
G2DeNet: Global Gaussian Distribution Embedding Network andIts
Application to Visual Recognition∗

Qilong Wang1, Peihua Li1, Lei Zhang2
1Dalian University of Technology,2Hong Kong Polytechnic University

qlwang@mail.dlut.edu.cn, peihuali@dlut.edu.cn, cslzhang@comp.polyu.edu.hk

Abstract

Recently, plugging trainable structural layers into deep
convolutional neural networks (CNNs) as image represen-
tations has made promising progress. However, there has
been little work on inserting parametric probability dis-
tributions, which can effectively model feature statistics,
into deep CNNs in an end-to-end manner. This paper pro-
poses a Global Gaussian distribution embedding network
(G2DeNet) to take a step towards addressing this prob-
lem. The core of G2DeNet is a novel trainable layer of a
global Gaussian as an image representation plugged into
deep CNNs for end-to-end learning. The challenge is that
the proposed layer involves Gaussian distributions whose
space is not a linear space, which makes its forward and
backward propagations be non-intuitive and non-trivial. To
tackle this issue, we employ a Gaussian embedding strat-
egy which respects the structures of both Riemannian man-
ifold and smooth group of Gaussians. Based on this strat-
egy, we construct the proposed global Gaussian embedding
layer and decompose it into two sub-layers: the matrix par-
tition sub-layer decoupling the mean vector and covariance
matrix entangled in the embedding matrix, and the square-
rooted, symmetric positive definite matrix sub-layer. In this
way, we can derive the partial derivatives associated with
the proposed structural layer and thus allow backpropaga-
tion of gradients. Experimental results on large scale region
classification and fine-grained recognition tasks show that
G2DeNet is superior to its counterparts, capable of achiev-
ing state-of-the-art performance.

1. Introduction

Modeling activations of convolutional layers or fully-
connected layers of pre-trained deep convolutional neural
networks (CNNs) as image representations has been very

∗P. Li, to whom correspondence should be addressed, was supported
by National Natural Science Foundation of China (No. 61471082). L.
Zhang was supported by National Natural Science Foundationof China
(No. 61672446). We thank NVIDIA corporation for donating GPU.

successful in a variety of computer vision tasks, such as ob-
ject recognition [25], image retrieval [9] and texture classifi-
cation [6]. However, these methods handle feature learning,
image modeling and loss function (e.g., classifier) in sep-
arate stages. Recent researches have shown it is meaning-
ful and helpful to plug modeling methods into deep CNN
architectures as structural layers in an end-to-end manner
[14, 24, 1, 37]. Compared with [9, 6], the end-to-end ap-
proaches can jointly leverage the power of learning features,
representing images and training classifiers [1, 29].

To represent images, the probability distributions are
widely used as they generally have capability to model
abundant statistics of features, producing fixed size repre-
sentations regardless of varying feature sizes [28, 32, 33,
40]. Unfortunately, there has been little work attempting
to plug trainable probability distribution modeling layers
into deep CNNs. Olivaet al. [29] make an effort to pro-
pose a deep mean maps (DMMs) method, which can plug a
family of non-parametric distributions into deep CNNs. By
exploiting the mean of random Fourier features [31] to ap-
proximate the mean map embeddings of distributions [11],
the DMMs layer is decomposed into common operations of
convolution, pixel-wise cosine and average pooling so that
forward and backward propagations can be easily accom-
plished. It is reported that the DMMs layer improves the
existing CNNs on several real-world datasets. However, the
DMMs method does not consider special characteristics of
individual distributions, for example, exponential distribu-
tions have specific geometric structures.

Although the DMMs method has been studied, combin-
ing parametric probability distributions modeling into deep
CNNs still is an open problem. In this paper, we take a step
forward towards addressing this problem. Specifically, as
in [28, 33, 40], we use global Gaussians as image repre-
sentations and propose a global Gaussian embedding layer
to combine them in deep CNN architectures. In contrast to
DMMs [29], we explicitly take advantage of the geometry
of Gaussians by considering their parameters (i.e., the mean
vectors and covariance matrices) rather than using approxi-
mated embeddings of distributions in DMMs. This renders



X Y Z

……

( )f Z

( )

1
( )

2

T T

MPL

T T

sym

f
N

N

= +

+

X AX XA

AX 1b B

1

2( )ESRLf =Y Y

BP for convolutional layers

( )
1

2

,
1

N

T

T

 +
 
 

Σ µµ µ
µ Σ

µ
֏

( )f∂
∂
Z

Y( )f∂
∂
Z

X

Figure 1. Overview of the proposed Global Gaussian distribution embedding network (G2DeNet). The core of G2DeNet is a novel layer
of global Gaussians as image representations, inserted after the last convolutional layer in a deep CNN in an end-to-endmanner. By first
identifying a Gaussian as the square root of an SPD matrix based on Lie group theory, we decompose the layer into two sub-layers and
develop a method to compute partial derivatives using matrix variations and SVD. For detailed mathematical notations,refer to Section3.

our method more challenging since we need to consider the
Riemannian structure of Gaussians as well as its forward
and backward propagations in the deep CNNs.

To include Gaussian representation as a layer in the
deep CNNs, we first exploit a Gaussian embedding strategy
based on Lie group theory, where a Gaussian distribution
is uniquely transformed to a square-rooted symmetric pos-
itive definite (SPD) matrix. To make our global Gaussian
embedding layer trainable, we decompose it into two con-
secutive sub-layers: the matrix partition sub-layer and the
square-rooted SPD matrix sub-layer. The first sub-layer de-
couples the mean vector and covariance matrix entangled in
the embedding matrix so that it can be explicitly written as a
function of features, while the second one is to compute the
square root of an SPD matrix through the singular value de-
composition (SVD). Then, we develop a method to compute
the partial derivatives associated with the two sub-layers
based on the theory of matrix variations. In this way, we can
perform forward and backward propagations through the
global Gaussian embedding layer. For convenience, here-
after, the proposed network is called Global Gaussian dis-
tribution embedding network (G2DeNet), whose overview
is illustrated in Figure1. At the core of G2DeNet is a train-
able layer of a global Gaussian as an image representation,
inserted after the last convolutional layer in the deep CNNs.

