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Abstract—Spectral regularization is a widely used approach for
low-rank matrix recovery (LRMR) by regularizing matrix singu-
lar values. Most of the existing LRMR solvers iteratively compute
the singular values via applying singular value decomposition
(SVD) on a dense matrix, which is computationally expensive
and severely limits their applications to large-scale problems. To
address this issue, we present a generalized unitarily invariant
gauge (GUIG) function for LRMR. The proposed GUIG function
does not act on the singular values, however, we show that it
generalizes the well-known spectral functions, including the rank
function, Schatten-p quasi norm and logsum of singular values.
The proposed GUIG regularization model can be formulated as
a bi-linear variational problem, which can be efficiently solved
without computing SVD. Such a property makes it well suited for
large-scale LRMR problems. We apply the proposed GUIG model
to matrix completion and robust principal component analysis
and prove the convergence of the algorithms. Experimental
results demonstrate that the proposed GUIG method is not only
more accurate but also much faster than the state-of-the-art
algorithms, especially on large-scale problems.

Index Terms—Low rank matrix recovery, Spectral regulariza-
tion, Bi-linear matrix factorization, Robust principal component
analysis.

I. INTRODUCTION

MAtrix rank minimization is an effective approach for
finding a low-rank approximation of the given data ma-

trix in myriad applications of machine learning and computer
vision [1]–[7]. For example, in matrix completion (MC) [5],
[8]–[10] the inherent low-rank matrix can be recovered with
only partial observation data. In recommendation systems [11],
[12], the missing data of customers can be estimated from the
available data by assuming that the whole data matrix is low-
rank. In robust principal component analysis (RPCA) [7], [13],
the target matrix is assumed to be a low rank matrix corrupted
by large but sparse noise. A variety of rank-minimization
algorithms have been developed to address different low-rank
matrix recovery (LRMR) problems in past decades [10], [14],
[15].

The rank of a matrix is equal to the number of its nonzero
singular values, and the general rank minimization problem
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is NP-hard [9]. Spectral functions, as tractable surrogates
of the rank function, have been investigated by imposing
sparsity regularizations on the singular values. Popular spectral
functions include the nuclear norm [9], the weighted nuclear
norm [2], the Schatten-p quasi norm [16], the logsum of
singular values [17], [18] and the partial sum of singular values
[3]. Mathematically, the matrix spectral regularization problem
can be formulated as:

min
X∈Rm×n

F (X) = f (X) + g ◦ σ(X) (1)

where f is a bounded smooth function with L f Lipschitz
continuous gradient in Rm×n. σ(X) : Rm×n → Rd extracts
the singular values of the matrix X . g : Rd → R is a sparse
regularization function such as the l1-norm, the lp(0 < p < 1)
quasi norm and the logsum function. Symbol “◦” means that
the function g operates on σ(X). Usually, the function g

is separable such that g ◦ σ(X) =
∑r

i=1 g(σi(X)), where
g : R→ R operates on σi(X).

Among the existing spectral functions, the nuclear norm has
proven to be the tightest convex envelop of the rank function
[19], and nuclear norm minimization has been widely studied
for LRMR and representation in recent years [9], [13], [20],
[21]. However, as indicated in [16], [22], the nuclear norm
tends to produce a biased low-rank solution since it penalizes
the singular values uniformly. The non-convex Schatten-p
quasi norm provides a more accurate rank approximation,
and the Schatten-p quasi-norm minimization with a small p
needs much less measurements than the nuclear norm for
matrix completion [23]. The logsum of matrix singular values
has been considered as a smooth approximation of the rank
function [18]. Lu et al. [24] presented more non-convex
spectral functions and demonstrated that the non-convex ones
are generally superior to the convex nuclear norm.

Given the spectral functions, fast numerical solution to
the spectral regularization problem are highly desired. Cai et
al. [5] presented the well-known singular value thresholding
algorithm for the nuclear norm minimization problem with
Frobenius-norm loss. Based on the work of [5], Toh et al. [25]
proposed an accelerated proximal gradient algorithm (APG)
for nuclear norm minimization. Lin et al. [26] proposed to use
the augmented lagrange multiplier method for nuclear norm
minimization. For the general non-convex spectral regulariza-
tion problem, Lu et al. [24] designed an iteratively reweighted
nuclear norm (IRNN) algorithm. Lai et al. [27] proposed
an iteratively reweighted least square (IRucLq) algorithm for
Schatten-p quasi norm minimization. Mohan et al. [28] further
employed the iterative reweighted algorithm for matrix rank
minimization. Most existing spectral regularization solvers
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employ singular value decomposition (SVD) to compute the
singular values in each iteration. The computational complex-
ity of SVD is O(mn min(m, n)) for a matrix X ∈ Rm×n, which
is rather time consuming and therefore hinders the application
of spectral functions to large-scale problems. In addition, the
memory requirement for storing the matrix X is O(mn) which
is unaffordable when the dimension of the matrix becomes
large.

To reduce the computational complexity and memory re-
quest, the bi-linear matrix factorization has been successfully
used for nuclear norm based LRMR [9], [29], [30], in which
a matrix is factorized into two smaller factor matrices. More
recently, Xu et al. [16] proved that the Schatten-p quasi
norm can be represented by bi-linear matrix factorization.
Shang et al. [22], [31]–[33] introduced a series of represen-
tative bi-linear matrix norms, such as: double nuclear norm,
Frobenius/nuclear norm, to approximate the Schatten quasi-
p norm for different p values, and these bi-linear matrix
norms have been successfully used in solving the LRMR and
RPCA problems. However, the works in [16], [22] still need
to iteratively compute SVD of the factor matrices, which is
costly especially for large scale problems.

In this paper, we propose a generalized unitarily invariant
gauge (GUIG) function for the LRMR problem. The proposed
GUIG function is partially inspired by the convex gauge
function (which is also called atom norm) analyzed in [34],
[35], while we extend it to the general non-convex case. Our
proposed method scales well to large-scale problems. It does
not directly act on the singular values, and can be easily solved
without computing SVD. The main contributions of our work
are summarized as follows.

First, we prove that the GUIG function is a new feasible
spectral function. It generalizes the commonly used spectral
functions such as the rank function, Schatten-p quasi norm
and logsum of singular values.

Second, a flexible bi-linear factorization model is con-
structed for the GUIG function. Our model generalizes the
bi-linear nuclear norm factorization models in [9], [29], [30]
as special cases, and it is simpler than the Bi-Schatten-p model
proposed in [16], [22], [31]–[33].

Third, we use GUIG function as a low-rank regularizer
for MC and RPCA. The proposed models enjoy the merit of
fast computation in an SVD-free manner. The per-iteration
complexity is significantly reduced from O(mn min(m, n)) to
O(mnd), where d � min(m, n). An alternating proximal
algorithm with an adaptive dimension estimation method is
developed for our model optimization, and the global conver-
gence of our algorithm is proved.

Fourth, we propose a simple yet effective initialization strat-
egy for the alternating proximal algorithm. Our initialization
strategy not only speeds up the convergence of our algorithm,
but also yields a good solution especially for the non-convex
regularization problem.

We evaluate the performance of our method on MC and
RPCA applications. Extensive experiments are performed on
both synthetic and real data sets such as MovieLens and
Netflix. Results show that the proposed method can be several
orders faster than the existing spectral function models. It is

also faster than the state-of-the-art LRMR algorithms while
maintaining competitive accuracy.

Notations: In the whole paper, vectors are denoted by
lowercase boldface letters such as x, and matrices are denoted
by uppercase boldface letters such as X . For a matrix X in
Rm×n, its nuclear norm is ‖X ‖∗ =

∑r
i=1 σi(X) and Schatten-p

quasi norm is ‖X ‖Sp =
(∑r

i=1 σ
p
i (X)

)1/p . We define a column
structure-p function of X as ‖X ‖p2,p =

∑n
j=1 ‖X· j ‖

p
2 , where

‖X· j ‖
p
2 =

(√∑m
i=1X

2
i j

)p
. Similarly, we define the structure-

log function as ‖X ‖2,log =
∑d

j=1 log
(
‖X· j ‖2

)
. We denote by

U the unitary matrix space : U = {X |XXT = XTX = I}
where I is the identity matrix.

II. RELATED WORK

A. Gauge Function

Let A be a collection of atoms that is a compact subset of
Rm×n, the gauge of A is defined as [34]:

‖X ‖A = inf

{ ∑
a∈A

|ca | : X =
∑
a∈A

caa, ∀a ∈ A
}

(2)

where A is centrally symmetric w.r.t. the origin, i.e., a ∈ A if
and only if −a ∈ A. The gauge ‖X ‖A is a norm, called atom
norm induced by A. As an appealing instance, when A is the
set of rank-one matrices of unit-Euclidean-norm, the gauge
function is the well-known nuclear norm [34], [35], [36].

