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Abstract—Local pooling (LP) in configuration (feature) space
proposed by Boureau et al. explicitly restricts similar fedures

to be aggregated, which can preserve as much discriminative

information as possible. At the time it appeared, this methd
combined with sparse coding achieved competitive classiition
results with only a small dictionary. However, its performance
lags far behind state-of-the-art results as only zero-orde in-
formation is exploited. Inspired by the success of high-ordr
statistical information in existing advanced feature codng or
pooling methods, we make an attempt to address the limitatio
of LP. To this end, we present a novel method called high-
order local pooling (HO-LP) to leverage the information higher
than the zero-order one. Our idea is intuitively simple: we
compute the first- and second-order statistics per configuridon

of coding vectors to obtain image-level representatiorsclv
are then fed to a classifier such as support vector machine.
The pooling step is a necessary component of the BoW
framework, and has a great effect on improving recognition
accuracy §]. The local spatial pooling plays a fundamental
role at either small patch-level or the overall image-le¥alr
image features such as SIFT, the gradients in a small patch
are typically aggregated in smaller spatial cells and daigon
cells, which are then concatenated to represent the prepert
of local neighborhoods. To obtain image-level represéntat
local pooling of coding vectors is widely used in the spatial
bins of a pyramid (sub-regions at different scaleq) [

bin and model them as a Gaussian. Accordingly, we employ  Thg |ocal pooling (LP) in configuration space was first
a collection of Gaussians as visual words to represent the

universal probability distribution of features from all cl asses. presented by Boureau et .al:].[ Its core idea is to only .
Our problem is naturally formulated as encoding Gaussians adgregate the codes of similar features so that more dis-
over a dictionary of Gaussians as visual words. This problem criminative information can be preserved. Specificallye th

however, is challenging since the space of Gaussians is not aspace of training features are first divided into multiplésce
Euclidean space but forms a Riemannian manifold. We address

this challenge by mapping Gaussians into the Euclidean spac
which enables us to perform coding with common Euclidean
operations rather than complex and often expensive Riemarian

operations. Our HO-LP preserves the advantages of the origal

LP: pooling only similar features and using a small dictionay.

Meanwhile, it achieves very promising performance on standrd

benchmarks, with either conventional, hand-engineered fatures

or deep learning based features.

Index Terms—Image classification, high-order local pooling
(HO-LP), manifold of Gaussians.

|I. INTRODUCTION

(called configuration bins therein) using k-means clustgri
The codes of features assigned to the same configuration bin
are aggregated, leading to a pooling vector per configuratio
bin. All such pooling vectors are concatenated to form the
final image representation. By considering the spatial pyda
strategy as well, the LP method ensures that features to
be aggregated are close in the spatial-feature space. At the
time, the LP method combined with sparse coding (SC] [
achieved competitive results with only a small dictionary.
However, the main drawback of LP is lack of high-order in-
formation which limits its performance. Generally, exilog
high-order statistics can contribute to more accurateufeat

In the past decade, great progress has been achieved ingeling and image representation. A recent work expjicitl
area of visual recognition1f-3]. One of the most effective showed the benefits of high-order information in featurelpoo

models is the Bag of visual Words (BoW)][ which has
been successfully applied in scene categorizatigndbject

ing method [1]. And numerous recent research exploiting
high-order statistics has experimentally shown greatgain

classification §], among others. The Bow framework isClassification accuracylp-14]. After extensive evaluations,

composed of several consecutive processes: (1) extraotiorUang et al. 19

reported that the Fisher vectors (FV){],

features in the input image, e.g., low-level, hand-engiege which exploits first- and second-order statistics, outpens

SIFT [6] or high-level, deep learning based featurel [2)

those only using zero-order information (e.g. SC, LLU][

encoding of these features over a dictionary of visual worg§ft-assignment methods.{), first-order statistics 17, or

learned from the training examples; (3) pooling (aggreggti

combination of zero- and first-order onexJ. In view of the
significance of LP yet its performance lagging behind stdte-
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can be leveraged for performance improvement under the LP

framework.

In this paper, we propose a novel method called high-order
local pooling (HO-LP) to tackle this problem. It exploitghi
order information of the features and meanwhile mainta@ th
merits of the original local pooling method. Different frdo®



ACCEPTED BY IEEE TRANSACTIONS ON IMAGE PROCESSING 2

which aggregates the coding vectors of similar featuregjiwe top-k nearest subspaces. Peng et &l] presented H-VLAD
rectly perform high-order statistical pooling of featufalling to include second- or third-order statistics. Recently,ng/a
into the same configuration bin. Specifically, we estimate thet al. [26] developed a patch-level, end-to-end architecture
first- and second-order central moments in configuration bicalled PatchNet, upon which they proposed a novel encoding
which are viewed as parameters of a Gaussian distributiorethod called vector of semantically aggregated descspto
(Gaussian for short). We first build a dictionary to représe(VSAD). The VSAD method performed FV-like encoding,
the universal distribution of features from all classes ahhi where features extracted from one PatchNet pretrained on
exploits both the center and covariance of each clusterrto foscene dataset are combined with the probabilities fromhemot
a Gaussian as a visual word. Then, our problem is formulatBdtchNet pre-trained on ImageNet, achieving state-ofthe
ashow to encode Gaussians, collected in the joint spatial amdsult on SUN-397 dataset [].
configuration bins, over the dictionary of Gaussians asalisu The methodsn the second categoryo not need dictionary
words . for feature coding. They estimated a global covarianceiratr
Encoding of Gaussians is a challenging problem, which, §55] or Gaussian distribution1f, 22, 29 to represent an
far as we know, has not been studied previously. The mdinage. Since either covariance matrices or Gaussians do not
difficulty is that the space of Gaussians is not a Euclidedie in the Euclidean space, their geometric structure needs
space but forms a Riemannian manifoie]. This manifold to be favorably considered. Carreira et atd][ introduced
is different from the common manifolds, e.g., manifold fean second-order pooling on free-form image regions, where the
by symmetric positive definite (SPD) matrices, and thus tlo®variance matrices are mapped to vector space by the Log-
corresponding method€ §] cannot be applied. Feature codEuclidean framework. Nakayama et &2] measured the simi-
ing based on kernel methods via (dis)similarity measures lafity of different Gaussians based on information geoynétr
Gaussians seems plausible, which however is not scalafi€], the covariance matrices are projected to the linear space
to large scale datasets. An alternative is to perform featuwhich are then concatenated with the mean vectors befage cla
coding by mapping them into Euclidean space. Unfortunatesification. Wang et al.1[4] first embedded Gaussians into the
the existing mapping schemes are computationally demgndiapace of SPD matrices and further mapped the SPD matrices
inappropriate to high-dimensional features. to vector space according to the Log-Euclidean framework.
To address this challenge, we present an effective methodur proposed HO-LP is different from the methods men-
to map Gaussians into the Euclidean space. This methoditgied above. Specifically, we first perforstatistical local
suitable for statistical modeling of high-dimensionaltteas, pooling i.e., we determine assignments of features into spatial-
for which the diagonal covariance assumption is commontpnfiguration bins, in each of which we compute mean and
adopted {6, 21]. In our method, we first identify Gaussianscovariance to form a Gaussian. Next, wacodeGaussians
as affine matrices, all of which are known to form a matriwith respect to a dictionary of Gaussians, and then conatgen
Lie group [24]. We proceed to map this matrix Lie group tocoding vectors from all bins. Our method is also different
its Lie algebra, the tangent space at the identity matrix. Vilom two-layer or multi-layer coding methods (e.g.0[ 31]),
show that the matrix logarithm is a diffeomorphism from thisvhose structure are similar to the architecture of CNN: the
Lie group to its Lie algebra, thus establishing their egl@ima outputs of the current layer at finer spatial scale are feti¢o t
relationship. In this way, we transform encoding of Gaussianext, spatially coarser layer, with each layer subject wlipg
to that of common vectors in the Euclidean space defined Bgpd coding operations. In contrast, our method only in®lve
this Lie algebra. one layer, i.e., statistical pooling per spatial-configiorabin
followed by coding with respect to a dictionary of Gaussians
Il. RELATED WORK As fqr as we know, encoding Gaussians over a dictionary of
] “Gaussians has not been studied previously. To deal with this
“There are roughly two categories of methods leveragingajienge, one natural solution is to develop kernel method
higher order information in image modelinig. the first cate- pased on probability (dis)similarity measures (e.g. Kai-
gory, dictionaries built from training samples of all categsrie| gipjer (KL) [37)). However, the kernel methods are com-
are essentail for feature codingl 16, 25]. FV [16] leamns  ,ationally expensive for both classifier training and,test
a universal Gaussian mixture model (GMM) as a dictionarycgjaple to large scale problems. The probability (dis)aiity
and computes the derivatives of the likelihood functioatieé . ,oasures among Gaussians are coupled, and currently for
to the parameters of GMM, normalized by Fisher Informane kernels based on them there exist no approximate, finite-
tion matrix. Motivated by FV, Kobayashil}] proposed the gimensjonal feature mappings fit for linear classifiers.aai
Dirichlet Fisher kernel for histogram feature transforgnand ot 4. [39 proposed kernel-based Riemannian coding frame-
D_irichlet-derived GMM_Fisher_ kernel; Klein et al2{] Qerive_d work to handle the problem of coding on general manifolds,
Fisher vector expressions with respect to Laplacian M&tufyhich maps points on one manifold into a reproducing kernel
Models and hybrid Gaussian-Laplacian Mixture Model. Li &fjjjpert space (RKHS) with some Riemannian kernels and
al. [19 proposed a dictionary of affine subspaces and P&farforms SC or LLC in that RKHS. The proposed kernel LCC
formed the first- and second-order coding of each feature OYRLCC) coding method (i.e., LLC in RKHS) can be computed