The contributions of this paper lie in three folds: (1) we
propose a novel trainable structural layer, which can plug
global Gaussian distributions into deep CNNs for powerful
image representation. To our best knowledge, this is the first
attempt to plug a parametric probability distribution into
CNN architectures in an end-to-end form. (2) Technically,
to make possible the forward and backward propagations
on Gaussian manifold, we exploit a Gaussian embedding
strategy based on Lie group theory and develop a structural
backpropagation method. (3) The experiments are exten-
sively conducted on large scale MS-COCO [23] and chal-
lenging fine-grained benchmarks [39, 27, 20], demonstrat-
ing superiority of the proposed method.

2. Related Work

Ionescuet al. [14] establish the theory and practice of
global, structured matrix backpropagation in an end-to-end
training framework. In particular, they propose theorems
on variations of SVD or eigenvalue decomposition (EIG)
and instantiate the DeepO2P model for region classifica-
tion. At the heart of DeepO2P is a trainable O2P layer
plugged into the deep CNN architecture performing second-
order pooling of convolutional features. The O2P layer
in DeepO2P leads to second-order, non-central moments
which are SPD matrices and whose geometry is handled us-
ing Log-Euclidean metrics [2], resulting in backpropagation
of logarithm of SPD matrices. The structural matrix back-
propagation theory [14] motivates the backpropagation of
our proposed method on Gaussian manifold. However, dif-
ferent from DeepO2P, we attempt to insert a trainable Gaus-
sian distribution layer, where the geometry of Gaussians
is quite different from the geometry involved in DeepO2P.
Specifically, we introduce a Gaussian embedding strategy
based on Lie group theory, which uniquely maps a Gaussian
to a square-rooted SPD matrix. Note that the second-order
moments can be seen as Gaussians of zero-mean. In Sec-
tion 4.1, we show that our G2DeNet outperforms DeepO2P
by a margin while preserving a comparable complexity.

The bilinear CNN (BCNN) [24] model inserts a trainable
bilinear pooling layer after the last convolutional layer in
CNN architectures. This layer computes the outer products
of features from two CNN models, and then performs sum-
pooling and normalization. When the two CNN models are
different, BCNN captures correlations of different sources
of features. If the two CNN models are identical, the
outer products plus sum-pooling leads to second-order, non-
central moments, as in DeepO2P; differently, BCNN per-
forms power normalization followed byℓ2-normalization
for the resulting SPD matrices rather than matrix logarithm
used in DeepO2P. In contrast to BCNN, our purpose is
to propose image representations by parametric, Gaussian



distributions for end-to-end learning while respecting their
structures of manifold and Lie group, which is distinct from
BCNN in theory and implementation of both the forward
and backward propagations. In addition, comparisons in
Section4.2show that the proposed G2DeNet is superior to
BCNN in exactly the same experimental settings.

The other related works include NetVLAD [1] and Fish-
erNet [37]. They both concern insertion into the CNN archi-
tectures of a trainable layer consisting of features encoding
and pooling to form an orderless image representation. The
NetVLAD accomplishes the trainable layer of the general-
ized vector of locally aggregated descriptors (VLAD) [17].
The FisherNet proposes a method to implement the Fisher
vector (FV) [32] in an end-to-end learning manner. Regard-
ing implementation, both of the two methods decompose
(after appropriate modifications or simplifications) the in-
serted layers into typical operations of convolution, soft-
max and pooling so that off-the-shelf implementation of
layers can be conveniently used. Different from them, in our
G2DeNet, the trainable layer is concerned with the Gaus-
sian distribution which involves structural backpropagation
on manifold, and the commodity operations in the classical
CNN cannot be simply used.

3. Global Gaussian Distribution Embedding
Network

In this section, we will introduce our global Gaussian
distribution embedding network. To make Gaussian be in-
tegrated into CNN architectures, we first map a Gaussian
to a square rooted SPD matrix. Then, we propose a novel
global Gaussian embedding layer. Finally, we develop a
structural backpropagation method for our global Gaussian
embedding layer.

3.1. Gaussian Embedding

In this paper, we use global Gaussians as image represen-
tations. Suppose we have a set ofN d-dimensional features
X = [x1, . . . ,xN ]T ∈ R

N×d, whereT indicates matrix
transpose. The Gaussian distribution of these features can
be estimated as follows:

p(x) =
1

(2π)
d

2 |Σ|
1

2

exp
(

−
1

2
(x− µ)TΣ−1(x− µ)

)

,

whereµ = 1
N

∑N
i=1 xi andΣ = 1

N

∑N
i=1(xi − µ)(xi −

µ)T are respectively mean vector and covariance matrix,
and| · | indicates matrix determinant. The Gaussian distri-
butionN (µ,Σ) is determined by parametersµ andΣ.