With the gauge function, fast optimization algorithms for the
nuclear norm regularization problem can be readily designed,
such as the rank-one matrix pursuit algorithms proposed in
[37]. The algorithm include two main steps in each iteration.
The first step computes the top singular vector pair from the
residual to form the rank-one matrices a, and the second step
refines the weights ca. Yet, these greedy algorithms may suffer
from the suboptimal solutions. Bach [34] showed that bi-linear
factorization of the nuclear norm can be constructed from the
gauge function. Alternating minimization or gradient descent
method can be utilized to solve the optimization problem as
reported in [9], [29], [30].

The gauge function is convex by its definition (the absolute
sum of the combination coefficients) [34]. While for the non-
convex case, e.g., sum of non-convex functions applied to
the combination coefficients, the gauge function may not be
a norm. To the best of our knowledge, little work on the
non-convex gauge function has been reported. To move one
step forward, in this work we propose a generalized unitarily
invariant gauge function (GUIG) to study the non-convex
gauge function and its correlation to the spectral function of
a matrix.

B. Alternating Minimization of Bi-linear Model

Consider the following optimization problem

min
U,V

F(U,V ) = f (UV T ) + ψ(U ) + φ(V ) (3)

where ψ(·) and φ(·) are regularization functions. The bi-linear
factorization models of the nuclear norm [9], [29], [30] and the
Schatten-p quasi norm regularizers [16], [22] are special cases
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of the above model. Alternating-minimization strategies are
popularly used to solve the problem (3), where U and V are
updated alternatively by fixing one and updating another [10],
[16], [22], [38], [39]. Jain et al. [10] optimized only the smooth
function f (UV T ) to solve the low-rank matrix completion
and compressive sensing problems. Bolte et al. [39] proved
that if the objective function in (3) satisfies the Kurdyka-
Łojasiewicz property, then it can be solved by the proximal
alternating linearized minimization (PALM) algorithm with
global convergence. The Kurdyka-Łojasiewicz condition is
satisfied by our proposed GUIG function.

Yin et al. [40] proposed an accelerated block prox-linear
algorithm for problem (3), while most of these first order
algorithms can only converge with sublinear convergence rate.
It has been recently reported in [10], [38] that with an SVD
based initialization, the low rank factorization model can be
solved with linear convergence rate. In this work, we show
that for our GUIG model, a simple initialization strategy
will greatly improve the convergence speed of alternating
minimization.

III. GENERALIZED UNITARILY INVARIANT GAUGE
(GUIG) FUNCTION

As shown in Eq. (2), the gauge function is defined as the
l1-norm of the combination coefficients. While many works
have been done on how to set the constraint set A [34], [36],
few efforts have been devoted to study the main function other
than the l1-norm. Here we propose a generalized formulation
of the gauge function, which not only generalizes the previous
convex gauge functions but also leads to new non-convex
gauge functions.

A. The Proposed GUIG Function

For ease of our presentation, we first introduce some defi-
nitions and lemmas.

Definition 1. [41] A function Φ : Rm×n → [−∞,+∞] is
unitarily invariant if Φ(V XU ) = Φ(X) for all X ∈ Rm×n

where U,V ∈ U.

Given any vector γ in Rq , we denote by γ̂ the vector with
components |γi | arranged in non-ascending order.

Definition 2. [41] A function f : Rq → [−∞,+∞] is
absolutely symmetric if f (γ) = f (γ̂) for any vector γ in Rq .

It can be easily verified that the widely used sparse biased
vector norms such as the l1-norm and lp quasi norm ‖x‖p
(0 < p < 1) are all absolutely symmetric functions.

Lemma 1 (Proposition 2.2 [41]). If the function Φ : Rm×n →
[−∞,+∞] is unitarily invariant, then there exists an absolutely
symmetric function φ : Rq → [−∞,+∞] such that Φ(X) =
φ ◦ σ(X).

We are now ready to give the definition of our generalized
unitarily invariant gauge (GUIG) function:

Definition 3. The GUIG function of a matrix X ∈ Rm×n,
denoted by Gg(·) : Rm×n → R, is defined as:

Gg(X) = inf

{
d∑
i=1

g(|λi |) : X =
d∑
i=1

λiuiv
T
i , ‖ui ‖2 = ‖vi ‖2 = 1

}
(4)

where d is set as rank (X) ≤ d ≤ min{m, n} and g(·) : R →
R.

Gg(X) extends the l1-norm on the coefficients (refer to
Eq. (2)) to a more general function g. The rank one matrix
decomposition X =

∑d
i=1 λiuiv

T
i is not unique. SVD leads to

a decomposition which imposes orthogonal constraint on the
factors ui and vi . Note that in Eq. (4) we do not enforce the
factors ui and vi to be orthogonal. Interestingly, we find that
the proposed GUIG function Gg(X) is a spectral function, as
shown in the following theorem.

Theorem 1. For any given X ∈ Rm×n with rank(X) ≤ d,
there exists an absolutely symmetric function φ, such that:

Gg(X) = φ ◦ σ(X) (5)

Proof. It can be easily verified that Gg(X) is a unitarily
invariant function. According to Lemma 1, Eq. (5) holds. �

Theorem 1 guarantees that there exists an absolutely sym-
metric spectral function φ ◦ σ(X) in correspondence to our
proposed GUIG function Gg. However, the function is not
explicitly expressed, and it remains unknown how the func-
tion relates to the absolutely symmetric function g(λ) =∑d

i=1 g(|λi |) in Gg. It has been proved [34], [36] that when
g(|λi |) = |λi |, there exists Gg(X) =

∑r
i=1 |σi(X)| = ‖X ‖∗,

and when g(|λi |) = |λi |
0, Gg(X) =

∑
i |σi(X)|

0 = rank(X)
1, where r is the rank of matrix X . One may naturally ask
whether the equality Gg(X) = g◦σ(X) holds for any function
g. We give a simple example to show that the answer is
negative.

Let g(|x |) = |x |2 and given X =


3
4

2+
√

3
4

2+
√

3
4

5
4

 and the

decomposition X =
∑2

i=1 λiuiv
T
i with u1 = v1 = [

√
2

2 ,
√

2
2 ]

T ,
u2 = v2 = [

1
2,
√

3
2 ]

T and λ1 = λ2 = 1, it can be easily verified
that Gg(X) ≤ 2 <

∑d
i=1 σ

2
i (X) = 3.866 and the equality does

not hold. Then it is interesting and important to study when
and under what conditions, the equality Gg(X) = g◦σ(X) will
hold. We have the following theorem to answer this question.

Theorem 2. Given matrix X ∈ Rm×n with rank(X) ≤ d and
g ◦ σ(X) =

∑r
i=1 g (σi(X)), the equality

Gg(X) = g ◦ σ(X) (6)

holds if the function g satisfies:
1) g is concave and monotonically ascending in (0,+∞);
2) the function ϑ(t) ≡ g(et ) is convex.

Proof. The proof can be found in Appendix A-A. �

1To avoid ambiguity, in this paper the zeroth-power of a nonzero number
is 1, and the zeroth-power of 0 is 0.
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Theorem 2 elegantly connects the explicit spectral function
with the proposed GUIG function. It should be noted that the
conditions in Theorem 2 can be easily satisfied by many func-
tions. For example, it can be easily verified that the functions
g(|x |) = |x | and g(|xi |) = |x |0 satisfy these conditions. Besides,
the widely used non-convex functions |x |p (0 < p < 1) and
log(|x |) also satisfy these conditions.

B. Bilinear Representation of the GUIG Function

Given the GUIG function Gg, flexible bi-linear factorization
models can be readily constructed if the function g satisfies
the condition specified in the following theorem.

Theorem 3. Given the GUIG function Gg(X), if there exist
functions g1 and g2 such that g(z) = min

z=ab
g1(a) + g2(b), then

Gg(X) can be represented as:

Gg(X) = min
X=UV T

∑d

i=1
g1(‖U·i ‖2) +

∑d

i=1
g2(‖V·i ‖2) (7)

where U·i and V·i are the ith column of the matrices U and
V , respectively.

Proof. The proof can be found in Appendix A-B. �

Let’s show some concrete examples where the functions
g1 and g2 can be easily constructed from the corresponding
function g. The examples cover the widely used Schatten-p
quasi norm [16], the rank function and the logsum function
on singular values [18].

Example 1. Let the function g in Gg be g(| · |) = | · |p with
p ∈ (0, 1], we have

G | · |p (X) = min
X=UV T

p
p1
‖U ‖

p1
2,p1
+

p
p2
‖V ‖

p2
2,p2

(8)

where 1
p =

1
p1
+ 1

p2
and 0 < p1, p2 ≤ 2.

