, and one-versus-all SVM classifier are all implemented
using the subroutines in the VLFeat software package [48].
Extraction of CNN features with pre-trained VGG-M [49]
and VGG-VD [50] are implemented with MatConvNet [51],
without using techniques of data augmentations or fine-tuning.
The programs are written with Matlab, running on a PC with
i7-4790k processor @4.0GHz and 64GB RAM.

B. Evaluation of HO-LP on VOC 2007

We conduct a series of experiments on VOC 2007 to
evaluate the parameters of the proposed HO-LP under the
hand-engineered feature (SIFT) setting. In particular, wetest
the effects of combination of configuration bin numberK and
dictionary sizeN , and weight parameterα in Eq. (4) on HO-
LP. We also compare our mapping scheme with the other ones,
all of which can map Gaussians into the vector space.

Images
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Fig. 3. Sample images and corresponding features allocation in configuration
bins. The x-axis indicates the index of configuration bins and the y-axis shows
the number of features assigned into each bin. Bins number are set to 160 and
128 for SIFT and CNN features, respectively. No spatial pyramid is considered
in both cases for simplicity. For SIFT features, we set a upper limit (2000)
to y-axis for more clear illustration of all bins.
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Fig. 4. Effects of combination of configuration bin numberK and dictionary
sizeN on VOC 2007.

Configuration bin number and dictionary sizeFig. 4 shows
the accuracy as a function ofK andN , where we choose
α = 0, i.e., setting identical weight to coding sub-vectors of
all configuration bins. We find for fixedK (K ≤ 96), the
mAP increases continuously withN ; however, for largerK,
the value of mAP increases untilN = 512 and then begins
to drop. On the other hand, whenN is fixed, the value of
mAP increases consistently with growingK. Interestingly,
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Fig. 5. Effects of weight parameterα on VOC 2007.
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TABLE I
COMPARISON OF DIFFERENT MAPPING SCHEMES AND KLCC [33] ON

VOC 2007.

Mapping scheme Time (s) mAP (%)
HO-LP (Eq. (17) [34]) 7.1 62.8
HO-LP (Eq. (18) [22]) 7.0 62.4
HO-LP (kLCC-KL [32]) 4.2 61.1
HO-LP (kLCC-LogE [34]) 8.8 57.2
HO-LP (Eq. (19)) 0.9 63.2
HO-LP (Eq. (15)) 0.9 64.3

the performance appears not to saturate, indicating potentially
higher performance with a largerK, but at considerably
increased cost. The largest mAP value,63.6%, is achieved with
K = 160 andN = 512. To trade-off between accuracy and
speed, we setK = 160 andN = 256 throughout the following
experiments if no additional mention, with which HO-LP
yields63.2% in recognition accuracy with the final dimension
of 327,680 (8× 160× 256). We also make experiments where
both the configuration bins and dictionary are obtained by
using k-means, and the results show that accuracies drop by
more than1%.

Weight parameterWe proceed to test the effect ofα on
HO-LP (K = 160 andN = 256). From Fig.5, it can be seen
that the mAP reaches a peak value,64.3%, at α = 0.25 and
then decreases gradually. As explained in [16, Section 2.3],
this power technique restrains the side effect of features which
take place duplicately in classification. The optimal valueof α
may change slightly withK. In all the following experiments,
we fix this parameter to 0.25.

Mapping schemes& kernel LCCUnder exactly the same
experimental setting (dictionary with 256 Gaussians, 160 con-
figuration bins, 8 spatial bins, etc.), we now compare different
mapping schemes for HO-LP which first map Gaussians into
vector spaces and then perform LLC in the vector space, as
well as HO-LP using kernel LCC (kLCC) [33] for coding.
Specifically, we compare our mapping scheme (15) with that
of Li et al. [34] and that of Nakayama et al. [22], as shown
in Eq. (17) and Eq. (18), respectively. We also compare with
a naive mapping scheme which simply vectorizes the matrix
P

L̂t,µ̂t
corresponding to Gaussiang(f |µ̂t, Σ̂t) as follows:

p′
t = [σ̂t1, . . . , σ̂tn, µ̂t1, . . . , µ̂tn]

T . (19)

We evaluated kLCC based on two different kernels including
the KL-kernel [32] and Log-Euclidean kernel [34]. The source
code of kLCC was kindly provided by the authors of [33]3.
Note that we did not employ dictionary learning for kLCC,
since all the other compared methods did not use it for fair
comparison. We have tried our best to optimize the parameters
of these two methods.