We denote byG(d) the space ofd−variate Gaussians. It
has long been known [35] that this space is a Riemannian
manifold having geometric structure. A recent work [22]
has made advance, showing thatG(d) can be endowed with

a Lie group structure, i.e., it is not only a Riemannian man-
ifold but is a smooth group. This paper exploits the em-
bedding method in [22] to identify a Gaussian as a square-
rooted SPD matrix. LetUT+(d+1) be the set of all positive
definite upper triangular matrices of orderd + 1 which is a
Lie group, andΣ−1 = LLT be the Cholesky decomposi-
tion of the inverse ofΣ, whereL is a lower triangular matrix
of orderd with positive diagonals. Through

φ(N (µ,Σ)) = Hµ,J
△
=

[

J µ

0T 1

]

, (1)

a GaussianN (µ,Σ) is uniquely mapped to the matrix
Hµ,J ∈ UT+(d + 1), whereJ = L−T . However, the
embedding form (1) does not suit for backpropagation due
to the Cholesky decomposition and matrix inverse.

The matrixHµ,J can be further mapped to a unique
SPD matrix based on matrix polar decomposition and Lie
group isomorphism. LetHµ,J = Sµ,JQµ,J be the left po-
lar decomposition ofHµ,J, whereSµ,J andQµ,J be an
(d+ 1)× (d+ 1) SPD matrix and an orthogonal matrix of
determinant one, respectively. The mapping can be written
as

ψ(Hµ,J) = Sµ,J =

[

Σ+ µµ
T

µ

µ
T 1

]
1

2

, (2)

andQµ,J is the closest orthogonal matrix toHµ,J, i.e.,

Qµ,J = min
R∈O(d+1)

‖Hµ,J −R‖F ,

whereF indicates the Frobenius norm andO(d+1) denotes
the set of(d + 1) × (d + 1) orthogonal matrices. Through
the above consecutive mappings, our introduced Gaussian
embedding can be represented as follows:

(ψ ◦ φ)(N (µ,Σ)) =

[

Σ+ µµ
T

µ

µ
T 1

]
1

2

. (3)

Most works study Gaussian embedding based on the
structure of Riemannian manifold of Gaussians. Nakayama
et al. [28] embed Gaussians in a flat manifold by taking
an affine coordinate system. In [8], Gaussian is mapped
to a unique positive definite lower triangular affine trans-
form (PDLTAT) matrix whose space forms an affine group.
The methods in Calvoet al. [4] and Lovri’c et al. [26] re-
spectively embed the space of Gaussian in the Siegel group
and the Riemannian symmetric space, identifying a Gaus-
sian as a unique SPD matrix. Note that, different from the
aforementioned methods which only consider the Rieman-
nian manifold structure ofG(d), our introduced embedding
method (3) makes use of the Lie group structure, i.e., the
geometric structure of Riemannian manifold and the alge-
braic structure of smooth group. The Gaussian embedding
strategy (3) is not only suitable for backpropagation but also
produces better performances as compared in Section4.3.2.



3.2. Global Gaussian Embedding Layer

Next, we will construct our global Gaussian embedding
layer according to the embedding form (3). To facilitate
implementation of this layer, we decompose it into two sub-
layers: matrix partition sub-layer and square rooted SPD
matrix sub-layer, as illustrated in Figure1.

3.2.1 Matrix Partition Sub-layer

We denoteY = fMPL(X)
△
=

[

Σ+ µµ
T

µ

µ
T 1

]

. Obviously

the mean vectorµ and covariance matrixΣ are entangled.
The purpose of this sub-layer is to decoupleY and explic-
itly write it as the function of input featuresX. We first
note that there exists the identityΣ = 1

N
XTX − µµ

T .
After some elementary manipulations, we have

Y =fMPL(X) (4)

=
1

N
AXTXAT +

2

N

(

AXT1bT
)

sym
+B.

In the above equation,A =

[

I

0T

]

whereI is thed × d

identity matrix and0 is d−dimensional zero vector,b =
[0, . . . , 0, 1] is (d+1)−dimensional vector with all elements
being zero except the last one which is equal to one,1 is
N−dimensional vector with all elements being one, and fi-

nally B =

[

O 0

0T 1

]

whereO is d × d zero matrix. The

notationPsym = 1
2 (P + PT ) denotes the symmetrization

of P. After such manipulations, the derivative ofY with
respect toX is straightforward.

3.2.2 Square-rooted SPD Matrix Sub-layer

The purpose of this sub-layer is to compute the square root
of SPD matrixY, i.e.,Z = fESRL(Y)

△
= Y

1

2 . It is well-
known that an SPD matrix is diagonalizable by SVD and the
diagonal elements are positive real numbers. Specifically,
Y has SVD

Y = UΛUT , (5)

where Λ = diag(λ1, · · · , λd+1) is the diagonal ma-
trix of the eigenvaluesλi in decreasing order andU =
[u1 · · · ud+1] is an orthogonal matrix whose columns
consist of normalized eigenvectorsui corresponding to the
eigenvaluesλi. As such the square root ofY can be com-
puted conveniently as follows:

Z = fESRL(Y) = UΛ
1

2UT , (6)

whereΛ
1

2 = diag(λ
1

2

1 , · · · , λ
1

2

d+1) is computed as element-
wise square root of the eigenvalues. Combining matrix

partition sub-layer (4) with square-rooted SPD matrix sub-
layer (6), we can accomplish the Gaussian embedding
(3). Next, we will show backpropagation for the proposed
global Gaussian embedding layer.

3.3. Backpropagation for Global Gaussian Embed-
ding Layer

To implement backpropagation for global Gaussian em-
bedding layer, we need to compute∂f(Z)

∂X
, wheref(Z) de-

notes a sub-network of G2DeNet whose input and output
areZ and loss function, respectively. In this paper,∂f(Z)

∂X

can be achieved by two steps. In the first step, we compute
∂f(Z)
∂Y

. For brevity, we usef instead off(Z) in the follow-
ing.