In Example 1, the corresponding g1 and g2 to g(z) = |z |p

are g1(a) =
p
p1
|a|p1 and g2(b) =

p
p2
|b|p2 , respectively, and we

have g(z) = min
z=ab

g1(a) + g2(b).

Compared with the works in [16] and [22], where the
Schatten-p quasi norm is factorized as:

‖X ‖
p
Sp
= min
X=UV T

p
p1
‖U ‖

p1
Sp1
+

p
p2
‖V ‖

p2
Sp2

(9)

one can see that our bi-linear representation model in Eq. (8)
is simpler than Eq. (9). In specific, ‖U ‖p1

Sp1
=

∑r
i=1 σi(U )

p1 ,
which needs to compute the singular values of the matrix
U , and likewise for matrix V . In contrast, ‖U ‖p1

2,p1
=∑n

j=1
p1

√∑m
i=1U

2
i j , which can be easily calculated and is SVD

free. Thus, solving the problem (8) can be computational easier
than solving the problem (9).

Apart from the Schatten-p quasi norm, the rank function
and the logsum function on matrix singular values can also be
represented in a bi-linear factorization form.

Example 2. Let g in Gg be g(|x |) = |x |0, we have

G
|x |0 (X) = min

X=UV T

‖U ‖2,0 + ‖V ‖2,0
2

(10)

In Example 2, we have correspondingly g1(a) = 1
2 |a|

0 and
g2(b) = 1

2 |b|
0.

Example 3. Let g in Gg be g(| · |) = log(| · |), we have

Glog(X) = min
X=UV T

‖U ‖2,log + ‖V ‖2,log (11)

Similarly, we have g1(a) = log(|a|) and g2(b) = log(|b|) for
Example 3. Note that we are the first to present the bi-linear
factorization model of the logsum function on singular values
in Eq. (11).

According to Theorem 2, it can be seen that spectral
function g ◦ σ(x) can be equivalently formulated as a GUIG
function under some easy conditions. This verifies that the
proposed GUIG function is a good rank surrogate. More-
over, flexible bi-linear factorization models can be readily
constructed from the GUIG function according to Theorem
3. The overwhelming superiority in memory requirement of
U ∈ Rm×d and V ∈ Rn×d to X ∈ Rm×n (d � min(m, n))
significantly enlarges the applicability of GUIG to very large
scale low rank matrix recovery (LRMR) problems.

C. GUIG Regularization

In the spectral function regularization problem (1), when the
function g in g◦σ(X) satisfies the condition in Theorem 2, we
have g ◦ σ(X) = Gg(X), and thus the problem (1) becomes
the following optimization problem

min
X

F(X) = f (X) + Gg(X) (12)

Furthermore, if the function g satisfies the conditions given in
Theorem 3, we have the bi-linear representation of Gg(X) in
Eq. (7). Therefore the problem (12) becomes

min
X

F(X) = f (X)+ min
X=UV T

∑d

i=1
g1 (‖U·i ‖2)+

∑d

i=1
g2(‖V·i ‖2)

(13)
The problem (13) is an inner constraint optimization prob-

lem. We relax it to a bi-linear optimization problem:

min
U,V

F(U,V ) = f
(
UV T

)
+

∑d

i=1
g1 (‖U·i ‖2) +

∑d

i=1
g2(‖V·i ‖2)

(14)
It can be shown that the optimal value of objective function
of (14) is equal to that of (1), and the solution of the two
problems are equivalent. We have the following theorem.

Theorem 4. Suppose that X∗ is a solution of problem (1)
in which the function g satisfies the conditions in Theorem 2
and Theorem 3. Let U ∗,V ∗ be a solution of the problem (14).
Then we have

F (X∗) = F(U ∗,V ∗) (15)

Further more, we have X = U ∗V ∗T is also a solution of (1)
and there exists a decomposition X∗ = UV

T
such that U,V

is the solution of (14).

Proof. The proof can be found in Appendix A-C. �

Theorem 4 reveals that the spectral function regularization
problem can be equivalently expressed as a corresponding bi-
linear matrix factorization problem and they have the same
optimal value in objective function. Instead of solving the
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problem (1), one can easily solve the problem (14). There
are two main advantages of (14). First, it is optimized on the
factors directly, achieving a structured decomposition of X in
(1). Second, the number of variables to be optimized scales
linearly w.r.t. m + n, ensuring its applicability to large scale
problems.

IV. GUIG REGULARIZED FAST MATRIX RECOVERY

In this section, we apply the proposed model (14) to
representative LRMR problems, including matrix completion
(MC) [5], [9], [37] and robust principal component analysis
(RPCA) [2], [3], [7], [13].

A. Matrix Completion

MC aims to complete a low rank matrix from its partial
observation [5], [8], [21], [25]. One primary application area
of MC is recommendation system, where the task is to estimate
the attributes of many users using only a small number
of available data. With (14), the problem of MC can be
formulated as:

min
U,V

1
2
‖PΩ(UV T −M )‖2F +

∑d

i=1
g1(

U∗·i2) + g2(‖V
∗
·i ‖2) (16)

where PΩ(S)i, j =
{
Si, j if (i, j) ∈ Ω
0 otherwise .

1) Optimization: We use the accelerated block prox-linear
(ABPL) algorithm [40] to solve the problem (16) with an adap-
tive dimension estimation technique. We will prove in Section
IV-C that the algorithm converges globally to the critical point,
which is stronger than the subsequence convergence of the
existing methods such as IRucLp [27] and IRNN [24].

The variablesU and V are alternatively updated by lineariz-
ing the smooth part 1

2 ‖PΩ(UV
T −M )‖2F with an additional

proximal term. Denote by f (U,V ) = 1
2 ‖PΩ(UV

T −M )‖2F ,
we have

U k+1 = arg min
U

∑d
i=1 g1(‖U·i ‖2)+〈

∇ fU k (U k,V k),U −U k
〉
+
τk
fu

2 ‖U −U
k ‖2F

(17)

and

V k+1 = arg min
V

∑d
i=1 g2(‖V·i ‖2)+〈

∇ fV k (U k+1,V k),V − V k
〉
+
τk
fv

2 ‖V − V
k ‖2F

(18)

The Lipschitz constants τf ku and τf kv are set as:

τf ku = max
{
‖V TV ‖2, ε

}
, τf kv = max

{
‖UTU ‖2, ε

}
(19)

To efficiently solve (17) and (18), we introduce a proximal
function of g1 for matrix X:

Proxg1 (X) = arg min
Z

1
2
‖X −Z‖2F +

∑d

i=1
g1(‖Z·i ‖2) (20)

Proposition 1. The proximal function defined in Eq. (20) has
a simple solution as

Proxg1 (X) =XW (21)

where W is a diagonal matrix with diagonal elements Wii =
$i

‖X·i ‖2
and $i = arg minα 1

2 (‖X·i ‖2 − α)
2 + g1(α).

Algorithm 1 GUIG for matrix completion (16)
Input: Incomplete observation M , functions g1 and g2.
Output: The optimal factor matrices U ∗ and V ∗

1: Initialize U−1 = U 0, V −1 = V 0, k = 0;
2: repeat
3: Set k = k + 1 and compute tk ;
4: Compute τk

fu
by (19) and wk

u by (24);
5: Update Û k by (23), update U k+1 by solving (17);
6: Compute τk

fv
by (19) and wk

v by (24);
7: Update V̂ k by (23), update V k+1 by solving (18);
8: Find the valid index set S = I

⋂
J , where

9: I = {i |U k+1
·i , 0} and J = { j |V k+1

· j , 0}.
10: Set U k+1 = U k+1

·S
, V k+1 = V k+1

·S
.

11: if F (U k+1,V k+1) ≥ F (U k,V k)

12: Renew the updated variables by setting
13: Û k = U k and V̂ k = V k ;
14: end
15: until Converge.