Table I presents both the accuracy (mAP) and average
running time taken by image-level modeling, which includes
feature extraction, pooling and coding. We can first notice
that both the mapping scheme of Li et al. [34] and that of
Nakayama et al. [22] are time consuming, taking about eight
times the computing time as ours. And they yield slightly
inferior performance, compared to the other two mapping

3We appreciate Harandi for sending us the source code of kLCC.

schemes. The reason may be that, in their schemes, the
components of the mean vector are unfavorably distributed
in the covariance matrix. Regarding the kLCC, the cost is
also much higher than the proposed mapping scheme. This
is because that in order to find the nearest neighbors, we
need to calculate the kernel distance between each dictionary
atom and local Gaussian. Moreover, the accuracy of kLCC
is not very competitive in our situation which may be mainly
caused by the diagonal covariance and high-dimension feature
we used. In such case, distance computation and numerical
stability may have larger effect on kernel methods, which
limits their effectiveness. Our mapping scheme takes almost
the same time as the naive one, only about 0.9s, but has over
1% performance gain, indicating that our method improves
the performance at negligible cost. Considering that both
the mapping schemes in [34] and in [22] and kLCC are
computationally demanding, not suitable for the framework
of HO-LP. We do not make experiments using these methods
in the remaining experiments.

C. Comparison with LP and FV-based LP

In the second set of experiments we first compare the
proposed HO-LP with the original LP [9]. This comparison
is made on Scene-15 [1] and Caltech-256 [43] (30 training
samples). As LP uses sparse coding (SC), we also implement
the proposed HO-LP with SC in the embedding vector space,
i.e., r(x) is selected as theℓ1-norm in Eq. (4). Table II(a)
presents the comparison results under three combinations of
dictionary sizeN and configuration bin numberK.

It can be clearly seen that the performance gains of HO-
LP(SC) over LP are significant, in any case and on any dataset.
Regarding the best results of these two methods, the gaps
between HO-LP(SC) and LP are4.7% on Scene-15 and9.7%
on Caltech-256, respectively. We ascribe this big improvement
to the first- and second-order statistics successfully leveraged
in the proposed HO-LP. Also, we find that in all cases HO-
LP(LLC) performs slightly better than HO-LP(SC) but is much
faster. Note that the final coding vector sizes for the two
methods are comparable.

We also compare the proposed method with Fisher Vector in
the local pooling paradigm (called FV-LP for simplicity) under
the same experimental settings. Specifically, for FV-LP, we
allocate features to spatial and configuration bins, in eachof
which the features are encoded using FV and then aggregated
to a single vector, and finally the aggregated vectors of all
bins are concatenated to obtain the image-level representation.
The comparisons are conducted on Scene-15 and Caltech-256
datasets using SIFT descriptors. For both HO-LP and FV-LP,
the features are extracted at five scales whose dimensions are
reduced to 64, the numberM of configuration bins and number
K of spatial bins are 128 and 8, respectively. The number of
Gaussian components of the universal GMM as dictionary is
set to 256 for both methods. As the aggregated FV per bin is
of high dimension (32,768-D), straightforward concatenation
leads to expensive computations as well as excessive storage
and so we adopt PCA for compactness. The comparison results
are presented in TableII(b).
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TABLE II
COMPARISON WITH LP (A) AND FV-LP (B) ON SCENE-15 AND CALTECH-256 (30TRAINING SAMPLES).