Compute ∂f
∂Y

Note thatY is an SPD matrix, and its SVD
can be written asY = UΛUT . The chain rule of this step
is given by

∂f

∂Y
: dY =

∂f

∂U
: dU+

∂f

∂Λ
: dΛ, (7)

whereU : V = tr(UTV) denotes the trace ofUTV, and
dU denotes the variation ofU. By taking variation ofY we
havedY = dUΛUT +UdΛUT +UΛdUT . Note thatU
is orthogonal, and after some manipulations, we can derive

dU = 2U(KT ⊙ (ΛTUT dYU)sym),

dΛ = (UT dYU)diag, (8)

where (·)diag indicates matrix diagonalization,⊙ is the
Hadamard product, andK is a square matrix with its ele-
mentKij = 1/(λ2i − λ2j ) if i 6= j andKij = 0 otherwise.
Substituting Eq. (8) into Eq. (7), we achieve

∂f

∂Y
= U

(

2Λ
(

KT ⊙
(

UT ∂f

∂U

))

sym
+
( ∂f

∂Λ

)

diag

)

UT .

(9)

The derivation of Eq. (9) is first given in [14, Prop. 1] and
readers may refer to [15] for more details.

We proceed to compute∂f
∂U

and ∂f
∂Λ

. Here the chain rule
is give by

∂f

∂Z
: dZ =

∂f

∂U
: dU+

∂f

∂Λ
: dΛ. (10)

We substitute the variationdZ = 2(dUΛ−
1

2UT )sym +
1
2UΛ−

1

2 dΛUT into the above equation and can derive

∂f

∂U
= 2

( ∂f

∂Z

)

sym
UΛ

1

2 ,
∂f

∂Λ
=

1

2
Λ−

1

2UT ∂f

∂Z
U. (11)

Compute ∂f
∂X

In the second step, we compute the par-
tial derivative associated with the matrix partition sub-layer.
The chain rule involved is

∂f

∂X
: dX =

∂f

∂Y
: dY. (12)



Method Gaussian Embedding

Nakayamaet al. [28] z = [ vec(Σ+µµ
T ),µT ]T

Calvoet al. [4] or Lovrić et al. [26] Z =
[

Σ+µµ
T

µ

µ
T 1

]

[4, 26] + Log-Euclidean [2] Z = log
[

Σ+µµ
T

µ

µ
T 1

]

Ours Z =
[

Σ+µµ
T

µ

µ
T 1

]
1

2

Table 1. Comparison of different Gaussian embedding methods.
vec indicates the vectorization operation of a matrix.

We take the variation ofY with respect toX and substitute
it into Eq. (12). After some arrangements, we achieve

∂f

∂X
=

2

N

(

XAT + 1bT
)( ∂f

∂Y

)

sym
A. (13)

In summary, for the proposed global Gaussian embed-
ding layer, the forward propagation can be performed via
Eqs. (4) and (6), while the backpropagation can be achieved
by Eq. (13), Eq. (9) and Eq. (11). Our layer can be plugged
into various CNN architectures (e.g., AlexNet [21] and
VGG-VD-Net [34]) in an end-to-end manner. In practice,
we insert our layer after the last convolutional layer (with
ReLU operation).

3.4. G2DeNet Based Other Embedding Methods

Finally, we introduce three other embedding methods
which can be used in our G2DeNet methodology. The com-
parison of embedding forms of different Gaussian embed-
ding methods are listed in Table1.

The backpropagation rule for [28] is given by

∂f

∂X
=

1

N

(

2X
(

mat

(

∂f

∂z

)

1:d2

)

sym
+1

(

∂f

∂z

)T

d2+1:d2+d

)

(14)
wherey1:i denotes the vector formed by entries1, . . . , i in
vectory andmat(y) denotes reshaping of vectory to a
square matrix which has the same number of elements iny.
The partial derivative associated with [4, 26] is

∂f

∂X
=

2

N

(

XAT + 1bT
)( ∂f

∂Z

)

sym
A. (15)

The derivation of backpropagation formulas for [4, 26] plus
Log-Euclidean framework [2] is similar to those described
in Section3.3. The partial derivatives∂f

∂X
and ∂f

∂Y
are the

same as Eq. (13) and Eq. (9), respectively, but∂f
∂U

and ∂f
∂Λ

take different forms as follows:

∂f

∂U
= 2

( ∂f

∂Z

)

sym
U log(Λ),

∂f

∂Λ
= Λ−1UT ∂f

∂Z
U.

(16)

4. Experiments

In this section, we conduct two parts of experiments to
evaluate our method: large-scale region classification on
MS-COCO 2014 dataset [23] and challenging fine-grained
recognition on Birds-200-2011 [39], FGVC-Aircraft [27]
and FGVC-Cars [20]. We also verify the effects of different
training methods and Gaussian embedding strategies on the
proposed method. We implement our G2DeNet by using
the MatConvNet package [38], and run the programs on a
PC equipped with a single NVIDIA Titan X GPU and 64G
RAM. As suggested in [14], we use SVD rather than EIG
for computing square-rooted SPD matrix because SVD is
numerically more stable, and implement the global Gaus-
sian embedding layer on CPU in double precision due to
limited support of current GPU library for SVD or EIG, and
less accurate gradients of the structured layer induced by
the single precision. For numerical stability, we add a small
positive number 1e-3 throughout the paper to the diagonal
entries of covariance matrices. More implementation de-
tails are described in the following subsections.

4.1. Region Classification on MS-COCO

The MS-COCO dataset used for region classification
task includes more than 890k segmented instances from 80
classes, divided into about 600k training instances and 290k
validation ones. In this part of experiments, we mainly com-
pare our G2DeNet with its counterpart DeepO2P [14]. For
fair comparison, we exploit identical experimental settings
with [14] and use the code released by the authors1, where
we replace the global O2P layer with the proposed global
Gaussian embedding layer.