- L analytically.
1The dictionary consisting of a set of Gaussians has long hsed in Ay | y L G . . he Euclid
the BoW framework, e.g., spherical Gaussians ifi] [and Gaussians with n alternative Is to map Gaussians into the Euclidean space

diagonal covariances in§, 21]. where the coding can be performed. Li et al/][embedded
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Gaussians in the space of SPD matrices, which are thie spatial bins are the cells of the spatial pyramifd E =
mapped to the linear space via the Log-Euclidean framewofkZ,,,,m = 1,--- , M}, which enables us to capture the local
Nakayama et al.{7] defined the space of Gaussians as a flaiformation at various scales.
manifold characterized by an affine coordinate system, andThe configuration pooling is performed in a set of config-
the coordinates of Gaussians are further mapped to a comngeation bins, i.e., predetermined multi-dimensional oegi in
tangent space. However, iij, 34], computation of mapping the configuration space. The configuration bins, denoted by
vectors is time consuming. Furthermore, for high-dimenaio 7 = {Fi,k = 1,--- K}, can be constructed by Voronoi
features (over hundreds of dimensions) diagonal covaggntessellation of the configuration space via the k-means clus
are generally used, the sizes of their mapping vectors age veering [9]. A better way is to employ the Gaussian mixture
large and redundant, making subsequent coding operatiomsdel (GMM). In this case, we compute the responsibility
very expensive. (or posterior probability) of one feature and assign it te th
cluster with maximal responsibility. The configuration ®in
I1l. PROPOSEDMETHOD constructed by k-means have linear boundaries, while those
y GMM have quadratic ones.

L . b
We begin with an overview of the proposed method in Our local pooling is performed in the product space

Sectionlll-A . Then we introduce the formulation of the high-
order_local pooling (HO-LP) ir_] Se_ctiomII-B. Finally we ZxF— {(Zoms Fe) bt Mot - 1)
describe how to encode Gaussians in Seclibg.

Clearly the pooling operations take place locally both ia th
A. Overview of our classification method space of spatial position and in the configuration spacecelen
ly similar features in the spatial-configuration space tar

. : . s . 0
The illustration of image classification using the propose&ﬂ aggregated while dissimilar ones are not. Specificatrgrg

hlghjorder local p_oollng IS showr) in Fig. For input images, an input image, we determine the assignments of featfjres
we first extract either hand-engineered features or regson

. X . . then we estimate the “personalized” statistics of featdioes

OT pre-tralngd_CNN mOdeISI Our constructlpn of conflgunanoeach bin(Z,,, Fi), by computing their first- and second-order
blns_ and dictionary is similar to9]. The difference is that moments viewed as parameters of a Gaussian:
we independently estimate two GMMsrather than perform
simple k-means clustering, using the features extracted iE(f|ﬁ(m.k)7§:(m7k)> - 2)
training images. One GMM is to partition the feature space = |
into multiple bins (called configuration bins) and the other|27X k)|~ 2 exp(—
one serves as the dictionary to be used in feature coding. We
also divide images into smaller sub-regions as in the dpatighere| - | denotes the matrix determinany,, ;) and fl(mk)
pyramid schemelf]l. Hence, we get a pre-defined, universadre respectively the mean vector and covariance matrik, est
spatial-configuration bins, which jointly partitions thgage of mated by maximum likelihood estimation from the features in
spatial position and the space of image features. cell (2,,, F). This kind of pooling is in the statistical sense,

During coding process, we first assign features into the prdearly different from the commonly used average pooling or
defined spatial-configuration bins, in each of which we pemax pooling. It is natural since we are concerned with high-
form statistical pooling by estimating a Gaussian distitou  order statistics.
We map both per-bin Gaussian and the pre-trained dictionaryAs in [9], we build the dictionary from the training sample
consisting of Gaussians to a vector space through the pedposorpus by the clustering methods, independent of congtruct
mappings = log oy (see Sectionll-C). After that, the classi- of the configuration bins. In practice, we build dictionary
cal coding methods in the Euclidean space such as LLC or 8¢ estimating a universal GMM based on the expectation
can be employed to encode the mapped Gaussians, leadingéximization (EM) algorithm 16, 21]. Hence, our dictionary
a coding vector per spatial-configuration bin. Finally, she consists of a collection of Gaussians
coding vectors are weighted and concatenated as the final
image representation for training and test with a linear SVM G ={9(flpj, E;)}j=1,- N, ()