(a)

N ×K ×M LP [9] HO-LP (SC) HO-LP (LLC)

Scene-15
256× 128× 8 81.1 (0.5) 88.0 (0.3) 88.9 (0.2)
1024× 64× 8 82.4 (0.7) 87.2 (0.3) 88.8 (0.3)

Best 83.3 (1.0) 88.0 (0.3) 89.1 (0.5)

Caltech-256
256× 128× 8 40.3 (0.6) 51.4 (0.3) 52.0 (0.2)
1024× 64× 8 41.7 (0.8) 50.8 (0.3) 51.8 (0.2)

Best 41.7 (0.8) 51.4 (0.3) 52.1 (0.1)

(b)

N ×K ×M Methods Scene-15 Caltech-256 Image-level repres.
size

Time (s)

256 × 128 × 8

HO-LP (LLC) 88.9 (0.2) 52.0 (0.2) 262,144-D 0.90

FV-LP
(PCA256) 88.1 (0.4) 49.0 (0.2) 262,144-D 1.72
(PCA512) 88.4 (0.5) 49.7 (0.1) 524,288-D 1.98
(PCA768) 88.5 (0.3) 50.2 (0.1) 786,432-D 2.22

TABLE III
COMPARISON WITH DIFFERENTBOW METHODS USING CONVENTIONAL, HAND-ENGINEERED FEATURES.

(a) VOC 2007

Methods mAP (%) Dim.

LLC [17] 57.6 32,768
SV [20] 58.2 655,360
MLCW+MKL [ 52] 57.5 32,768
H-VLAD [ 11] 61.2 491,520
Kobayashi [12] 63.8 524,288
LASC [13] 63.6 524,288
FV (SIFT) [16] 61.8 262,144
FV (SIFT+LCS) [16] 63.9 262,144

HO-LP (SIFT) 64.3 327,680
HO-LP (SIFT+LCS) 67.4 327,680

(b) Caltech-256

# of train 15 30 45 60

LLC [17] 34.4 41.2 45.3 47.7
MLCW+MKL [ 52] 35.2 40.1 44.9 47.9
GOLD [29] – 43.9 – 49.4
MSSR [53] 38.8 (0.3) 45.7 (0.5) 49.8 (0.2) 52.8 (0.5)
Kobayashi [12] 41.8 (0.2) 49.8 (0.1) 54.4 (0.3) 57.4 (0.4)
LASC [13] 43.7 (0.4) 52.1 (0.1) 57.2 (0.3) 60.1 (0.3))
FV (SIFT) [16] 38.5 (0.2) 47.4 (0.1) 52.1 (0.4) 54.8 (0.4)
FV (SIFT+LCS) [16] 41.0 (0.3) 49.4 (0.2) 54.3 (0.3) 57.3 (0.2)
M-HMP [54] 42.7 50.7 54.8 58.0

HO-LP (SIFT) 46.0 (0.2) 52.5 (0.1) 57.3 (0.2) 60.1 (0.5)
HO-LP (SIFT+LCS) 49.9 (0.2) 57.0 (0.1) 61.7 (0.2) 64.7 (0.5)

(c) FMD

Method Acc. (%)

Sharan et al. [55] 57.1
Kobayashi [12] 57.3 (0.9)
FV (SIFT) [56] 58.2 (1.7)
FV (SIFT+LCS) [56] 63.3 (1.9)

HO-LP (SIFT) 61.5 (1.9)
HO-LP (SIFT+LCS) 65.4 (1.6)

(d) SUN-397

# of train 5 10 20 50

Xiao et al. [27] 14.5 20.9 28.1 38.0
Kobayashi [12] – – – 46.1 (0.1)
LASC [13] 19.4 (0.4) 27.3 (0.3) 35.6 (0.1) 45.3 (0.4))
FV (SIFT) [16] 19.2 (0.4) 26.6 (0.4) 34.2 (0.3) 43.3 (0.2)
FV (SIFT+LCS) [16] 21.1 (0.3) 29.1 (0.3) 37.4 (0.3) 47.2 (0.2)

HO-LP (SIFT) 21.9 (0.4) 29.9 (0.2) 37.6 (0.2) 47.1 (0.1)
HO-LP (SIFT+LCS) 25.7 (0.3) 34.6 (0.1) 42.9 (0.2) 51.4 (0.2)

Like HO-LP, FV-LP significantly outperforms LP due to
the leverage of high-order statistics. With the same size ofthe
image-level representations, HO-LP is slightly better (+0.8%)
than FV-LP on the small Scene-15, while outperforming FV-
LP by a large margin (+3.0%) on Caltech-256 which is much
larger than Scene-15; as for efficiency, HO-LP only takes
about half of time of FV-LP for processing one image. The
performance of FV-LP slightly increases with growing of PCA
dimension on both datasets, however, the computation cost as
well as the storage cost significantly increase such that higher
dimensions for FV-LP is prohibitive, particularly for large
datasets (e.g. Caltech-256 or larger ones). These comparisons
under exactly the same settings demonstrate HO-LP is superior
to FV-LP in terms of both the recognition accuracy and the
cost. The high-dimensional nature of FV makes it unfit for the

local pooling paradigm.