We implement G2DeNet which indicates the proposed
layer is directly connected to a softmax layer, and G2DeNet-
FC indicating the proposed layer connects to two fully-
connected layers followed by a softmax layer, as in
AlexNet. Both of the two networks are initialized with
AlexNet model pre-trained on ImageNet dataset [7]. We
also implement G2DeNet-FC with random initialization
(training from scratch), which is called G2DeNet-FC (S).
We compare them with the corresponding counterparts
which use the global O2P layer. As in DeepO2P, the
cropped images are resized to have the largest sides of 200
pixels, and translation jittering and random, horizontal flip-
ping are used. We perform training using stochastic gra-
dient descent with a momentum of 0.9 and a batch size of
100. The G2DeNet, G2DeNet-FC and G2DeNet-FC (S) are
trained with 15, 20 and 50 epoches where learning rates are
set as ones in DeepO2P. The classification errors of various
methods on the validation set are reported for comparison.

The convergence curve of the proposed G2DeNet-FC is

1The code is available at http://www.maths.lth.se/
matematiklth/personal/sminchis/code/

http://www.maths.lth.se/matematiklth/personal/sminchis/code/
http://www.maths.lth.se/matematiklth/personal/sminchis/code/


Training epoch
0 5 10 15 20

O
bj

ec
tiv

e

10-0.4

10-0.3

10-0.2

10-0.1

100

100.1

100.2

train
val

Training epoch
0 5 10 15 20

E
rr

or

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

val
train

Figure 2. Convergence curve of our G2DeNet-FC on MS-COCO.

AlexNet-FC
DeepO2P

[14]
DeepO2P-FC

(S) [14]
DeepO2P-FC

[14]
Err. 25.3 28.6 28.9 25.2

DMMs-FC
[29]

G2DeNet
(Ours)

G2DeNet-FC
(S) (Ours)

G2DeNet-FC
(Ours)

Err. 24.6 24.4 22.6 21.5

Table 2. Classification errors(%) on the MS-COCO benchmark.
The results for all the methods indicated by ‘AlexNet-FC’ or
‘DeepO2P’are duplicated from [14].

illustrated in Figure2. We achieve the lowest classification
error21.5% at epoch 20. We note that classification error
of G2DeNet-FC tends to descend after the final epoch, and
so more training epoches may bring further improvement.
The training and test time of G2DeNet-FC are about 3 hours
and 30 minutes per epoch, respectively. Our G2DeNet-FC
shares similar time complexity with DeepO2P-FC.

Comparison results on MS-COCO are listed in Table2.
The AlexNet-FC method indicates the fine-tuned AlexNet
where the last layer is replaced by 80-way softmax layer.
We also implement the DMMs method [29] by inserting
a DMMs layer of 4,096 frequencies into AlexNet with the
same settings as G2DeNet-FC, which is called DMMs-FC.
According to Table2, we have the following discourse:
(1) our G2DeNet-FC achieves the best results, improving
both DeepO2P-FC and DMMs-FC methods by a large mar-
gin (3.7% and 3.1%); (2) G2DeNet always outperforms
DeepO2P in same settings under different scenarios, which
we attribute to the superiority of the proposed global Gaus-
sian embedding layer over the O2P layer; (3) our G2DeNet-
FC also is far superior to AlexNet-FC, demonstrating ap-
propriate insertion of a probability distribution as an image
representation into deep CNNs is very beneficial.

4.2. Fine-grained Recognition

The second part of experiments is conducted on three
fine-grained image benchmarks, on which the recognition
task is challenging due to large intra-class variation and
small inter-class differences. We mainly compare with
BCNN [24], one of the counterparts of our G2DeNet,
which is a state-of-the-art fine-grained recognition method.

Specifically, we compare with BCNN [D,D] where the two
CNN models involved are identical (i.e., VGG-VD16) and
most of the best results are achieved. Note that in this case
the bilinear pooling method shares the same CNN model,
and leads to the second-order, non-central moment of con-
volutional features. For fair comparison, we adopt exactly
the same experimental settings with BCNN wherever possi-
ble, e.g., two-stage training manner, hyper-parameters, data
processing and SVM training and test2. To implement our
method, we replace the bilinear layer with the proposed
global Gaussian embedding layer.

4.2.1 Birds-200-2011

The Birds-200-2011 [39] is a challenging dataset, including
11,788 images from 200 bird species. The fixed training
and test split is provided to evaluate different methods. On
this dataset, the part annotations (Parts) and the bounding
boxes (BBox) usually are considered to develop recognition
methods in training or test. Following the protocols used in
BCNN, we evaluate our G2DeNet in two cases, i.e., training
and testing G2DeNet with or without bounding boxes.

The results of different methods are listed in Table3.
We first compare our G2DeNet with FC-CNN, FV-CNN
and BCNN in the same experimental settings. The FC-
CNN extracts the outputs of the penultimate fully connected
layer as image representations. The FV-CNN [6] performs
encoding and pooling of features from the last convolu-
tional layer with Fisher vector (FV) [32] method, achieving
promising results on many image recognition tasks. The
BCNN obtains state-of-the-art performance by pooling of
outer products of the outputs from the last convolutional
layer (with the ReLU operation) of two CNN models [24].
These representations are fed to one-vs-all SVM classifiers
for training and test. In the case of no bounding boxes,
our G2DeNet outperforms FC-CNN, FV-CNN and BCNN
by 16.7%, 12.4% and3.1%, respectively. When bounding
boxes are used, the performance of all methods can be im-
proved and G2DeNet is still better than FC-CNN, FV-CNN
and BCNN by11.2%, 10.1% and2.5%, respectively. The
significant improvements over the three methods show the
superiority of our global Gaussian embedding layer.