Proof. The optimization problem in (20) can be separated
columnwise as minz 1

2 ‖X·i − z‖
2
2 + g1(‖z‖2), which can be

further transformed to

minz 1
2 ‖X·i ‖

2
2 +

1
2 ‖z‖

2
2 − 〈X·i, z〉 + g1(‖z‖2)

= minz ‖X·i ‖22 +
‖z ‖22

2‖X·i ‖2 −
〈
X·i
‖X·i ‖2

, z
〉
+

g1( ‖z ‖2)
‖X·i ‖2

= minz ‖X·i ‖22 +
‖z ‖22

2‖X·i ‖2 − ‖z‖2

〈
X·i
‖X·i ‖2

, z
‖z ‖2

〉
+

g1( ‖z ‖2)
‖X·i ‖2

(22)
Since −1 ≤

〈
X·i
‖X·i ‖2

, z
‖z ‖2

〉
≤ 1, to minimize Eq. (22) it

holds z
‖z ‖2

=
X·i
‖X·i ‖2

. As a result, the optimal z is equal to
‖z‖2

X·i
‖X·i ‖2

. Let α = ‖z‖2, the column wise minimization
problem becomes minα 1

2 (‖X·i ‖2 − α)
2 + g1(α), then each

column of the matrix Z is $iX·i
‖X·i ‖2

, and thus the optimal
solution of the problem (20) is Z = XW . This completes
the proof. �

Similar result holds for the function g2 and Proxg2 (X). Due
to the sparse nature of the functions g1 and g2, Proxg1 (X)
and Proxg2 (X) will have many zero columns. Consequently,
many columns of the temporal variables U k and V k become
zero. For the purpose of robust rank estimation and fast
computation, we delete the resulted zero columns and resize
the matrices U k and V k to a matched lower dimension. We
call such a process adaptive dimension estimation (lines 8 and
9 in Algorithm 1).

In addition, the acceleration technique proposed in [40] is
adopted:

Û k = U k + wk
u (U

k −U k−1), V̂ k = V k + wk
v (V

k − V k−1) (23)

where wk
u and wk

v is defined as

wk
u = min

{
tk−1
tk+1

, 0.99

√
τk−1
f u

τk
f u

}
, wk

v = min

{
tk−1
tk+1

, 0.99

√
τk−1
f v

τk
f v

}
(24)

with t0 = 1 and tk =
(
1 +

√
1 + 4t2

k−1

)
/2.
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Algorithm 2 Initialization using power method
Input: Observed matrix M ∈ Rm×n, the estimated rank k,

random matrix R ∈ Rn×k and the number of power
iteration J = 3.

Output: The initialized variables U0 and V0.
1: Y1 =MR, k = 0;
2: repeat
3: Set k = k + 1;
4: Qk = QR(Yk); // QR decompositon
5: Yk+1 =M (M

TQk)

6: until Converge.
7: [U,S,V ] = svd(QTM );
8: U0 = QUS

1
2 , V0 = V S

1
2 ;

9: U0 = U0(:, 1 : k), V0 = V0(:, 1 : k).

We summarize our algorithm in Algorithm 1. Like MSS
in [16], the backtracking continuation technique is adopted to
find a proper local Lipshitz constant. Specifically, we initially
underestimate τk

f u
and τk

f v
by multiplying a factor ρ < 1, then

gradually increase ρ with the iteration until it reaches the value
in Eq. (19). As indicated in [16], such a technique can improve
the solution for non-convex optimization. Benefit from the
adaptive dimension estimation technique, the dimension of the
factor matrices decreases with the iteration until it reaches the
rank of the optimal solution, saving much the computational
time.

2) Initialization: It has been shown [10], [14], [38], [42]
that SVD based initialization provides a good solution for the
bi-linear low rank matrix factorization model (16). That is, we
can set U 0 = UΣ

1
2 and V 0 = V Σ

1
2 , where U and V are the

left and right singular vector matrices of the matrix M , and
Σ is the singular value matrix. In our model, the function g1
and g2 may not be equivalent. To balance the function g1 and
g2 and generalize the initialization, we set U 0 = UΣ1 and
V 0 = V Σ2 such that Σ = Σ1Σ2 and the following equation is
satisfied∑r

i=1
g(Σii) =

∑r

i=1
g1(Σ1ii ) +

∑r

i=1
g2(Σ2ii ).

Rather than using the exact SVD for initialization, we use
the power method to initialize U and V , as summarized in
Algorithm 2, which is computationally more efficient than
SVD for large scale problems. It is proved in [42] that the
elaborated initial point is close to the optimal solution, thus the
algorithm converges in a few iterations. We show in Fig. 1 the
convergence of our algorithm using random initialization and
the proposed initialization. It can be seen that our algorithm
converges very fast (nearly 20 iterations) to a good solution
with the proposed initialization, while it converges much
slower (about 70 iterations) using random initialization.
B. Robust Principal Component Analysis

RPCA targets on recovering a low rank matrix from the
observation with sparse outliers. It has been widely used in
applications such as foreground background separation, face
recognition and latent semantic indexing [13]. Mathematically,
RPCA aims to minimize the following energy function:

min
X,S

1
2
‖Y −X − S‖2F + λ1‖X ‖∗ + λ2‖S‖1 (25)

Algorithm 3 GUIG based algorithm for RPCA (26)
Input: Observed matrix M , functions g1, g2 and g.
Output: The optimal factor matrices U ∗, V ∗ and S∗

1: Initialize U−1 = U 0, V −1 = V 0, k = 0;
2: repeat
3: Set k = k + 1 and compute tk ;
4: Compute τk

fu
by (19) and wk

u by (24);
5: Update Û k by (23), update U k+1 by solving (27);
6: Compute τk

fv
by (19) and wk

v by (24);
7: Update V̂ k by (23), update V k+1 by solving (28);
8: Find the valid index set S = I

⋂
J , where

9: I = {i |U k+1
·i , 0} and J = { j |V k+1

· j , 0}.
10: Set U k+1 = U k+1

·S
, V k+1 = V k+1

·S
.

11: Update Ŝk by (30), update Sk by solving (29).
12: if Objective function does not decrease
13: Renew the updated variables by setting
14: Û k = U k , V̂ k = V k and Ŝk = Sk ;
15: end
16: until Converge.
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Iteration

10-2

100

102

R
S

R
E

With SVD initialization
Random initialization

Fig. 1. Illustration of the proposed initialization. One can see that compared
with random initialization, the proposed initialization enables the Algorithm
1 to converge very fast to a good solution (RSRE is defined in Section V-A).

By incorporating the proposed GUIG function into the
low rank matrix X , the minimization problem (25) can be
converted into

min
U,V ,S

1
2 ‖Y −UV

T − S‖2F

+λ1
∑d

i=1 g1(‖U·i ‖2) + g2(‖V·i ‖2) + λ2‖S‖g
(26)

where ‖S‖g =
∑
i, j
g(|Si j |) and g is the sparse biased function.

The problem (26) is slightly different from the problem (14) in
that it introduces an extra variable S, while the optimization
of problem (26) is similar to that of (16). The variables U
and V are alternatively updated by linearizing the smooth part
1
2 ‖Y −UV

T −S‖2F with an additional proximal term. Fixing
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Fig. 2. Total iteration number for Algorithm 3 to converge. One can see that
the proposed RPCA algorithm converges very fast from small scale case to
large scale case.
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TABLE I
MATRIX COMPLETION PERFORMANCE ON THE SYNTHETIC DATA. RSRE IS SCALED BY ×10−2 AND THE CPU TIME IS IN SECONDS. THE TESTED

MATRICES ARE OF SIZE m ×m CORRUPTED BY GAUSSIAN NOISE OF VARIANCE 0.1 ON THE OBSERVED ENTRIES.
m = 500

observed: 5%, rank = 5
m = 2000

observed: 3.5%, rank = 10
m = 5000

observed: 2.5%, rank = 15
m = 10000

observed: 2%, rank = 20
RSRE iter time RSRE iter time RSRE iter time RSRE iter time

Nuclear
Norm

APG [25] 4.75 ± 0.02 100 2.51 2.07 ± 0.02 48 1.88 1.51 ± 0.02 48 4.97 1.19 ± 0.02 61 15.8
AIS-Impute [43] 4.92 ± 0.02 145 0.369 2.58 ± 0.02 139 2.12 1.69 ± 0.02 218 26.45 1.38 ± 0.02 354 205

Active [44] 4.83 ± 0.03 150 3.93 2.64 ± 0.03 120 20.7 1.77 ± 0.03 156 150 1.43 ± 0.03 166 238

Rank
Model

LMaFit [12] 4.07 ± 0.01 92 0.142 2.05 ± 0.01 44 0.828 1.47 ± 0.01 35 3.76 1.14 ± 0.01 29 12.2
CUR+ [46] 4.25 ± 0.03 487 0.616 2.12 ± 0.02 352 3.537 1.56 ± 0.05 238 17.6 1.27 ± 0.03 226 30.5

ER1MP [37] 33.7 ± 0.05 15 0.043 28.6 ± 0.05 30 0.392 21.7 ± 0.05 45 1.94 20.7 ± 0.05 60 8.02
GUIG_l0 3.98± 0.01 62 0.052 2.03± 0.01 26 0.332 1.47± 0.01 23 1.55 1.12± 0.01 17 4.69