1 - o ~
S~ )" iy (E = Bm.i))s

. . whereg(f|u;,3;) is the j-th component of the GMM. Dif-
B. High Order Local Pooling ferent from P] where only cluster centers (first-order) are
We represent an image feature by a two-tuplé, f7]7, employed as visual words, we consider both the centers-(first
wherez = [z,y] € R? denotes the spatial coordinate ah@ order) and the shapes (second-order) of clusters, whiokvall
R" is ann-dimensional feature, which is typically extractedis to describe the distribution of features more accurately
from the patch centered at The spatial pooling is performed As a consequence of HO-LP, we face the following
in the spatial bins, which consists of a fixed, predeterminescoding problem: How to encode a Gaussian
collection of possibly overlapping image regions. In pi@st  g(f[zi(m, k), X(m,k)) oOver a dictionary of Gaussians
{9(flp1, 31), ..., g(flpn, EN)}?  This  problem s
with full covariances incur numerical instability and hgacomputational but f Ri . ifold. O id is. b
cost. Hence, GMMs with diagonal covariances are widely usetitera- space_ ut orm_s a Riemannian man'q - Our idea Is, by
ture [L6, 21]. mapping Gaussians to a vector space via some funetion
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Fig. 1. lllustration of image classification using the prepd higher-order local pooling (HO-LP). For an input image, extract features and assign them
into pre-defined spatial-configuration bins, in each of Wtstatistical pooling is performed to construct a Gausdgnih the Gaussians estimated in spatial-
configuration bins and the dictionary composed of Gaussiasmapped to vector space using the proposed mappirg log oy. Hence, encoding of
Gaussians on the Gaussian manifold is transformed to tissictd, vector coding in the Euclidean space, and so the @wmmethods such as SC or LLC
can be used. The per-bin coding vectors are weighted anchtmrated as the final image representation for classificatith a linear SVM.

we transform encoding of Gaussians to the classical engodin 1) Shape of Gaussians and Geodesic Distanidee theory
of vectors in the Euclidean space of shape of Gaussians (SoG) was introduced’if].[Assume
N that f; is an n-dimensional random vector following the
_ . B 2 standard (multivariate) Gaussian distribution, and fads an
Plom.fy) = SIS 16(g0m1) Z:c]¢(g])|\2 ), (@) SPD matrix. It is well known tha® has a unique Cholesky
R factorization® = LL”, whereL is a lower triangular matrix
whereg(,, r) andg; are abbreviations of(f|fi(m k), Z(m.x)) with positive diagonals. Consider the affine transformatio

andg(f|p;, X;), respectivelyh > 0 andr(x) is a regularizing f = Lfy+ pu, or equivalently in homogeneous coordinate form,
function. The coding vectop,, ;) of Gaussiang, i) is

Jj=1

weighted to reflect relative importance among all coding H = [L “} {f‘)y (7
vectors, 1 0 11
h _ . 5 where0 denotes d xn zero vector. According to the property
(m.k) = Wik (@) * P, - ©) of Gaussians, we know that the probability density function
Herew(,, 1) («) takes the following form: of random vectorf is a Gaussian with the mean vectar
. o and covariance matrif = LL”. Eq. (7) is called positive
_ (a7 N definite lower triangular affine transformatiqi®DLTAT), and
i) () (N(m’k)/z’“’—l N(m’k/)> ’ ©) the affine matrix ir?volved is called PDLT,gI' matrix.) In this

way, an arbitrary Gaussiay(f|u, 3) can be uniquely mapped

where0 < a < 1 and N, is the occurrence of features in ) ;
=a= (m, k) fo the corresponding PDLTAT matrix through

(Zm, Fr)- Indeedw,, 1) represents the zero-order statistics i

our model. We will see in Sectidiv-B that appropriate choice . L u

of the value ofa brings performance improvement. The final v g(flp, 2) = 0 1 (8)
coding ve(_:tor (image-level r(_epre_sentatlon) is a concaimma Consider the set of all PDLTAT matrices,

of the coding vectors of all bins, i.eh, 1), m =1,---, M,

k=1,...,K, which is of sizeM x K x N.
An alternative method to handle our coding problem is using

the kernel-based Riemannian coding framework proposed \mﬁere L*(n) denotes the set of x n lower triangular

e e o e et atices wih posilve cagonal(1 + 1) & cosed tner
then perform LLC in that RKHS as kLCC has analyticaﬁ%g.mar matrl_x multiplication and matrix inversion, botl o
solution. Comparisons between the proposed mapping scheWh(:I;Ch are ewdenfcly smoc_)th. Hen_o@,(n D) 's a Lie group
and kLéC are conducted in the experimental section Which forms a Riemannian manifold. The distance betwe_en

' g(flp1, X1) and g(f|pe, 3X2) are measured by the geodesic
length p connecting their corresponding PDLTAT matrices

C. Encoding of Gaussians Py, ., andPy, .., which is of the form
In this section, we begin with an introduction of identifgin -1
: -, ) ) P P = || log(P P , 10
Gaussians as affine matrices, and then describe how to map PPLs iy Pra ) = [[108(PL 4, Pry )| (10)
the affine matrices into the Euclidean space, where codingwberelog(-) denotes the matrix logarithm arjd|| » the matrix
actually performed. Frobenius norm. Sincé&/(n + 1) is a Riemannian manifold,

G(n—l—l):{PL#é E; *1‘] ‘LELJF(n),ueR”} ©)
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the common Euclidean operations cannot be applied to it. operations orG(n + 1) can be transformed, through the
The geodesic distancel@ is not decoupled, and therefore, logarithm, to the Euclidean operationsd(n + 1).
if employed in coding methods, one will have to turn to thg2) Under the logarithm, the geodesic distance between any
kernel methods which are known to be unscalable to large- two PDLTAT matrices is preserved (to the first order
scale problems. Above all, it is unclear whether the kernels approximation) in its Lie algebra3p, Section 4.1]:
based on 10) are positive definite.
2) Map;:()irzg G(:—i- 1) to Its Lie Algebra: A Lie group Mog(Pr} 1, Propa) I~ [ og(Pry y) —108(PLa e[l o
is a differentiable manifold which is locally Euclidean. &h (14)
Riemannian metric, which defines the inner product on thé3) The widely used features are of high dimension, for
tangent space, varies from point to point on the manifolee Th ~ which Gaussians with diagonal covariances are usually
Lie algebra of a Lie group is a vector space, more specifically employed for statistical modeling. Such Gaussians can
the tangent space at the identity element. The Lie algebra of be mapped to the Euclidean space at negligible cost via
G(n + 1), denoted byg(n + 1), can be written as3] Eq. 13).
X t As a Lie group is a manifold involving complicated, expen-
gn+1) = {[0 0} ‘X € L(n),t € ]R"}7 (11) sive Riemannian operations, it is a common practice to map
the elements to its Lie algebra, which is a vector space and
whereL(n) is the set ofn x n lower triangular matrices.  where simple and efficient Euclidean operations can be used.
The matrix exponential establishes a mapping betweensgr example, on the Lie group of SPD matrices, the well-
matrix Lie group and its Lie algebra. However, this mappingnown Log-Euclidean metric], maps through the logarithm
may be neither one to one nor onto, and indeed, in general itz SPD matrices to the corresponding Lie algebra where
only locally one to one and onto: there exists a neighborhog¢t Euclidean distances are measured. Similar to Eq), (
(containing the zero element) of the Lie algebra which can ¢ terms of Baker-Campbell-Hausdorff formulas] Section
homomorphically mapped to some neighborhood (containing |, this metric is the first-order approximation of the desic
the identity) of the corresponding Lie groupd Chap. 2.7]. distance (a.k.a. affine Riemannian metric). For such firdeo
Hence, an element in the Lie group usually can not be mappgshroximations, it is often difficult to analyze theoreliga
Uniquely to its Lie algebra. Fortunately, for our case, wel ﬁnhow good the approximation iS, as in most cases closed-
that the exponential (or its inverse, the logarithm) is astho form error functions can not be obtained. Instead, reseasch