We also compare with six recently proposed methods,
which, to our best knowledge, reported the previous best re-
sults without exploiting extra training data3. RAID-G [40]
presented a robust infinite dimensional Gaussian descrip-
tor based on pretrained VGG-VD19 model (no finetuning),
getting82.1% in accuracy without parts and BBoxes. PG-
Alignment [18] generated parts for bird images by using
co-segmentation and alignment in an unsupervised manner.

2We use the source code released by the authors of [24], available at
https://bitbucket.org/tsungyu/bcnn-package.

3One very recent work reported an accuracy of92.3% by using large scale
additional annotation bird images from the web [19].

https://bitbucket.org/tsungyu/bcnn-package


Methods
Train Test

Pre-trained CNN models Accuracy(%)
BBox Parts BBox Parts

PG-Alignment [18] X X VGG-VD19 82.8

RAID-G [40] VGG-VD19 82.1

ST-CNN [16] Inception+BN 84.1

PD+FC+SWFV-CNN [42] VGG-VD16 84.5

SPDA-CNN+ensemble [41] X X X VGG-VD16 + AlexNet 85.1

PN-CNN [3] X X X X AlexNet 85.4

FC-CNN [D] (w/ ft) VGG-VD16 70.4

FC-CNN [D] (w/ ft) X X VGG-VD16 76.4

FV-CNN [D] (w/ ft) [ 6] VGG-VD16 74.7

FV-CNN [D] (w/ ft) [ 6] X X VGG-VD16 77.5

BCNN [D,D] (w/ ft) [ 24] VGG-VD16 84.0

BCNN [D,D] (w/ ft) [ 24] X X VGG-VD16 84.8

BCNN [D,M] (w/ ft) [ 24] X X VGG-VD16 + VGG-M 85.1

G2DeNet (Ours) VGG-VD16 87.1

G2DeNet (Ours) X X VGG-VD16 87.6

Table 3. Classification accuracies of different methods with various experimental protocols on Birds-200-2011 dataset. ‘BBox’ and ‘Parts’
indicate bounding boxes and parts, respectively. The results of FC-CNN, FV-CNN and BCNN are duplicated from [24]. The results of
other methods are respectively from original papers.

Combining bounding boxes and fine-tuned VGG-VD19
model, PG-Alignment achieved82.8% in accuracy. ST-
CNN [16] introduced a trainable Spatial Transformer (ST)
module for overcoming lack of spatial invariance of exist-
ing CNN architectures. The fine-tuned ST-CNN based on
the Inception architecture with batch normalization [13] ob-
tained84.1% in accuracy. Zhanget al. [42] proposed a part
detector (PD) while considering filter responses, and repre-
sented the bag of parts using spatially weighted (SW) FV-
CNN and FC-CNN. They reported an accuracy of 84.5%.
The semantic part detection and abstraction CNN (SPDA-
CNN) [41] developed an end-to-end architecture containing
two sub-networks which performed semantic parts detec-
tion and recognition in a unified framework. SPDA-CNN
achieved an accuracy of85.1% with an ensemble of VGG-
VD16 model and AlexNet. Bransonet al. [3] proposed a
pose normalized deep convolutional neural network (PN-
CNN) to locate and normalize image patches, while em-
ploying a deep CNN to extract features for patch represen-
tation. By using both part annotations and bounding boxes,
PN-CNN achieved85.4% in accuracy.

Our G2DeNet achieves the best results among all re-
ported methods. Compared with ST-CNN, our G2DeNet
produces orderless representations which does not explic-
itly consider the spatial invariance, but outperforming ST-
CNN which performs the spatial transformations of fea-
tures. The methods [18, 42, 41, 3] all exploit part detec-
tors or ground truth part annotations, which often can sig-
nificantly improve recognition accuracies for fine-grained
recognition task. Even without bounding boxes and part
detector, our G2DeNet achieves1.7% ∼ 5.0% gains over
them. The competitive results show that our G2DeNet is a
very discriminative and robust image representation. Inte-
gration of part annotation with our G2DeNet may further
improve the performance, which will be our future work.

Methods
Accuracy (%)

Aircraft Cars
FC-CNN (VGG-VD16) 74.1 79.8
FV-CNN (VGG-VD16) [6] 77.6 85.7
BCNN (VGG-VD16)[14] 84.1 90.6
BCNN (VGG-VD16 + VGG-M) [14] 83.9 91.3

G2DeNet (Ours, w/o BBox) 89.0 92.5

Other Methods
75.9 [5] 90.5 [43]
80.7 [10] 92.6 [18]

Table 4. Classification accuracies of various methods on FGVC-
Aircraft and FGVC-Cars benchmarks.

4.2.2 FGVC-Aircraft

The FGVC-aircraft dataset [27] is a part of the FGComp
2013 challenge, which consists of 10,000 images across 100
aircraft classes. Comparison with birds dataset, the inter-
class variation of airplanes is more subtle, and in the images
the airplanes fill up larger regions but with more clear back-
ground. We exploit the fixed train/test split provided by the
dataset developers, and compare with FC-CNN, FV-CNN,
BCNN with VGG-VD16 model, and several other methods.

The results of different methods are listed in Table4
(middle column). We can see that our G2DeNet is better
than its counterpart BCNN by4.9%, and outperforms FV-
CNN and FC-CNN by11.4% and14.9%, respectively. As
we employ the same CNN model (i.e., VGG-VD16) with
FC-CNN, FV-CNN and BCNN, we attribute the improve-
ments to the proposed global Gaussian embedding layer.
Finally, we note that our G2DeNet outperforms the previ-
ous methods [5, 10] by a large margin.