D. Comparison with hand-engineered feature based methods

In this part we conduct experiments to compare HO-LP
with various methods using conventional, hand-engineered
features on four datasets. Particularly, we compare with FV
using separate SIFT and a combination of SIFT and LCS
features [16] by score level fusion (0.7*SIFT+0.3*LCS for
all experiments). The LCS features are extracted in the same
way as SIFT. The comparison results are presented in Table
III . To make the comparison more clearly, we also report the
dimension of the final image representation for each method
on VOC 2007. As listed in the right column of TableIII(a) that
the dimension of HO-LP is comparable to FV, but less than
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other coding methods, including H-VLAD [11], Kobayashi
[12], LASC [13] and SV [20].

On VOC 2007, with only SIFT, the proposed HO-LP yields
an accuracy of64.3%, outperforming other high-order based
methods, H-VLAD [11], LASC [13] and FV; it even has
better performance than FV incorporating SIFT and LCS,
and the Dirichlet-derived GMM Fisher kernel proposed by
Kobayashi [12]. By combining SIFT and LCS, HO-LP pro-
duces67.4% in accuracy, higher than H-VLAD incorporating
supervised dictionary learning (65.1%). It should be mentioned
that FV in [49] achieves68.0% by using data augmentation
which significantly improves performance but at several times
extra computational cost. Finally, it can be seen that all higher-
order based methods outperform lower-order based ones, in-
cluding LLC [17], SV [20], and supervised pooling [52].

For material recognition on FMD, HO-LP (SIFT) yields an
accuracy of61.5%, which is much higher than FV (SIFT),
the methods of Kobayashi [12] and Sharan et al. [55]. By
combining SIFT and LCS, HO-LP outperforms FV by∼2.1%.

On Caltech-256, HO-LP shows a clear advantage over
its competitors. In particular, HO-LP using only SIFT
yields much better performance than FV (SIFT+LCS) and
Kobayashi [12] (∼3.1% on average), as well as LASC. On the
other hand, HO-LP incorporating SIFT and LCS significantly
improves the performance over HO-LP (SIFT) (∼4.4%).

On SUN-397, HO-LP (SIFT) yields higher accuracy than
Kobayashi [12], LASC [13] and performs much better than
FV (SIFT). Note that HO-LP using only SIFT is comparable
to FV incorporating SIFT and LCS. By combining SIFT and
LCS, the performance of HO-LP has a further improvement
of ∼4.3% on average.

E. Comparison with CNN features based methods

This section compares the proposed HO-LP with state-of-
the-art, CNN features based methods. As in SectionIV-B, we
also evaluated the parameters of HO-LP. We observed that
their effects on HO-LP’s behavior under the CNN features
are similar to those under SIFT, which are therefore not
reported here. We choose a dictionary of 512 atoms and 128
configuration bins which are slightly different from the case
of SIFT. As in [7, 50, 59], we do not use spatial pyramid
scheme (spatial bins) as it brings no improvement. The weight
parameterα is set to 0.25. We report results on VOC 2007,
FMD, Caltech-256 (60 training images per category) and
SUN-397 (50 training images per category) in TableIV-D.

The proposed method is tested on two pre-trained CNN
models, 8-layer VGG-M [49] and 19-layer VGG-VD [49]. In
the top panel of TableIV-D, we present the results based on
CNN models of no more than 8 layers and the middle panel
includes the methods exploiting VGG-VD. We also compare
with state-of-the-art results achieved by hybrid methods in the
bottom panel, where multiple CNN models trained on different
type of databases, or various coding methods, or features from
different layers are combined to improve performance.

We first notice that HO-LP improves significantly by us-
ing CNN features, producing much higher accuracy on all
datasets than by using hand-engineered, SIFT features, i.e.,

11.8%∼21.8% with VGG-VD and 7.5%∼14.7% with VGG-
M, respectively. We also see that no matter using a single
VGG-M or VGG-VD model, HO-LP achieves very compet-
itive performance on all benchmarks compared to the other
methods based on the same or a similar model. Note that
FV with data augmentations or fine-tuning produces higher
accuracy [49], which are not listed here as the compared
methods do not exploit such tricks.