bijection betweerCZ(n + 1) and its Lie algebray(n + 1), as 35 39 including us are more concerned with the effectiveness
described in the following theorem: and efficiency in light of experimental validation.
Theorem 1:The matrix logarithm 3) Encoding of Gaussians in vector space:

log:G(n+1) = gn+1), Pp,—logPy,) (12) For an input image, we estimate a collection
. . . _ A9 B k), Bmok)) =1, M k=1,..,xk  Of  Gaussians
is a diffeomorphism. In particular, for a GaussiaRith diagonal covariances, and our task is to encode them
9(f|p, diag(o?)) with mean vectorp = [u;] and diagonal over a dictionary of Gaussians with diagonal covariances,
cova_riance matrixdiag(c?), the logarithm of its PDLTAT je. {9(f|pt;,£;)}j=1...n. For notational simplicity, we
matrix has closed-form: transform two-dimensional indexdsn, k) of bins (Z,,, Fx)

: . . pilogo; to one-dimensional ones, e.g., by lettihg= (m — 1)K + k,
log [dlag(ol) [M} _ H 13) g., by letting- ( )

diag(log o) [ v :
0 1 0 11 t=1,...,KxM.LetPg - be the corresponding PDLTAT
_ o . matrix of g(f|fi;, ), whereS, = diag(5%) is a diagonal
Here([u;] is an abbreviation of the vectgu,, ..., un]". Proof - covariance matrix. Since the logarithm of a PDLTAT (Log-
of Theoreml is given in Appendix A. PDLTAT for short) matrix is in the Euclidean space, for easy

We clarify that the conclusion thadg : G(n+1) — g(n+1)  manipulation we vectorize it as follows:
is a diffeomorphism, as stated in Theorelm has not ap-

peared either in{4] or other previous literature. We noticed q, = |log 1, ..., log G,
that Cheng et al.§/] mentioned the existence of mappings =1 (15)
between the Lie group formed by PDLTAT matrices with
full covariance matrices and their Lie algebra. And Li et alCorrespondingly, we denote hy; the Log-PDLTAT matrix
[39] identifies the Gaussian distribution as an upper triamgulaf g(f|p;,X,) in the dictionaryG. Computation ofq; only
matrix and discloses the Lie group structure of Gaussian digkesO(2n) time.
tributions in the Log-Euclidean framework. Although singri  In the vector space formed by the Lie algebratif + 1),
some similarity with them, Theorerh mathematically proves we employ the locality-constrained linear coding (LLC)/].
that PDLTAT matrices with diagonal covariance matrices caife select LLC rather than sparse coding (S@)] [because
be uniquely mapped into their Lie algebra (linear spaceh wit LC is much faster, while guaranteeing that similar feasure
matrix logarithm and derives an explicit mapping expressidiave similar codes, a desirable property that SC fails t@ hav
which is clearly distinct from both of them. We have thre®lote that the locality constraint directly leads to the sfigr
remarks regarding Theorefinas follows: Let NV,(q;) be the set of top- nearest neighbors of; in
(1) It establishes the equivalence between Lie gréifp + {d;};=1.. ~. LetK = {1,2,---,N}. We denote by, the

1) and its Lie algebra(n + 1), so that the Riemannianset of indexes for whichd; € N, (q:), i.e., K = {j|j €

1 log oy tin log o, 17T
ey = .
Otn — 1

~
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K,d; € N,(a:)}. The objective function of the LLC can be ﬁ@ M%ME Mi
written as a

(a) Scene-15

mrmw, i o= rudlo o <1 09 gl R e A EREIIT

(b) FMD
For coding vectorx, = [z, -, an], if 7 € Ky, myj iS vl A a
computed according tol6), and otherwise we set;; = 0. ! =

3 I&'@HE

The problem {6) can be solved by the Least Square method (¢) VOC 2007
whose complexity i)(2np?) [40). @w/ a‘i & D@. 111,
Mapping scheme in J]: Li et al. proposed to embed &J
n—dimensional Gaussians in the space(of+ 1) x (n + 1) (@ Caltech- 25_6 .
SPD matrices, which are further mapped to the vector spacea ------ “ sl :
based on the Log-Euclidean frameworkl]. For Gaussian (C)SUN 397

g(£|fi, =) with diagonal covariance matrix, the mapping ' 5 B
vector takes the following form: .

& — vee (bg [diag(ﬁ?iA)TJr Benf ﬁtD . oan (0 fmagenc
My 1 Fig. 2. Some sample images from (a) Scene-15, (b) FMD, (c) \&DQ7,

. . . d) Caltech-256, (€) SUN-397 and (f) | Net.
where vec(A) denotes the operation which vectorizes thss) afee (©) and (f) ImageNe

upper triangular entries ck. Note that the dimension @&f; is
(n+1)(n+2)/2. The computation off; costsO(10(n+1)?)  training and the remaining 50 images for testing withouhgsi
operations via eigen-decompositiciv] while the solution to the provided binary mask. We report the average accuraay ove
LLC costsO((n + 1)(n + 2)p?/2). five trials.
Mapping scheme in Z7]: Nakayama et al. defined a flat PASCAL VOC 2007 [?] This dataset contains 20 cate-
manifold by taking an appropriate affine coordinate systegbries and a total of 9,963 images. We follow the standard
n, in which the tangent spaces are flatly connected. Thigotocol: the training, validating and testing are perfedn
coordinate system _is interpreted as the space of sufficig the “train”, “val” and “test” sets, respectively. We eropl
statistics. Letg(f|u,X) be the “average” Gaussian estimate¢he mean Average Precision (mAP) over 20 categories for
from the features of the entire training corpus, &g, X) the performance measurement.
corresponding Riemannian metric. Any Gaussjéfizi, 3:) Caltech-256 [43] This dataset includes 256 object cate-
can be mapped to the tangent space of the average Gausgjafies and a background class, with 30,607 images in total.
N 1 T T Following the usual practicelf], we conduct experiments
= F2 (@ D)7, (vee(diag(@7) + Reif)'] ", (18) with varying number of training images per category: 15,
where Fz denotes the square root . The dimension of 30, 45, 60. The remainder of images is used for testing. We
q: is n(n + 3)/2. One needD(n?(n + 3)2/4) time and average the classification accuracy over five random tesin/t
O(n(n + 3)p?/2) time to computeq, and solve the LLC splits.

problem, respectively. SUN-397 [27] This dataset contains 108,754 images of
397 different scene categories. Following the protocolif,[
IV. EXPERIMENTS we use the pre-defined ten splits for evaluation and test the

I‘E)arformance using 5, 10, 20 or 50 samples per class for

We start with an introduction of the benchmarks and the
ining and 50 samples for testing. The average accuracy of
experimental setup. Then we evaluate the proposed HO- .
ten rounds is reported.