4.2.3 FGVC-Cars

The FGVC-Cars dataset [20] is also presented as a part
of the FGComp 2013 challenge, containing 16,185 images
from 196 car categories. Following the commonly used set-
tings, we adopt the provided roughly 50-50 split by divid-



ing the data into 8,144 training images and 8,041 test im-
ages. We also compare with FC-CNN, FV-CNN, BCNN
and the other two state-of-the-art methods. The results
are reported in Table4 (right-most column). It can be
seen that our G2DeNet outperforms BCNN by1.9% when
VGG-VD16 is used. Combining VGG-VD16 and VGG-M,
BCNN improves but G2DeNet still has1.2% gains. Mean-
while, G2DeNet performs better than recently reported re-
sult [43], and is comparable to the previous best result [18]
where the bounding boxes are employed.

4.3. Ablation Experiments and Analysis

Finally, we employ Birds-200-2011 dataset without
BBox to analyze the effects of different training methods
and Gaussian embedding strategies on G2DeNet. Here, the
experimental settings are the same as those in Section4.2.

4.3.1 Training Methods

Firstly, we conduct experiments using three kinds of train-
ing methods based on VGG-VD16 model for our proposed
network. The first one (VD16-NoTr) combines global Gaus-
sian embedding layer with the VGG-VD16 model pre-
trained on ImageNet dataset in a non-end-to-end manner,
which can be seen as G2DeNet without any training. For the
second, we fine-tune VGG-VD16 model on birds dataset,
then combine global Gaussian embedding layer with the
fine-tuned VGG-VD16. This method is calledVD16-FT,
which can be seen as training G2DeNet in a non-end-to-end
manner. The last one is ourG2DeNet. We initialize it with
VGG-VD16 model pre-trained on ImageNet dataset, then
train our G2DeNet in an end-to-end manner. The results of
different training methods are illustrated in Figure3. Our
G2DeNet outperforms VD16-NoTr and VD16-FT by5.9%
and3.6%, respectively. It shows that plugging the global
Gaussian embedding layer into the deep CNN trained end-
to-end is much better than those with no training and train-
ing separately, and it also demonstrates the effectivenessof
our structural backpropagation method.

4.3.2 Gaussian Embedding

To show the advantage of our Gaussian embedding strat-
egy in G2DeNet, we compare with the three other kinds of
Gaussian embedding methods as described in Section3.4.
The results of different Gaussian embedding methods are
listed in Table5. From it we can see that our introduced
embedding method achieves the best performance, outper-
forming the competing methods by3% ∼ 3.6%. The per-
formance gains of our embedding method over [28] and
[4, 26] may be ascribed to the fact that ours appropriately
uses the Lie group structure of Gaussians, while the lat-
ter two only consider the manifold structure. The embed-
ding matrix in [4, 26] is symmetric positive definite, and

87.1

83.5

81.2

G2DeNet

VD16-FT

VD16-NoTr

80 81 82 83 84 85 86 87 88 89

Accuracy (%)

Figure 3. Effects of different training methods on G2DeNet using
VGG-VD16 on Birds-200-2011 dataset.

can be further subject to matrix logarithm [2], which, how-
ever, produces unsatisfactory results. From the perspective

of computing, [4, 26] keep the eigenvalues of
[

Σ+µµ
T

µ

µ
T 1

]

as they are, while [4, 26] + Log-Euclidean [2] and ours per-
form nonlinear scaling of the eigenvalues by logarithm and
square root, respectively. We conjuncture that the nonlinear
scaling can be seen as a kind of eigenvalues normalization,
and the square root may be more favorable than the loga-
rithm in such scenarios. The above analysis may account
for why different embedding strategies perform differently
but this issue needs further study in the future.

Method Acc. (%)

Nakayamaet al. [28] 83.5

Calvoet al. [4] or Lovrić et al. [26] 84.1

Calvoet al. [4] or Lovrić et al. + Log-Euclidean [2] 83.8

Ours 87.1

Table 5. Comparison of different Gaussian embedding methods for
the G2DeNet methodology on Birds-200-2011 dataset.

5. Conclusion

This paper proposed to plug a trainable layer of a global
Gaussian distribution as an image representation into deep
CNN architectures in an end-to-end learning fashion. It can
capture discriminative first- and second-order image char-
acteristics while appropriately utilize the structures ofge-
ometry and smooth group of Gaussians. The competitive
performance on large-scale region classification and chal-
lenging fine-grained recognition tasks demonstrate the ef-
fectiveness of our proposed method. As far as we know,
we are among the first who explicitly combined paramet-
ric statistical modeling with deep CNNs in an end-to-end
manner. This may motivate interests and efforts in plugging
other parametric distributions into CNNs, e.g., generalized
Gaussian distribution [30]. The proposed global Gaussian
embedding layer is modular and is of no parameter to learn,
readily applicable to AlexNet or VGG-Net, and combining
this layer with other CNN models (e.g., Inception [36] and
ResNet [12]) is our future research. We will also study other
applications of the proposed method, e.g., image retrieval.