Schatten-p

IRNN [24] 4.37 ± 0.02 820 73.3 – – > 103 – – > 104 – – > 105

IRucLq [27] 4.17 ± 0.01 652 48.1 – – > 103 – – > 104 – – > 105

D-N [31] 4.15 ± 0.01 720 0.968 2.06 ± 0.01 308 3.22 1.46 ± 0.01 209 10.9 1.15 ± 0.01 190 28.1
F-N [32] 4.16 ± 0.01 678 0.873 2.07 ± 0.01 286 3.05 1.47 ± 0.01 223 11.8 1.16 ± 0.01 182 27.1
MSS [16] 4.19 ± 0.01 877 0.782 2.05 ± 0.01 257 3.09 1.46 ± 0.01 180 10.2 1.16 ± 0.01 169 26.4

FaNCL [45] 4.02 ± 0.01 989 0.742 2.03 ± 0.01 888 7.59 1.44 ± 0.01 812 40.2 1.13 ± 0.01 702 160
GUIG_lp 4.00± 0.01 47 0.038 2.03± 0.01 31 0.407 1.45± 0.01 37 2.58 1.14± 0.01 28 7.34

Logdet
IRNN [24] 4.05 ± 0.01 750 37.7 – – > 103 – – > 104 – – > 105

FaNCL [45] 4.00 ± 0.01 923 0.754 2.03 ± 0.01 858 7.52 1.45 ± 0.01 792 34.6 1.12 ± 0.01 684 155
GUIG_log 3.96± 0.01 74 0.068 2.02± 0.01 25 0.377 1.43± 0.01 23 1.65 1.12± 0.01 21 6.02
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(b) MovieLens-10M
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Fig. 3. RMSE vs. CPU time for matrix completion on recommendation system data sets.

TABLE II
RECOMMENDATION DATA SETS USED IN OUR EXPERIMENTS.

#users #movies #ratings

MovieLens
100K 943 1,682 100,000
1M 6,040 3,449 999,714
10M 480,189 17,770 100,480,507

Netflix 249,012 296,111 62,551,438

U and V , the variable S can be easily solved. Specifically,
we have

U k+1 = arg min
U

∑d
i=1 g1(‖U·i ‖2)+〈

∇ fU k (U k,V k,Sk),U −U k
〉
+
τk
fu

2 ‖U −U
k ‖2F

(27)

and

V k+1 = arg min
V

∑d
i=1 g2(‖V·i ‖2)+〈

∇ fV k (U k+1,V k,Sk),V − V k
〉
+
τk
fv

2 ‖V − V
k ‖2F

(28)

and S is obtained by a proximal function as

Sk+1
i, j = Proxg

(
Yi, j − (U

k+1V k+1T )i, j
)

(29)

where f (U,V ,S) = 1
2 ‖Y − UV

T − S‖2F and Proxg(x) =
arg miny 1

2 (y − x)2 + g(y) can be easily solved in our case.
Our algorithm for RPCA is given in Algorithm 3. The same ac-
celerate technique and adaptive dimension estimation method

used in Algorithm 1 are utilized for the RPCA problem. And
the variable S is accelerated as

Ŝk = Sk + wk(Sk − Sk−1) (30)

where wk =
tk−1
tk+1

and tk is defined as in Section IV-A1. The
same initialization strategy as in MC (Algorithm 2) is used
here and it makes our RPCA converge very fast, as shown in
Fig. 2.

C. Convergence Analysis

Let’s first analyze the convergence of Algorithm 1 for the
MC problem (16). Since the function g such as the lp quasi
norm and the log function used in our algorithm satisfy the
K-Ł property [39], the global convergence of the Algorithm 1
can be guaranteed, as shown in the following theorem.

Theorem 5. The sequence {(U k,V k)} generated by Algo-
rithm 1 is a Cauchy sequence and converges to a critical point
to the problem (16) [U ∗,V ∗]T .

Proof. The proof can be found in Appendix A-D. �

Since Algorithm 3 is similar to Algorithm 1, they share the
same convergence result.
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TABLE III
MATRIX COMPLETION PERFORMANCE ON REAL DATA SETS. WE REPORT THE RMSE RESULTS AND CPU TIME (IN SECONDS).

MovieLens-100K MovieLens-1M
TR = 50% TR = 70% TR = 80% TR = 50% TR=70% TR = 80%

RMSE time RMSE time RMSE time RMSE time RMSE time RMSE time

Nuclear
Norm

APG [25] 1.21 6.43 1.11 4.71 1.08 5.00 1.08 24.6 1.01 27.5 0.985 21.4
AIS-Impute [43] 1.03 8.14 0.987 8.17 0.970 12.6 0.919 272 0.892 437 0.882 549

Active [44] 1.06 40.9 0.992 68.5 0.978 82.3 0.932 3365 0.902 4814 0.892 5441

Rank
Model

LMaFit [12] 0.984 0.827 0.958 1.16 0.955 1.11 0.924 16.5 0.915 15.8 0.910 17.1
CUR+ [46] 1.05 0.985 0.982 1.23 0.976 1.20 0.938 19.1 0.920 18.8 0.922 22.1

ER1MP [37] 1.46 0.322 1.41 0.305 1.37 0.413 1.26 2.81 1.25 4.07 1.14 4.52
GUIG_l0 0.968 0.401 0.952 0.583 0.942 0.710 0.897 6.01 0.878 8.20 0.872 9.11

Schatten-p

IRNN [24] 1.01 259 0.971 263 0.960 271 0.935 4328 0.928 4578 0.9013 4429
IRucLq [27] 0.987 189 0.962 175 0.945 210 0.910 2786 0.892 2698 0.875 2801

D-N [31] 0.965 1.62 0.947 2.13 0.940 2.28 0.880 17.6 0.863 19.5 0.850 22.0
F-N [32] 0.969 1.52 0.955 1.86 0.943 2.07 0.894 15.3 0.878 16.1 0.862 18.9
MSS [16] 0.968 1.87 0.951 2.37 0.948 2.49 0.887 19.4 0.868 22.2 0.855 23.54

FaNCL [45] 1.00 1.54 0.965 1.61 0.955 1.64 0.908 10.8 0.899 12.7 0.893 12.8
GUIG_lp 0.954 0.473 0.931 0.522 0.924 0.469 0.873 7.15 0.855 10.8 0.844 11.3

Logsum
IRNN [24] 1.00 258 0.966 261 0.956 265 0.930 4007 0.921 4392 0.8974 4415

FaNCL [45] 1.00 1.48 0.966 1.59 0.955 1.63 0.912 12.7 0.897 14.5 0.891 15.3
GUIG_log 0.956 0.438 0.933 0.495 0.924 0.664 0.875 2.69 0.858 4.60 0.849 8.07

MovieLens-10M Netflix
TR = 50% TR = 70% TR = 80% TR = 50% TR=70% TR = 80%

RMSE time RMSE time RMSE time RMSE time RMSE time RMSE time

Nuclear
Norm

APG [25] 1.00 361 0.877 786 0.874 783 – – – – – –
AIS-Impute [43] 0.853 26259 0.826 32926 0.817 43139 – – – – – –

Rank
Model

LMaFit [12] 0.899 107 0.892 120 0.889 117 0.962 1125 0.959 1045 0.955 1108
CUR+ [46] 0.925 138 0.913 143 0.910 176 0.983 1258 0.971 1196 0.970 1209

ER1MP [37] 1.25 51 1.18 55.4 1.15 61.9 1.29 550 1.217 602 1.20 645
GUIG_l0 0.830 83.3 0.813 106 0.809 118 0.862 922 0.847 1010 0.843 1057

Schatten-p
D-N [31] 0.834 206 0.827 198 0.826 219 0.883 1874 0.873 1722 0.869 1531
F-N [32] 0.840 183 0.833 172 0.830 196 0.895 1583 0.880 1608 0.878 1385
MSS [16] 0.848 198 0.838 226 0.835 241 0.908 2101 0.900 2443 0.894 2613

FaNCL [45] 0.902 163 0.865 176 0.860 188 0.965 2389 0.925 1977 0.911 2898
GUIG_lp 0.824 79.8 0.807 117 0.800 129 0.859 735 0.847 815 0.840 1012

Logsum FaNCL [45] 0.903 184 0.866 175 0.856 210 0.966 2357 9.25 2701 0.912 2870
GUIG_log 0.820 80.5 0.806 128 0.799 141 0.858 939 0.843 1003 0.837 1175

Fig. 4. Images used in the inpainting experiments.