LP from several respects and also make a comparison wi g .
mageNet[44] This is large-scale dataset for object recog-
LP. Finally, we compare HO-LP with other methods under.
nition. It provides a training set consists of 1.2 milliodéded

different feature settings. images in 1000 categories, with 732 to 1300 images for
) each category. It also provides a validation set contaibidig
A. Benchmarks and experimental setup samples from each category and a test set with 100 samples
We employ six widely used image benchmarks in thi®r each category. The topl and top5 error rates are usually
experiments. Some sample images from these datasets esmployed to measure the performance on this dataset.
shown in Fig.2. Recent works{, 45-47] have shown that responses of CNN
Scene-151] This dataset contains 4,485 images of 15 sceqee-trained on large ImageNet as features (which we call CNN
categories. According to the standard experimental setep, features) achieved state-of-the-art results on a varietjsmn
randomly select 100 training images per category and the tasks. In this paper, we make experiments using both SIF, on
maining ones for testing. We randomly repeat the experimenf the most widely used hand-engineered features, and CNN-
5 times and report the average accuracy. based features. Our purpose is to test whether the proposed
FMD [47] This dataset is composed of 1,000 materidhO-LP can generalize well to traditional, low-level feasir
images of 10 material categories. Following the commdpe.g. SIFT) and novel, high-level features (e.g. CNN feadjur
protocol, for each category, we randomly select 50 images fo Several efforts have been made in order to estimate mean-
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ingful high-order statistics (i.e. covariances) in eachmfi
uration and spatial bin. This first and most important
that we use diagonal covariances rather than full cova
which alleviates the demand of samples. Secondly,

multi-scale strategy to extract a large number of featu
image. Specifically, about 70,000 SIFT features are e
from each image on multi-scale square patches of si
24+1/2 with /4 pixel strides,i = 0,1, - - - , 4, which indica
several hundred of SIFT features are on average ass
each bin. The feature allocation of three sample ima
shown in the middle of Fig3. The SIFT features are fu
reduced ton = 64 by PCA to make the diagonal assun
more suitable. The local spatial pooling is performed ie
three-level pyramid (%1, 3x1 and 22 sub-regions) or I Il |‘ Il
benchmarks. TR

Following [7, 45], the CNN featuresare extracted as Images SIFT Features CNN Features
responses of the last convolutional layer (ImmedlatelygranFig. 3. Sample images and corresponding features allocaticonfiguration

the ReLU operation). Specifically, we resize isotropica#th pins. The x-axis indicates the index of configuration bing tire y-axis shows
image so that its maximum side is no more than 500 pixel8e number of features assigned into each bin. Bins numbesedrto 160 and

: : : : for SIFT and CNN features, respectively. No spatial pydsis considered
Then we rescale isotropically the resized image at 5 Scai?%oth cases for simplicity. For SIFT features, we set a upipgt (2000)

2%,s = —0.8,-0.4,0,0.4,0.8. In this way, we can extract o y-axis for more clear illustration of all bins.
around 4,000 CNN features for each image. For this case,
we do not use the spatial pyramid strategy which encourages
more features to be assigned into each bin. More importantly
we experimentally find that the feature allocation tends to
be sparse in the case of high dimensional CNN features. As
illustrated in the right of Fig3, only several bins receive most <60
of the features, and similar observation is also found/i.[
Hence, we can estimate diagonal covariances in the bins with
sufficient features.

In addition, the weighting strategy (E) helps us further 160
control the impact of number of features on their coding Dictionary size 512
vectors. For the bins having few features, we directly seirth 1024 32
weights to zero. Such bins never contribute to the final imag_e o i o o
representation. Finally, a small positive number (1e-&)ided silzgé?\} CI)Enff(\e/cotsCoggg;r.]bmatlon of configuration bin numt€rand dictionary
to the diagonal covariances for numerical stability thrioogf
the experiments.

Similar to [9], we separately estimate one GMM for building Configuration bin number and dictionary si#éy. 4 shows
configuration bins and a second GMM as the dictionary. Vibe accuracy as a function df and N, where we choose
determine the number of neighbors in LLC by cross validation = 0, i.e., setting identical weight to coding sub-vectors of
The final coding vector ig;-normalized before fed to a linearall configuration bins. We find for fixed< (K < 96), the
SVM. The SIFT extraction, k-means algorithm or GMM estimAP increases continuously with'; however, for largerf’,
mation, and one-versus-all SVM classifier are all impleradntthe value of mAP increases unt¥ = 512 and then begins
using the subroutines in the VLFeat software packag#. [ to drop. On the other hand, wheN is fixed, the value of
Extraction of CNN features with pre-trained VGG-MJ mAP increases consistently with growing. Interestingly,
and VGG-VD [(] are implemented with MatConvNeb{],
without using techniques of data augmentations or fineatyni
The programs are written with Matlab, running on a PC with 65
i7-4790k processor @4.0GHz and 64GB RAM. 64
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64 Configuration bins

B. Evaluation of HO-LP on VOC 2007

We conduct a series of experiments on VOC 2007 to
evaluate the parameters of the proposed HO-LP under the 60
hand-engineered feature (SIFT) setting. In particulartegt 59
the effects of combination of configuration bin numbérand
dictionary sizeN, and weight parameter in Eq. @) on HO-

LP. We also compare our mapping scheme with the other ones,
all of which can map Gaussians into the vector space. Fig. 5. Effects of weight parameter on VOC 2007.

0 0.25 0.5 0.75 1
Weight parameter «
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TABLE | schemes. The reason may be that, in their schemes, the

COMPARISON OF DIFFERENT MAPPING SCHEMES ANDKCC [35] ON components of the mean vector are unfavorably distributed
VOC 2007. . . . . .

in the covariance matrix. Regarding the KLCC, the cost is

Mapping scheme Time (5) mAP (%) also much higher than the proposed mapping scheme. This
HO-LP (Eq. (L7) [34) 71 62.8 is because that in order to find the nearest neighbors, we
HO-LP (Eq. (.8 [27]) 7.0 62.4 ) .
HO-LP (KLCC-KL [37]) 42 61.1 need to calculate the kernel distance between each dicgiona
HO-LP (KLCC-LogE B4]) 8.8 57.2 atom and local Gaussian. Moreover, the accuracy of kLCC
HO-LP (Eq. (9) 0.9 63.2 is not very competitive in our situation which may be mainly
HO-LP (Eq. (5) 0.9 64.3

caused by the diagonal covariance and high-dimensionrieatu
we used. In such case, distance computation and numerical