References

[1] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic.
NetVLAD: CNN architecture for weakly supervised place
recognition. InCVPR, 2016.1, 3

[2] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Fast and
simple calculus on tensors in the Log-Euclidean framework.
In MICCAI, 2005.2, 5, 8

[3] S. Branson, G. V. Horn, P. Perona, and S. J. Belongie. Im-
proved bird species recognition using pose normalized deep
convolutional nets. InBMVC, 2014.7

[4] M. Calvo and J. M. Oller. A distance between multivariate
normal distributions based on an embedding into the Siegel
group.JMVA, 35(2):223–242, 1990.3, 5, 8

[5] Y. Chai, V. Lempitsky, and A. Zisserman. Symbiotic seg-
mentation and part localization for fine-grained categoriza-
tion. In ICCV, 2013.7

[6] M. Cimpoi, S. Maji, and A. Vedaldi. Deep filter banks for
texture recognition and segmentation. InCVPR, 2015. 1, 6,
7

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. ImageNet: A large-scale hierarchical image database.
In CVPR, 2009.5

[8] L. Gong, T. Wang, and F. Liu. Shape of Gaussians as feature
descriptors. InCVPR, 2009.3

[9] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale
orderless pooling of deep convolutional activation features.
In ECCV, 2014.1

[10] P. H. Gosselin, N. Murray, H. Jégou, and F. Perronnin. Revis-
iting the Fisher vector for fine-grained classification.Pattern
Recogn. Lett., 49:92–98, 2014.7

[11] A. Gretton, K. Borgwardt, M. Rasch, B. Schlkopf, and
A. Smola. A kernel method for the two sample problem.
In NIPS, 2007.1

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. InCVPR, 2016.9

[13] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015.7

[14] C. Ionescu, O. Vantzos, and C. Sminchisescu. Matrix back-
propagation for deep networks with structured layers. In
ICCV, 2015.1, 2, 4, 5, 6, 7

[15] C. Ionescu, O. Vantzos, and C. Sminchisescu. Training deep
networks with structured layers by matrix backpropagation.
arXiv, abs/1509.07838, 2015.4

[16] M. Jaderberg, K. Simonyan, A. Zisserman, and
k. kavukcuoglu. Spatial transformer networks. InNIPS,
2015.7

[17] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and
C. Schmid. Aggregating local image descriptors into com-
pact codes.IEEE TPAMI, 34(9):1704–1716, 2012.3

[18] J. Krause, H. Jin, J. Yang, and L. Fei-Fei. Fine-grained
recognition without part annotations. InCVPR, 2015. 6,
7, 8

[19] J. Krause, B. Sapp, A. Howard, H. Zhou, A. Toshev,
T. Duerig, J. Philbin, and L. Fei-Fei. The unreasonable effec-
tiveness of noisy data for fine-grained recognition. InECCV,
2016.6

[20] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3D object rep-
resentations for fine-grained categorization. InWorkshop on
3D Representation and Recognition, ICCV, 2013.2, 5, 8

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012.5

[22] P. Li, Q. Wang, H. Zeng, and L. Zhang. Local Log-Euclidean
multivariate Gaussian descriptor and its application to image
classification.IEEE TPAMI, 39(4):803–817, 2017.3

[23] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollr, and C. L. Zitnick. Microsoft COCO: Com-
mon objects in context. InECCV, 2014.2, 5

[24] T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear CNN
models for fine-grained visual recognition. InICCV, 2015.
1, 2, 6, 7

[25] L. Liu, C. Shen, L. Wang, A. van den Hengel, and C. Wang.
Encoding high dimensional local features by sparse coding
based Fisher vectors. InNIPS, 2014.1

[26] M. Lovric, M. Min-Oo, and E. A. Ruh. Multivariate nor-
mal distributions parametrized as a Riemannian symmetric
space.JMVA, 74(1):36–48, 2000.3, 5, 8

[27] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi.
Fine-grained visual classification of aircraft. Technicalre-
port, 2013.2, 5, 7

[28] H. Nakayama, T. Harada, and Y. Kuniyoshi. Global Gaussian
approach for scene categorization using information geome-
try. In CVPR, 2010.1, 3, 5, 8

[29] J. B. Oliva, D. J. Sutherland, B. Póczos, and J. G. Schneider.
Deep mean maps.arXiv, abs/1511.04150, 2015.1, 6

[30] F. Pascal, L. Bombrun, J.-Y. Tourneret, and Y. Berthoumieu.
Parameter estimation for multivariate generalized Gaussian
distributions.IEEE TSP, 61(23):5960–5971, 2013.9

[31] A. Rahimi and B. Recht. Random features for large-scale
kernel machines. InNIPS. 2008.1

[32] J. Sanchez, F. Perronnin, T. Mensink, and J. Verbeek. Image
classification with the Fisher vector: Theory and practice.
IJCV, 105(3):222–245, 2013.1, 3, 6

[33] G. Serra, C. Grana, M. Manfredi, and R. Cucchiara. GOLD:
Gaussians of local descriptors for image representation.
CVIU, 134:22–32, 2015.1

[34] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. InICLR, 2015.
5

[35] L. T. Skovgaard. A Riemannian geometry of the multivariate
normal model.Scand. J. Stat., 11(4):211–223, 1984.3

[36] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. InCVPR, 2015.9

[37] P. Tang, X. Wang, B. Shi, X. Bai, W. Liu, and Z. Tu. Deep
FisherNet for object classification.arXiv, abs/1608.00182,
2016.1, 3

[38] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural
networks for MATLAB. InACM on Multimedia, 2015.5

[39] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical re-
port, 2011.2, 5, 6



[40] Q. Wang, P. Li, W. Zuo, and L. Zhang. RAID-G: Robust es-
timation of approximate infinite dimensional Gaussian with
application to material recognition. InCVPR, 2016.1, 6, 7

[41] H. Zhang, T. Xu, M. Elhoseiny, X. Huang, S. Zhang, A. El-
gammal, and D. Metaxas. SPDA-CNN: Unifying semantic
part detection and abstraction for fine-grained recognition. In
CVPR, 2016.7

[42] X. Zhang, H. Xiong, W. Zhou, W. Lin, and Q. Tian. Picking
deep filter responses for fine-grained image recognition. In
CVPR, 2016.7

[43] F. Zhou and Y. Lin. Fine-grained image classification by
exploring bipartite-graph labels. InCVPR, 2016.7, 8