As seen at the bottom panel of TableIV-D, hybrid methods
can generally obtain better results than using one single model.
By integrating FV (VGG-VD) and the responses of the fully-
connected layer, [7] obtains82.4% on FMD. Combining two
CNN models (16-layer and 19-layer), [50] reports 89.7%
on VOC 2007 and86.2% on Caltech-256. Several recent
hybrid methods [26, 61, 62], focusing on scene recognition
problem, achieved significant improvements (73% by VSAD
is state-of-the-art) by exploiting the CNN models trained
on Places databases [57]. Furthermore, they all benefit from
multiple, complementary CNN models pre-trained on Places
dataset and ImageNet dataset, respectively. Furthermore,Xie
et al. combines FV and LLC to encode features from both
convolutional and fully connected layers. In contrast, we focus
on a novel high-order encoding method, which is suitable for
general classification tasks including object, scene and ma-
terial classifications, while only using convolutional features
outputted from a single CNN model pre-trained on ImageNet.

Note that it is not easy to make completely fair comparisons
for all competing methods due to different parameter settings
in CNN models, responses of different layers as features, etc.
Nevertheless, our experiments show that the proposed HO-LP
with CNN features is very promising, producing performance
comparable to or better than state-of-the-art methods in
general image classification tasks.

F. Results on large-scale ImageNet dataset

In the last part of experiments, with the experimental setting
as described in SectionIV-E, we evaluate the proposed HO-LP
on ImageNet (ILSVRC 2012) dataset based on CNN models
of 8-layer VGG-M and 19-layer VGG-VD. For efficiency,
we reduce image-level representations to 4096 dimensions by
PCA , and train softmax classifiers using stochastic gradient
descent algorithm. The top1 and top5 errors on validation set
are reported in Table V. Our results are similar to the VGG-M
and VGG-VD models.

As far as we know, we are among the first who evaluate
dictionary-based coding method using CNN features on large-
scale ImageNet. We clarify that VGG-M and VGG-VD are
trained on ImageNet with large scale training samples in end-
to-end architectures, where feature learning, image represe-
nation and classifier training are jointly optimized, and the
same benchmark is used to evaluate. But in our method these
stages are separated, independent of each other. It is worth
mentioning that there are much more practical applications
where such large scale training samples are unavailable and
a pre-trained or fine-tuned CNN model has to be used. In
these cases (such as FMD, Caltech-256, SUN-397, etc), local
pooling can achieve great improvements over pre-trained or
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TABLE IV
COMPARISON OF ACCURACY WITH STATE-OF-THE-ART, CNN-BASED METHODS.

CNN Model Methods FMD VOC 2007 Caltech-256 SUN-397

CNNs
(layers≤8)

Zhou et al. [57] – – 67.2 (0.3) 54.3 (0.1)
Zeiler et al. [58] – – 74.2 (0.3) –
Liu et al. [45] – 77.8 – –
Chatfield et al. [49] – 77.0 77.0 (0.5) –
Gong et al. [47] – – – 51.98
Mandar et al. [59] – – – 54.4 (0.3)
Wu et al. [60] – – – 58.1
FV (VGG-M) [7] 73.5 (2.0) 76.4 – –
HO-LP (VGG-M) 76.5 (1.3) 80.1 78.5 (0.3) 58.9 (0.2)

VGG-VD

Simonyan et al. [50] – 89.3 85.1 (0.3) –
Ms-DSP [46] – 89.3 85.5 (0.1) 59.8 (0.5)
FV (VGG-VD) [7] 79.8 (1.8) 84.9 – –
HO-LP (VGG-VD) 81.4 (1.4) 87.2 86.5 (0.2) 63.2 (0.1)

Hybrid

FV + FC [7] 82.4 (1.5) – – –
Simonyan et al. [50] – 89.7 86.2 (0.3) –
VSAD [26] – – – 73.0
Xie et al. [61] – – – 70.7 (0.2)
Herranz et al. [62] – – – 70.2

TABLE V
ERROR RATE(%) ON IMAGENET 2012.