the performance appears not to saturate, indicating patignt Stability may have larger effect on kernel methods, which
higher performance with a largek’, but at considerably limits their effectiveness. Our mapping scheme takes amos
increased cost. The largest mAP val6&6%, is achieved with the same time as the naive one, only about 0.9s, but has over
K =160 and N = 512. To trade-off between accuracy and% performance gain, indicating that our method improves
speed, we sek = 160 and N = 256 throughout the following the performance at negligible cost. Considering that both
experiments if no additional mention, with which HO-LPthe mapping schemes i34 and in [27] and kLCC are
yields63.2% in recognition accuracy with the final dimensiorfomputationally demanding, not suitable for the framework
of 327,680 § x 160 x 256). We also make experiments wheréf HO-LP. We do not make experiments using these methods
both the configuration bins and dictionary are obtained B the remaining experiments.
using k-means, and the results show that accuracies drop by
more.thanl%. C. Comparison with LP and FV-based LP
Weight parameteMe proceed to test the effect of on ) ]
HO-LP (K = 160 and N = 256). From Fig.5, it can be seen In the second set of experiments we f.|rst compare the
that the mAP reaches a peak val6e,3%, at o = 0.25 and proposed HO-LP with the original LP 9]. This comparison
then decreases gradually. As explained i, [Section 2.3], 1S made on Scene-15][and Caltech-2567] (30 training
this power technique restrains the side effect of featutgstw Samples). As LP uses sparse coding (SC), we also implement
take place duplicately in classification. The optimal vadhie.  he proposed HO-LP with SC in the embedding vector space,
may change slightly withi<". In all the following experiments, I-€-» 7(X) is selected as thé,-norm in Eq. (). Table Ii(a)
we fix this parameter to 0.25. presents the comparison results under three combinations o
Mapping scheme& kernel LCCUnder exactly the same dictionary sizeN and configuration bin numbek’.
experimental setting (dictionary with 256 Gaussians, 16@-c |t can be clearly seen that the performance gains of HO-
figuration bins, 8 spatial bins, etc.), we now compare diifer LP(SC) over LP are significant, in any case and on any dataset.
mapping schemes for HO-LP which first map Gaussians ingggarding the best results of these two methods, the gaps
vector spaces and then perform LLC in the vector space, igfween HO-LP(SC) and LP a#e7% on Scene-15 anfl.7%
well as HO-LP using kernel LCC (KLCC)3[] for coding. ©N Caltech-256, respectively. We ascribe this big improsem
Specifically, we compare our mapping scherhg) (with that O the first- and second-order statistics successfullyrésed
of Li et al. [34] and that of Nakayama et al2{], as shown in the proposed HO-LP. Also, we find that in all cases HO-
in Eq. (L7) and Eq. (8), respectively. We also compare withLP(LLC) performs slightly better than HO-LP(SC) butis much
a naive mapping scheme which simply vectorizes the matfgster. Note that the final coding vector sizes for the two

P; - corresponding to Gaussiartf|i;, ;) as follows: ~ methods are comparable.
tyHt . . .
. We also compare the proposed method with Fisher Vector in
P: = [Ot1 s Otny flt1, - -+ fhtn] - (19) the local pooling paradigm (called FV-LP for simplicity) der

We evaluated kLCC based on two different kernels includirf® Same experimental settings. Specifically, for FV-LP, we
the KL-kernel ;7] and Log-Euclidean kernek[]. The source allocate features to spatial and configuration bins, in esch

code of KLCC was kindly provided by the authors 6EF. which the features are encoded using FV and then aggregated
Note that we did not employ dictionary learning for kLcclC @ single vector, and finally the aggregated vectors of all
since all the other compared methods did not use it for tfjins are concatenated to obtain the image-level repreimta

comparison. We have tried our best to optimize the parametdf'€ comparisons are conducted on Scene-15 and Caltech-256
of these two methods. datasets using SIFT descriptors. For both HO-LP and FV-LP,

Table | presents both the accuracy (MAP) and avera e features are extracted at five scales whose dimensiens ar

running time taken by image-level modeling, which include€duced to 64, the numbef of configuration bins and number

feature extraction, pooling and coding. We can first notice ©f SPatial bins are 128 and 8, respectively. The number of
that both the mapping scheme of Li et ak4 and that of Gaussian components of the universal GMM as dictionary is

Nakayama et al.Z[7] are time consuming, taking about eighS€t {0 256 for both methods. As the aggregated FV per bin is
times the computing time as ours. And they vyield slight?f high dimension (32,768-D), straightforward concatenat

inferior performance, compared to the other two mappi ads to expensive computations as well as excessive storag
and so we adopt PCA for compactness. The comparison results

3We appreciate Harandi for sending us the source code of kLCC. are presented in Tabléb).
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TABLE Il

COMPARISONWITHLP (A) AND FV-LP (B) ON SCENE-15AND CALTECH-256 (30TRAINING SAMPLES).

(@)
NxKxM LP [9] HO-LP (SC) | HO-LP (LLC)
256 x 128 x 8 | 81.1 (0.5)| 88.0 (0.3) 88.9 (0.2)
Scene-15 1024 x 64 x 8 | 82.4 (0.7)| 87.2(0.3) 88.8 (0.3)
Best 83.3(1.0)| 88.0(0.3) 89.1 (0.5)
256 x 128 x 8 | 40.3 (0.6) | 51.4 (0.3) 52.0 (0.2)
Caltech-256 | 1024 x 64 x 8 | 41.7 (0.8) | 50.8 (0.3) 51.8 (0.2)
Best 41.7(0.8)| 51.4(0.3) 52.1 (0.1)
(b)
N x Kx M Methods Scene-15| Caltech-256 Image—lsei\zlzl TePres. Time (s)
HO-LP (LLC) 88.9 (0.2)| 52.0(0.2) 262,144-D 0.90
256 % 128 X 8 (PCA256) | 88.1 (0.4)| 49.0(0.2) 262,144-D 1.72
FV-LP | (PCA512)| 88.4 (0.5)| 49.7 (0.I) 524,288-D 1.98
(PCA768) | 88.5(0.3)| 50.2 (0.1) 786,432-D 2.22
TABLE IlI

COMPARISON WITH DIFFERENTBOW METHODS USING CONVENTIONAL HAND-ENGINEERED FEATURES

(a) VOC 2007 (b) Caltech-256

# of train 15 30 45 60
0 -
Methods mAP (%)  Dim. LLC [ 34.4 41.2 453 47.7
LLC [17] 57.6 32,768 MLCW+MKL [ 57] 35.2 40.1 44.9 47.9
SV [20] 58.2 655,360 GOLD [29] - 43.9 - 49.4
MLCW+MKL [ 57] 57.5 32,768 MSSR B3 38.8 (0.3) 45.7 (0.5) 49.8(0.2) 52.8(0.5)
H-VLAD [ 11] 61.2 491,520 Kobayashi 7] 41.8 (0.2) 49.8(0.1) 54.4(0.3) 57.4(0.4)
Kobayashi [.2] 63.8 524,288 LASC [173 43.7 (0.4) 52.1(0.1) 57.2(0.3) 60.1(0.3))
LASC [13] 63.6 524,288 FV (SIFT) [16] 38.5(0.2) 47.4(0.1) 52.1(0.4) 54.8(0.4)
FV (SIFT) [16] 61.8 262,144 FV (SIFT+LCS) [l6] 41.0 (0.3) 49.4 (0.2) 54.3(0.3) 57.3(0.2)
FV (SIFT+LCS) [16] 63.9 262,144 M-HMP [54] 42.7 50.7 54.8 58.0
HO-LP (SIFT) 64.3 327,680 HO-LP (SIFT) 46.0 (0.2) 52.5(0.1) 57.3(0.2) 60.1(0.5)
HO-LP (SIFT+LCS)  67.4 327,680  HO-LP (SIFT+LCS)  49.9 (0.2) 57.0(0.1) 61.7 (0.2) 64.7 (0.5)
(c) FMD (d) SUN-397