D. Complexity Analysis

zui The computational cost of the existing algorithms for
the spectral function regularization is dominated by the com-
putation of SVD in each iteration. The complexity of SVD
for a matrix of size m× n is O(mn min(m, n)). In contrast, our
algorithms for both MC and RPCA are SVD free, and their
computational cost is mainly spent on matrix multiplication for
updating U , V and S with complexity O(mnd + mn). Given
that d � min(m, n), our algorithms have much lower compu-
tational complexity than the existing algorithms. Furthermore,
by utilizing the proposed initialization strategy, our algorithms
converge very fast, greatly reducing the computational time. In
addition, the memory requirement for a matrix X ∈ Rm×n in
the spectral function regularization problem is O(mn), while
the memory requirement of our proposed method is only
O(md + nd) since it only needs to store U ∈ Rm×d and
V ∈ Rn×d .

V. EXPERIMENTAL RESULTS

In this section, we perform extensive experiments on MC
(Section V-A) and RPCA (Section V-B) to evaluate the effec-
tiveness and efficiency of our method. The experiments are
performed on both synthetic data and real-word data. Three
instantiations of our GUIG model, i.e., GUIG_l0, GUIG_lp
(we set p = 0.5 in all the experiments) and GUIG_log are
adopted. Experiments are performed on a PC with Windows
10 OS, Intel(R) Core(TM) i7-7700K CPU (4.20 GHz), and 16
G RAM. The code is written in Matlab 2016b.

A. Matrix Completion

We compare our method with state-of-the-art spectral func-
tion based LRMR methods and bi-linear factorization based
LRMR methods. All the executable codes are obtained from
the original author’s homepage.

The compared nuclear norm based LRMR methods include:
Accelerated proximal gradient (APG) [25], Active subspace
selection [44] denoted by “Active”, Accelerated inexact Soft-
Impute algorithm (AIS-Impute) [43]. The compared Schatten-
p quasi norm based LRMR methods are: IRNN [24], IRu-
cLq [27], MSS [40], D-N [31], F-N [32], FaNCL [45]. We
also compare our method with bi-linear low rank matrix
factorization model LMaFit [12], rank one matrix pursuit
algorithm ER1MP [37] and the CUR matrix decomposition
method CUR+ [46]. Both of them use a low rank matrix to
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(a) Ground truth (b) Partial observation (c) APG (5.48; 26.46) (d) AIS-Impute (5.02; 26.53)

(e) Active (12.35; 26.62) (f) LMaFit (1.77; 25.89) (g) MSS (5.02; 27.44) (h) FaNCL (4.19; 27.65)

(i) TNNR (12.54; 27.06) (j) GUIG_l0 (1.21; 28.25) (k) GUIG_lp (1.04; 28.62) (l) GUIG_log (1.11; 28.52)

Fig. 5. Image inpainting results on an image with 65% random missing pixels. We compare the visual results of algorithms APG [25], AIS-Impute [43],
Active [44], LMaFit [12], MSS [16], FaNCL [45], TNNR [15] with our algorithms GUIG_l0, GUIG_lp and GUIG_log (best viewed in colors). We also
report their CPU time (in seconds) and PSNR values (dB) in the parentheses as: (Time; PSNR).

TABLE IV
AVERAGE PSNR VALUES (DB) AND CPU TIME (SECONDS) OF THE
COMPARED METHODS FOR IMAGE INPAINTING ON 11 TEST IMAGES.

APG AIS-Impute Active LMaFit MSS
PSNR 26.07 26.15 26.20 24.91 28.10
Time 6.8 4.5 15.1 1.4 4.9

FaNCL TNNR GUIG_l0 GUIG_lp GUIG_log
PSNR 27.82 28.21 28.44 28.50 28.72
Time 4.7 16.3 1.2 1.1 1.3

50 55 60 65 70 75 80 85
The percentage of the missed image pixels. 
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Fig. 6. Average PSNR values of the compared methods for inpainting on the
11 tested images with 50% − 85% missing pixels.

approximate the incomplete observation without regularization
on the singular values.

1) Synthetic Data: We first generate a synthetic low rank
matrix M = UV T , where U ∈ Rm×r , V ∈ Rn×r and r �
min(m, n). The entries of matrices U and V are i.i.d. samples
from a standard Gaussian distribution N(0, 1). A small portion
(s%) of the matrix M is uniformly selected as observation and
the N(0, σ) Gaussian noise is added to these observations. We
conduct experiments by varying the matrix dimension m, n, the
rank r , and the ratio of observation s%. In all the experiments,
we fix the noise level σ = 0.1 and set the dimension of the

matrix larger than the ground-truth matrix rank as d = 1.25×r
[12]. We repeat the experiments 20 times, and calculate the
average accuracy and CPU time.

We adopt g(x) = |x |0, g(x) = |x |p (p = 0.5) and
g(x) = log(|x |) in our GUIG function Gg(X), resulting in
the proposed GUIG_l0, GUIG_lp and GUIG_log models. The
relative square root error (RSRE), defined as ‖M−U ∗V ∗T ‖F

‖U ∗V ∗T ‖F
,

is used to evaluate the LRMR performance. The RSRE, total
iteration number and the CPU time are reported in Table I.
With the increase of the matrix dimension, we decrease the
observation ratio and increase the matrix rank.

From Table I, we can see that our methods consistently
outperform the compared algorithms in both RMSE and CPU
time. In particular, the proposed models are several orders
faster than the SVD based algorithms APG [25], AIS-Impute
[43], IRNN [24] and IRucLq [27], and they are also consider-
ably faster than the state-of-the-art methods LMafit [12], MSS
[40], D-N [31], F-N [32] and FaNCL [45]. For matrices with
dimension m, n > 2 × 103, the CPU time of IRNN [24] and
IRucLq [27] exceeds 103, which is not comparable to other
algorithms. Therefore, we do not report the results of IRNN
[24] and IRucLq [27] for larger scale matrix since they require
much more computational time and memory.

In terms of RMSE, one can see that the non-convex regular-
ization models (Schatten-p quasi norm and Logsum ) result in
lower RMSE than the convex nuclear norm model. Compared
with the Schatten-p quasi norm solvers such as IRNN [24],
IRucLq [27], D-N [31], F-N [32] and MSS [40], our method
GUIG_lp provides a better solution with lower RSRE.

2) MovieLens and Netflix: In this part, we perform ex-
periments on the popular recommendation system data sets
MovieLens2 and Netflix, whose statistics are listed in Table

2http://www.grouplens.org/node/73

http://www.grouplens.org/node/73
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TABLE V
RPCA PERFORMANCE ON THE SYNTHETIC DATA. RSRE IS SCALED BY ×10−2 AND TIME IS IN SECONDS.

m = 500
Support: 10%, rank = 5

m = 2000
Support: 10%, rank = 10

m = 5000
Support: 15%, rank = 15

m = 10000
Support: 20%, rank = 20

RSRE rank time RSRE rank time RSRE rank time RSRE rank time
MoG-RPCA [47] 2.07 5 1.27 0.997 10 26.6 0.68 15 185 – – NaN
ALM-RPCA [26] 5.19 5 0.737 2.53 10 23.4 1.52 15 192 – – NaN

SpLq [48] 3.88 25 175 1.93 26 3192 – – NaN – – NaN
RegL1-ALM [49] 3.5 5 30.7 1.72 10 594 1.11 15 4449 – – NaN
WNNM-RPCA [2] 2.68 5 5.20 1.31 10 174 0.908 15 1101 – – NaN

D-N [31] 2.12 5 0.580 1.08 10 8.9 0.698 15 78.2 0.541 20 305
F-N [32] 2.15 5 0.51 1.16 10 7.3 0.707 15 69 0.553 20 273

GUIG_lp -RPCA 2.06 5 0.284 1.01 10 3.27 0.680 15 32.3 0.513 20 140
GUIG_l0-RPCA 2.03 5 0.235 1.00 10 3.12 0.680 15 21.8 0.530 20 103

GUIG_log-RPCA 2.03 5 0.265 1.00 10 2.80 0.670 15 26.8 0.502 20 158

TABLE VI
QUANTITATIVE RESULTS AND CPU TIME (SECONDS) OF THE COMPARED METHODS ON FOREGROUND BACKGROUND SEPARATION.