Top-1 error Top-5 error
VGG-M [49] 36.9 15.5
HO-LP (VGG-M) 36.7 15.2

VGG-VD [50] 27.3 9.0
HO-LP (VGG-VD) 27.6 8.7

fine-tuned CNN models. This indicates local pooling is still
important for visual object classification, although deep CNN
models have achieved promising performance in large scale
ImageNet classification. In addition, it is very interesting to
implement the proposed HO-LP in an end-to-end manner and
compare with state-of-the-art CNN architectures, which will
be our future research.

V. CONCLUSIONS

We proposed a high-order local pooling method, called HO-
LP, for image classification. It is different from and is therefore
complementary to the existing high-order based methods. Our
main contributions are summarized as follows.

• We extended the local pooling (LP) method [9] to handle
the first- and second-order statistics. The proposed high-
order method preserves the advantages of LP, i.e., only
pooling similar features and using small dictionary, while
significantly improves its performance.

• We studied how to encode Gaussians over a dictionary
of Gaussians as visual words. As far as we know, we are
among the first who touch the problem of encoding over
the Gaussian manifold. We hope this work motivates the
interests on processing data consisting of Gaussians.

• We made extensive experiments to evaluate the pro-
posed HO-LP and compared with state-of-the-arts. Our
experiments showed that HO-LP is very competitive and
generalizes well to both the traditional, hand-engineered
features and novel CNN features.

As in [9], we maintained a single dictionary of Gaussians
for all configuration bins. An alternative is to learn a dictionary
for each configuration bin, which makes pooling more local
but may lead to very large dictionary. In future work we will
study the problem of learning simultaneously the parameters
of CNN, HO-LP and SVM in an end-to-end fashion, which
may further improve the classification performance.

APPENDIX A
PROOF OFTHEOREM 1

Recall that for matrix Lie group, the matrix exponential
and logarithm are respectively defined by [35] exp(Y) =∑∞

k=0
1
k!Y

k andlog(Q) =
∑∞

k=1
1
k (−1)k−1(Q − I)k, where

I denotes the identity matrix. To prove Theorem1, we first
introduce the following proposition [63, Section 3]:

Proposition 1:Let S(k) be the space ofk × k real matri-
ces whose eigenvalues have imaginary parts on the interval
(−π, π). let exp(S(k)) be the image ofS(k) under matrix
exponential.

(1) Any k × k real, invertible matrixQ with non-negative
eigenvalues has unique matrix logarithmlog(Q) ∈ S(k),

(2) exp(S(k)) is the space of real invertible matrices with
non-negative eigenvalues andexp : S(k) → exp(S(k))
is a diffeomorphism.

Let g(f |µ,Σ) be a Gaussian with mean vectorµ and
covariance matrixΣ, and PL,µ be its PDLTAT matrix,
where Σ has Cholesky factorizationΣ = LLT and L

is a lower triangular matrix with positive diagonal entries
ljj , j = 1, · · · , n. Let us consider the characteristic function of

PL,µ: |λI′ −PL,µ| =
∣∣∣ λI−L µ

0 λ−1

∣∣∣ = (λ − 1)
∏n

j=1(λ − ljj),

I′ and I are (n + 1) × (n + 1) and n × n identity matrix,
respectively. Note that here we use the recursive property of
the determinant [64, Section 1.4]. Hence, the eigenvalues of
PL,µ are 1, ljj > 0, j = 1, · · · , n. According to Proposition
1, log(PL,µ) exists uniquely lying in Lie algebrag(n + 1).
On the other hand, for anyPX,t ∈ g(n + 1), from the
definition of matrix exponential, it is not difficult to know
exp(PX,t) = exp ([X t

0 0 ]) ∈ G(n + 1). From Proposition1,
we conclude thatexp is a diffeomorphism fromg(n + 1) to
G(n+1), and so its inverselog is a diffeomorphism as well.
Finally, we have (after some manipulations)
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log

([
diag(σi) µ

0 1

])
=

∞∑

k=1

(−1)k−1

k

([
diag(σi) µ

0 1

]
− I′

)k

=




log σ1
µ1 log σ1

σ1−1

. . .
...

log σn
µn log σn

σn−1

0
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