Method Acc. (%) # of train 5 10 20 50

Sharan et al.f5] 57.1 Xiao et al. P7] 145 20.9 28.1 38.0

Kobayashi [2] 57.3 (0.9) Kobayashi [7] - - - 46.1 (0.1)

FV (SIFT) [56] 58.2 (1.7) LASC [13 19.4 (0.4) 27.3(0.3) 35.6 (0.1) 45.3 (0.4))

FV (SIFT+LCS) 6]  63.3 (1.9) FV (SIFT) [16] 19.2 (0.4) 26.6 (0.4) 34.2(0.3) 43.3(0.2)

HOLP (SIFT) 615 (L9) FV (SIFT+LCS) [16] 21.1 (0.3) 29.1(0.3) 37.4(0.3) 47.2 (0.2)

HO-LP (SIFT+LCS)  65.4 (1.6) HO-LP (SIFT) 21.9 (0.4) 29.9(0.2) 37.6(0.2) 47.1(0.1)

HO-LP (SIFT+LCS)  25.7 (0.3) 34.6 (0.1) 42.9 (0.2) 51.4 (0.2)

Like HO-LP, FV-LP significantly outperforms LP due tolocal pooling paradigm.
the leverage of high-order statistics. With the same sizh®f
image-level representations, HO-LP is slightly betted 8%)
than FV-LP on the small Scene-15, while outperforming F\B. Comparison with hand-engineered feature based methods
LP by a large margin{3.0%) on Caltech-256 which is much

larger than Scene-15; as for efficiency, HO-LP only takes.In thls. part we conduc_t experlmen_ts to compare HO_LP
. ] : with various methods using conventional, hand-engineered
about half of time of FV-LP for processing one image. Th

. ) . . eatures on four datasets. Particularly, we compare with FV
performance of FV-LP slightly increases with growing of PC lising separate SIFT and a combination of SIFT and LCS
dimension on both datasets, however, the computation GOStféaatures 1] by score level fusion (0.7*SIFT+0.3*LCS for
well as the storage cost significantly increase such thatefig all experi;nents) The LCS features afe extractéd in the same
dimensions for FV-LP is prohibitive, particularly for lagg i

way as SIFT. The comparison results are presented in Table

datasets (e.g. Caltech-256 or larger ones). These corapari .
) i II. To make the comparison more clearly, we also report the
under exactly the same settings demonstrate HO-LP is super;. : o 4
imension of the final image representation for each method

to FV-LP in terms of both the recognition accuracy and the

cost. The high-dimensional nature of FV makes it unfit for thg" VOC 2007. As listed in the right column of Tabl¢a) that

t‘ﬁe dimension of HO-LP is comparable to FV, but less than
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other coding methods, including H-VLADL]], Kobayashi 11.8%-21.8% with VGG-VD and 7.5%14.7% with VGG-
[17), LASC [13] and SV [20]. M, respectively. We also see that no matter using a single
On VOC 2007, with only SIFT, the proposed HO-LP yield GG-M or VGG-VD model, HO-LP achieves very compet-
an accuracy o64.3%, outperforming other high-order basedtive performance on all benchmarks compared to the other
methods, H-VLAD [.1], LASC [1J and FV; it even has methods based on the same or a similar model. Note that
better performance than FV incorporating SIFT and LCEV with data augmentations or fine-tuning produces higher
and the Dirichlet-derived GMM Fisher kernel proposed bgiccuracy 49, which are not listed here as the compared
Kobayashi 7). By combining SIFT and LCS, HO-LP pro- methods do not exploit such tricks.
duces67.4% in accuracy, higher than H-VLAD incorporating As seen at the bottom panel of TatléD, hybrid methods
supervised dictionary learning¥.1%). It should be mentioned can generally obtain better results than using one singlieino
that FV in [49) achieves68.0% by using data augmentationBy integrating FV (VGG-VD) and the responses of the fully-
which significantly improves performance but at severak8m connected layer,7] obtains82.4% on FMD. Combining two
extra computational cost. Finally, it can be seen that glhbi- CNN models (16-layer and 19-layer)5(] reports 89.7%
order based methods outperform lower-order based ones,an- VOC 2007 and86.2% on Caltech-256. Several recent
cluding LLC [17], SV [2(], and supervised pooling:}]. hybrid methods 6, 61, 67], focusing on scene recognition
For material recognition on FMD, HO-LP (SIFT) yields amproblem, achieved significant improvements (73% by VSAD
accuracy of61.5%, which is much higher than FV (SIFT),is state-of-the-art) by exploiting the CNN models trained
the methods of Kobayashil}] and Sharan et al.5p]. By on Places databases7]. Furthermore, they all benefit from
combining SIFT and LCS, HO-LP outperforms FV b2.1%. multiple, complementary CNN models pre-trained on Places
On Caltech-256, HO-LP shows a clear advantage owdataset and ImageNet dataset, respectively. Furtheriare,
its competitors. In particular, HO-LP using only SIFTet al. combines FV and LLC to encode features from both
yields much better performance than FV (SIFT+LCS) anebnvolutional and fully connected layers. In contrast, aeus
Kobayashi [7] (~3.1% on average), as well as LASC. On theon a novel high-order encoding method, which is suitable for
other hand, HO-LP incorporating SIFT and LCS significantlgeneral classification tasks including object, scene and ma
improves the performance over HO-LP (SIFR4(4%). terial classifications, while only using convolutional tigees
On SUN-397, HO-LP (SIFT) yields higher accuracy thaautputted from a single CNN model pre-trained on ImageNet.
Kobayashi [L7], LASC [13] and performs much better than Note that it is not easy to make completely fair comparisons
FV (SIFT). Note that HO-LP using only SIFT is comparabléor all competing methods due to different parameter sgstin
to FV incorporating SIFT and LCS. By combining SIFT andn CNN models, responses of different layers as features, et
LCS, the performance of HO-LP has a further improvemehtevertheless, our experiments show that the proposed HO-LP
of ~4.3% on average. with CNN features is very promising, producing performance
comparable to or better than state-of-the-art methods in
E. Comparison with CNN features based methods general image classification tasks.
This section compares the proposed HO-LP with state-of-
the-art, CNN features based methods. As in Sedtioh, we - Results on large-scale ImageNet dataset
also evaluated the parameters of HO-LP. We observed thatn the last part of experiments, with the experimental sgtti
their effects on HO-LP’s behavior under the CNN featuress described in Sectidi-E, we evaluate the proposed HO-LP
are similar to those under SIFT, which are therefore nonh ImageNet (ILSVRC 2012) dataset based on CNN models
reported here. We choose a dictionary of 512 atoms and 1888-layer VGG-M and 19-layer VGG-VD. For efficiency,
configuration bins which are slightly different from the easwe reduce image-level representations to 4096 dimensipns b
of SIFT. As in [/, 50, 59], we do not use spatial pyramidPCA , and train softmax classifiers using stochastic gradien
scheme (spatial bins) as it brings no improvement. The weighescent algorithm. The topl and top5 errors on validatidn se
parameterx is set to 0.25. We report results on VOC 2007are reported in Table V. Our results are similar to the VGG-M
FMD, Caltech-256 (60 training images per category) arshd VGG-VD models.
SUN-397 (50 training images per category) in TableD. As far as we know, we are among the first who evaluate
The proposed method is tested on two pre-trained CNfctionary-based coding method using CNN features on farge
models, 8-layer VGG-M49 and 19-layer VGG-VD {9. In scale ImageNet. We clarify that VGG-M and VGG-VD are
the top panel of Tablév-D, we present the results based otrained on ImageNet with large scale training samples in end
CNN models of no more than 8 layers and the middle panetend architectures, where feature learning, image sepre
includes the methods exploiting VGG-VD. We also compargation and classifier training are jointly optimized, an@ th
with state-of-the-art results achieved by hybrid methodthe same benchmark is used to evaluate. But in our method these
bottom panel, where multiple CNN models trained on différesstages are separated, independent of each other. It is worth
type of databases, or various coding methods, or features frmentioning that there are much more practical applications
different layers are combined to improve performance. where such large scale training samples are unavailable and
We first notice that HO-LP improves significantly by usa pre-trained or fine-tuned CNN model has to be used. In
ing CNN features, producing much higher accuracy on dahese cases (such as FMD, Caltech-256, SUN-397, etc), local
datasets than by using hand-engineered, SIFT features, peoling can achieve great improvements over pre-trained or
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TABLE IV TABLE V
COMPARISON OF ACCURACY WITH STATEOF-THE-ART, CNN-BASED METHODS. ERROR RATE(%) ON IMAGENET 2012.
CNN Model  Methods FMD VOC 2007 Caltech-256  SUN-397 Top-1 error  Top-5 error
. VGG-M [49] 36.9 155
Zhou et al. 7] - - 67.2 (0.3) 54.3 (0.1) N )
Zeiler et al. b - - 742 (0.3) - HO-LP (VGG-M) 36.7 15.2
Liu et al. [45] - 77.8 - - VGG-VD [5(] 27.3 9.0
CNNs Chatfield et al. {9] - 77.0 77.0 (0.5) — HO-LP (VGG-VD) 27.6 8.7
(layers<8) Gong et al. {7] - - - 51.98
Mandar et al. $9] - - - 54.4 (0.3)
Wu et al. B0 - - - 58.1
FV (VGG-M) [7] 735 (2.0) 76.4 - -
HO-LP (VGG-M) 76.5 (1.3) 80.1 78.5 (0.3) 58.9 (0.2)
Simonyan et al.§0] - 89.3 85.1 (0.3) -
R Ms-DSP [6] - 89.3 85.5 (0.1) 59.8 (0.5)
VGGVD  py (vGG-vD) [7]  79.8 (1.8) 84.9 - -
HO-LP (VGG-VD)  81.4 (1.4) 87.2 86.5 (0.2) 63.2 (0.1)
FV + FC [7] 824 (15 - - -
Simonyan et al.§0] — 89.7 86.2 (0.3) -
Hybrid VSAD [26] - - - 73.0
Xie et al. [51] - - - 70.7 (0.2)
Herranz et al. §7] - - - 70.2
fine-tuned CNN models. This indicates local pooling is still APPENDIXA
important for visual object classification, although dedgNC PROOF OFTHEOREM 1