Methods Watersurface Fountain Airport Curtain
S value CPU time S value CPU time S value CPU time S value CPU time

MoG-RPCA [47] 0.4758 57.3 0.5243 37.5 0.4831 468.5 0.6139 241.1
ALM-RPCA [26] 0.7782 72.7 0.5864 54.3 0.4015 517.7 0.5951 288.9

SpLq [48] 0.7903 128.2 0.6219 108.2 0.5252 1124.1 0.7804 754.5
RegL1 [49] 0.7883 58.6 0.6023 49.6 0.5156 551.8 0.7741 272.8
WNNM [2] 0.8015 85.2 0.6354 72.4 0.5382 720.2 0.7995 352.2

D-N [31] 0.8025 47.8 0.6377 43.2 0.5409 335.4 0.8018 208.1
F-N [32] 0.8010 42.3 0.6395 36.9 0.5395 317.3 0.8004 185.2
GUIG_l0 0.8010 21.3 0.6321 18.8 0.5379 152.3 0.7869 75.1
GUIG_lp 0.8021 15.6 0.6388 13.8 0.5441 137.1 0.8010 62.3
GUIG_log 0.8125 22.8 0.6401 19.3 0.5487 162.5 0.8174 83.1

II. We randomly pick out 50%, 70% and 80% of the ob-
served entries as the training data and use the remaining
for testing. The root mean square error (RMSE), defined as√∑

(i, j)∈T(Xi, j −Mi, j)
2/|T | on the test set T , is used as the

quantitative measure.

The results of compared methods are shown in Table III.
Our GUIG models (GUIG_l0, GUIG_lp , GUIG_log) show
distinct advantages over the convex nuclear norm based meth-
ods, and they also outperform the state-of-the-art Schatten-p
quasi norm regularized models. The methods LMaFit [12] and
ER1MP [37] impose no regularization on the singular values of
the target matrix, and they have comparable CPU time with our
models; however, their RMSE results are very poor. Compared
with the non-convex spectral function regularization models
MSS [16], D-N [31], F-N [32] and FaNCL [45], our methods
achieve better RMSE results. On MovieLens-10M and Netflix,
some of the SVD based algorithms are non-executable due to
the large size of data, and we do not report their results on
the two data sets.

We plot the CPU time vs. RMSE curves in Fig. 3. One
can see that there are obvious gaps between our methods
(GUIG_l0, GUIG_lp , GUIG_log) and the compared ones,
especially on large scale data sets. For MovieLens-1M (Fig.
3 (a)), our algorithms converge in less than 10 seconds and
achieve the lowest RMSE, while the compared algorithms
converge slower, and some methods converge in more than
100 seconds. Similar observations can be found in Fig. 3 (b)
for MovieLens-10M and Fig. 3 (c) for Netfilx. Specifically,
our algorithms can solve the Netflix problem in less than 20
minutes with the best accuracies. Please note that since some
of the compared algorithms are non-executable on MovieLens-

10M and Netfilx, we do not report their results.
3) Image Inpainting: Natural images usually have many

repeated patterns, which can be approximated by a low rank
matrix. Following the setup in [15], we apply our proposed
models to the image inpainting problem. For a given image,
we randomly pick up 35% of the image pixels as observation
data, and estimate the remaining pixels.

In Table IV, we present the average PSNR results and CPU
time of all competing methods on 11 widely used test images
in [15], whose snapshots are shown in Fig. 4. One can see
that our methods achieve the highest PSNR measures and
the fastest speeds among all the compared methods. Fig. 5
shows the inpainting results of an image. One can see that
all the competing models are able to deliver a satisfactory
result, while our models can preserve much better the details
and structures of the image. Note that the compared methods
may create some visually unpleasing artifacts, as shown in the
zoom-in regions. In Fig. 6, we illustrate the inpainting results
of all the compared methods on images with 50%−85% miss-
ing pixels. It can be seen from Fig. 6 that the proposed GUIG
methods uniformly outperform all the competing methods in
all cases, which verifies the effectiveness of the proposed
methods.

B. RPCA

In this part, we evaluate the effectiveness and efficiency of
our models on the RPCA problem. We compare our methods
with state-of-the-art RPCA algorithms, including MoG-RPCA
[47], ALM-RPCA [26], SpLq [48], RegL1-ALM [49], D-N
[31], F-N [32] and WNNM-RPCA [2].

1) Synthetic Data: The synthetic matrix Y is generated by
Y = U0V

T
0 + S + N , where U0 ∈ R

m×r , V0 ∈ R
n×r are
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Fig. 7. From left to right: typical frames from the Fountain sequence, groundtruth foreground objects, foreground and background separation results by all
competing methods.
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Fig. 8. From left to right: typical frames from the Watersurface sequence, groundtruth foreground objects, foreground and background separation results by
all competing methods.

matrices with i.i.d. entries sampled from standard Gaussian
distributions N(0, 1) and r � min(m, n). The matrix S is
a sparse matrix with s% nonzero entries, whose locations
are uniformly selected and values follow uniform distribution
in interval [−50, 50]. N is Gaussian noise with zero mean
and standard deviation 0.3. In all the experiments, we set
d = 1.25 × r and vary rank r and ratio s%. We repeat the
experiments 30 times and report the average results.

The experimental results are given in Table V, where we
show the RSRE (RSRE = ‖UV T − U0V

T
0 ‖F/‖U0V

T
0 ‖F ),

estimated rank and the CPU time. NaN in Table V means
out of memory or the CPU time exceeds 104 seconds. It can
be seen that our proposed GUIG methods demonstrate clear
advantage over the compared methods in terms of RSRE and
CPU time. They are much faster than existing methods while
achieving the lowest RSRE in almost all tests. The method
MoG-RPCA [47] shows very close RSRE to our methods, but
it is much slower. The bilinear norm methods D-N [31] and
F-N [32] achieve comparable RSRE results to our method but
cost more computational time. When the matrix size reaches
5000 × 5000, the method SpLq [48] is too slow to run, and
RegL1-ALM [49] and WNNM-RPCA [2] take thousands of
seconds. When the matrix size reaches 10, 000× 10, 000, only
our methods can run due to their low memory requirement
and low complexity.

2) Video Foreground Background Separation: We apply
the proposed methods to video foreground and background
separation, where the background of the video sequence is
assumed to have a low rank structure and the foreground is

sparsely distributed.
In the experiments, four benchmark video sequences pro-

vided in [50], including Fountain, Watersurface, Curtain and
Airport, are adopted. For each sequence, ground-truth fore-
ground regions of 20 frames are provided [50] for quantita-
tively evaluating the testing results. S(A, B) = A

⋂
B

A
⋃

B is used to
measure the similarity between the estimated foreground and
the ground-truth. Follow the same setting as in [2], the Markov
random field (MRF) is used to generate the binary foreground
map. The quantitative results of the S value and CPU time by
the compared methods are shown in Table VI. One can see that
on all the video sequences, the proposed GUIG models have
better S values than the other compared methods. Meanwhile,
the GUIG models cost the least amount of CPU time.

Visual comparison results are given in Fig. 7 and Fig. 8.
It can be seen that GUIG models are capable of extracting
clear background scenes and present more accurate foreground
objects. In contrast, the compared methods will generate some
ghost shadows in the background, and extract less accurate
foreground objects.

VI. CONCLUSION

We proposed a generalized unitarily invariant gauge
(GUIG) function for low rank matrix recovery (LRMR). We
proved that the GUIG function generalizes the conventional
spectral functions such as the Schatten-p quasi norm and
logsum function on singular values, while it does not act
on the singular values of a matrix. We further showed that
flexible bi-linear factorization representation can be easily
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constructed from the GUIG function, which is much less
memory demanding and can be solved in an SVD free manner.
An advanced initialization strategy was proposed, with which
our GUIG algorithms can converge quickly in a few iterations.
Extensive experiments on MC and RPCA problems were
conducted, and the results verified that GUIG is an effective
and efficient approach for LRMR, especially for large scale
problems. For example, it takes less than 20 minutes to
solve the well-known Netflix problem with leading accuracy.
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APPENDIX A
APPENDIX OF THE PAPER

A. Proof of Theorem 2

To prove Theorem 2, we first introduce the definition of
majorisation and some key lemmas.

Definition 4. Let x, y ∈ Rn. We say that x is majorised by y,
denoted by x ≺ y, if for 1 ≤ k ≤ n the following holds∑k

j=1
x↓j ≤

∑k

j=1
y↓j ,

∑n

j=1
x↓j =

∑n

j=1
y↓j (31)

where x↓j is the vector obtained by rearranging the coordinates
of x in descending order.

Lemma 2. [51] [Schur’s Theorem] Let A be an n×n Hermi-
tian matrix. Let diag(A) denote the vector whose coordinates
are the diagonal entries of A and let λ(A) denote the vector
whose coordinates are the eigenvalues of A specified in any
order, the following holds

diag(A) ≺ λ(A) (32)

Lemma 3. [51] [Theorem II.3.1] Let x, y ∈ Rn. The
following two conditions are equivalent:
• x ≺ y
•

∑n
i=1 φ(xi) ≤

∑n
i=1 φ(yi) for all convex functions φ from

R to R.