models have achieved promising performance in large scale
ImageNet classification. In addition, it is very interegtito
implement the proposed HO-LP in an end-to-end manner and
compare with state-of-the-art CNN architectures, which wi Recall that for matrix Lie group, the matrix exponential
be our future research. and logarithm are respectively defined by exp(Y) =
Yo 5 YF andlog(Q) = Y07, £(—=1)F1(Q — I)¥, where
I denotes the identity matrix. To prove Theordmwe first

V. CONCLUSIONS introduce the following propositior5p3, Section 3]:

Proposition 1:Let S(k) be the space of x k real matri-
We proposed a high-order local pooling method, called H@es whose eigenvalues have imaginary parts on the interval
LP, for image classification. It is different from and is thfere  (—m, 7). let exp(S(k)) be the image ofS(k) under matrix
complementary to the existing high-order based methods. Gaxponential.

main contributions are summarized as follows. (1) Any k x k real, invertible matrixQ with non-negative

o« We e_xtended the local pooling (LE) methad fo handle _ eigenvalues has unique matrix logaritiog(Q) € S(k),
the first- and second-order statistics. The proposed hig ) exp(S(k)) is the space of real invertible matrices with

orde_r me_th(_)d preserves the a_dvantages_of_ LP, i.e., only’ non-negative eigenvalues aedp : S(k) — exp(S(k))
pooling similar features and using small dictionary, while 5 5 diffeomorphism.
significantly improves its performance.
« We studied how to encode Gaussians over a dictionaryL€t g(f|u,X) be a Gaussian with mean vectpr and
of Gaussians as visual words. As far as we know, we ggevariance matrix¥, and Py, be its PDLTAT matrix,
among the first who touch the problem of encoding ové¥here ¥ has Cholesky factorizatio®> = LL” and L
the Gaussian manifold. We hope this work motivates tHé & lower triangular matrix with positive diagonal entries
interests on processing data consisting of Gaussians. ljj-J = 1, ,n. Letus consider the characteristic function of
« We made extensive experiments to evaluate the pBy ,: |A\I' — Py | = ‘M(;L A‘jl‘ = A =D (A =1y),
posed HO-LP and compared with state-of-the-arts. Ogr agnd I are (n41) x (n+ 1) andn x n identity matrix,
experiments showed that HO-LP is very competitive anéspectively. Note that here we use the recursive propdrty o
generalizes well to both the traditional, hand-engineergge determinant(j4, Section 1.4]. Hence, the eigenvalues of
features and novel CNN features. P, arel, l;; > 0,5 = 1,---,n. According to Proposition
As in [9], we maintained a single dictionary of Gaussians, log(Py, ) exists uniquely lying in Lie algebrg(n + 1).
for all configuration bins. An alternative is to learn a dictary On the other hand, for anPx: € g(n + 1), from the
for each configuration bin, which makes pooling more localefinition of matrix exponential, it is not difficult to know
but may lead to very large dictionary. In future work we wilkxp(Px +) = exp ([¥ §]) € G(n + 1). From Propositiont,
study the problem of learning simultaneously the pararsetave conclude thatxp is a diffeomorphism frong(n + 1) to
of CNN, HO-LP and SVM in an end-to-end fashion, whichG(n + 1), and so its inversig is a diffeomorphism as well.
may further improve the classification performance. Finally, we have (after some manipulations)
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_ k
diag(o:) p]\ _ o~ CDF ([diag(o:) p /
o ([ #]) = 5= U2 ([l ]
k=1
log o1 7“;110%{71
- Lnll Tn
log o, ;U:EI
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