Lemma 4. [52] [Theorem 3.3.14 (c)] Given any matrices
A ∈ Rm×l and B ∈ Rn×l , and denote by {σ(·)} the singular
values in descending order. Then for any real-valued function
f such that ϕ(t) ≡ f (et ) is increasing and convex, we have∑k

i=1
f (σi(ABT )) ≤

∑k

i=1
f (σi(A)σi(BT )). (33)

where 1 ≤ k ≤ q and q = min{m, n, l}.

We are now ready to prove Theorem 2.

Proof. Given the matrix X ∈ Rm×n and a decomposition X =
UΛV T = Û |Λ|V̂ T , where Λ ∈ Rd×d is a diagonal matrix

with diagonal elements λ1, λ2, · · · , λn such that |λ1 | ≥ |λ2 | ≥
, · · · , ≥ |λn |. The matrices U, Û ∈ Rm×d and V , V̂ ∈ Rn×d

are of unit l2-norm column length. Let A = Û |Λ|
1
2 and B =

|Λ|
1
2 V̂ T . Denote by A = ATA and B = BBT , from Lemma

2 we have

|Λ| = diag(A) ≺ σ(A) = σ2(A)

|Λ| = diag(B) ≺ σ(B) = σ2(B)

Since |λ1 | ≥ · · · ≥ |λn |, we have |Λ| ≺ σ2(A)+σ2(B)
2 . For

concave function g in Theorem 2, we know −g(|x |) is convex
with respect to |x | and according to Lemma 3 we have∑d

i=1
−g(|λi |) ≤

∑d

i=1
−g

(
σ2
i (A) + σ

2
i (B)

2

)
.

Then the following equation holds∑d
i=1 g(|λi |) ≥

∑d
i=1 g(

σ2
i (A)+σ

2
i (B)

2 )

≥
∑d

i=1 g(σi(A)σi(B)) 1©
≥

∑d
i=1 g(σi(AB)) 2© =

∑d
i=1 g(σi(X))

The inequality 1© holds due to that the function g is increasing
and the fact that a2+ b2 ≥ 2ab. The inequality 2© holds based
on Lemma 4. The equality in 2© holds if and only if X =

UΛV T is the SVD and Λ is the singular value matrix. Since
Gg(X) achieves the minimum of

∑d
i=1 g(|λi |) among all the

possible decompositions, we have the result that

Gg(X) =
∑d

i=1
g(σi(X))

The proof is completed. �

B. Proof of Theorem 3

Proof. Let λi = λ1
i λ

2
i and g(λi) = minλi=λ1

iλ
2
i
g1(λ

1
i ) + g2(λ

2
i ),

there holds

infλi g(λi) = infλ1
i,λ

2
i
g1(λ

1
i ) + g2(λ

2
i ) (34)

for λi, λ
1
i , λ

2
i ∈ R such that X =

∑d
i=1 λiuiv

T
i and X =

d∑
i=1

λ1
i λ

2
i uiv

T
i . Equality in (34) can be easily verified since the

infimum is equal to the minimum for bounded functions.
Given λi = λ

1
i λ

2
i , we have

X =
∑d

i=1
λiuiv

T
i =

∑d

i=1
λ1
i ui︸︷︷︸ λ2

i v
T
i︸︷︷︸

Let ũi = λ1
i ui and ṽi = λ1

i vi , since ‖ui ‖2 = ‖v‖2 = 1, we
have |λ1

i | = ‖ũi ‖2 and |λ2
i | = ‖ṽi ‖2. According to Eq. (34),

we have

min
λi

g(|λi |) = min
ũi,ṽi

g1(‖ũi ‖2) + g2(‖ṽi ‖2) (35)

Denote by U the matrix with ũi as its ith column and the
same to V . Add up Eq. (35) from i = 1 to d, we immediately
have

min
λ

∑d

i=1
g(|λi |) = min

X=UV T

∑d

i=1
g1(‖U·i ‖2)+

∑d

i=1
g2(‖V·i ‖2)

The proof is completed. �



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, XXX 2020 14

C. Proof of Theorem 4

Proof. Since g ◦ σ(X) =
∑r

i=1 g(σi(X)), according to Theo-
rem 3, for each g(σi(X)) we have g(σi(X)) ≤ g1(αi)+g2(βi)
for any αi , βi where σi(X) = αiβi . Assume that there exists
α∗i , β∗i such that σi(X) = α

∗
i β
∗
i and g(σi(X)) = g1(α

∗
i )+g2(β

∗
i )

(the equality is attainable according to Theorem 3). Let X∗ =
UΣV T be the SVD of the matrix X∗, α∗ = [α∗1, α

∗
2, · · · , α

∗
d
]T

and β∗ = [β∗1, β
∗
2, · · · , β

∗
d
]T such that Σii = α∗i β

∗
i for i ≤ r and

α∗i = 0, β∗i = 0 for r < i ≤ d. Denote by U = Udiag(α∗) and
V = V diag(β∗), we have

∑r
i=1 g(σi(X)) =

∑d
i=1 g1(‖U ·i ‖2)+∑d

i=1 g2(‖V ·i ‖2). According to Eq. (14), we have:

F (X∗) = f
(
UV

T
)
+

∑d
i=1 g1(‖U ·i ‖2) + g2(‖V ·i ‖2)

≥ f
(
U ∗V ∗T

)
+

∑d
i=1 g1(‖U

∗
·i ‖2) + g2(‖V

∗
·i ‖2)

= F
(
U ∗,V ∗T

)
(36)

Denoted by X = U ∗V ∗T . According to Theorem
2 and Theorem 3, we have

∑r
i=1 g(σi(X)) =

minX=UV T

∑d
i=1 g1(‖U·i ‖2) + g2(‖V·i ‖2), and thus∑d

i=1 g1(‖U
∗
·i ‖2) + g2(‖V

∗
·i ‖2) ≥

∑r
i=1 g(σi(X)) holds.

Consequently, the following equation holds:

F (U ∗,V ∗) = f
(
U ∗V ∗T

)
+

∑d
i=1 g1(‖U

∗
·i ‖2) + g2(‖V

∗
·i ‖2)

≥ f
(
X

)
+

∑r
i=1 g(σi(X))

≥ f (X∗) +
∑r

i=1 g(σi(X
∗)) = F (X∗)

(37)
Thus we have the equality F (U ∗,V ∗) = F (X∗). According to
Eq. (36), we have F (U ∗,V ∗) = F

(
U,V

)
; therefore (U,V )

is also a solution of problem (14). According to Eq. (37), we
have F (X∗) = F

(
X

)
, and thus X is a solution of problem

(1). The proof is completed. �

D. Proof of Theorem 5

The convergence analysis of the proposed algorithm is
analogous to that of [40] and [16], please refer to [16], [40]and
[39] for more about the definition and properties of the semi-
algebraic sets and functions.

Let’s first present some propositions before giving the proof.

Proposition 6. The matrix operators ‖X ‖p2,p (0 ≤ p ≤ 1) and
‖X ‖2,log are semi-algebraic functions.

Proof. For a given X ∈ Rm×n, the l2-norm ‖ ·‖2 on the column
of X is semi-algebraic. The power function |x |p for 0 ≤ p ≤ 1
and the finite sum of the log function are semi-algebraic, and
it is natural to conclude that their compositions are also semi-
algebraic. The proof is completed. �

As Algorithm 1 is a special case of the general optimization
algorithm in [40], to prove the convergence in Theorem 5, we
only need to show that the conditions ensuring the sequence
convergence of [40] [Theorem 2] are satisfied.

Proposition 7. The sequence generated by Algorithm 1 is
a Cauchy sequence and converges to a critical point if the
following conditions hold:

1) The sequence of F(U k,V k) is non-ascending.

2) Within any bounded consecutive iterations, every block
U or V is updated at least once.

3) {(U k,V k)} is a bounded sequence.
4) F is a semi-algebraic function.
5) ∇kU f (U ) and ∇kV f (V ) is Lipschitz continuous.
6) ∇ f (U,V ) has Lipschitz constant on any bounded set.

Now we present our proof of Theorem 5 by verifying that
all the conditions list above are satisfied in our Algorithm 1.

Proof. Conditions 1 and 2 naturally hold in our algorithm by
the updating rule. According to the non-ascending property,
F(U k,V k) is bounded. Meanwhile, we have

F(U k,V k) ≥
∑d

i=1
g1(‖U

k
·i ‖2) +

∑d

i=1
g2(‖V

k
·i ‖2)

Therefore Condition 3 holds for lp (0 ≤ p ≤ 1) and log
function. For MC in our Algorithm 1, f (U,V ) is a semi-
algebraic function. Based on Proposition 6, Condition 4 holds.
As f (U,V ) = 1

2 ‖PΩ(UV
T ) − M ‖2F where PΩ is a bounded

linear operator, f is naturally gradient Lipschitz continuous
and Conditions 5 and 6 hold. The proof is completed. �


