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Abstract—Detecting objects in surveillance videos is an im-
portant problem due to its wide applications in traffic control
and public security. Existing methods tend to face performance
degradation because of false positive or misalignment problems.
We propose a novel framework, namely Foreground Gating and
Background Refining Network (FG-BR Net), for surveillance
object detection (SOD). To reduce false positives in background
regions, which is a critical problem in SOD, we introduce a new
module that first subtracts the background of a video sequence
and then generates high quality region proposals. Unlike previous
background subtraction methods that may wrongly remove the
static foreground objects in a frame, a feedback connection
from detection results to background subtraction process is
proposed in our model to distill both static and moving objects in
surveillance videos. Furthermore, we introduce another module,
namely Background Refining stage, to refine the detection results
with more accurate localizations. Pairwise non-local operations
are adopted to cope with the misalignments between features
of original and background frames. Extensive experiments on
real-world traffic surveillance benchmarks demonstrate the com-
petitive performance of the proposed FG-BR Net. In particular,
FG-BR Net ranks on the top among all the methods on hard and
sunny subsets of the UA-DETRAC detection dataset, without any
bells and whistles.

Index Terms—Object Detection, Background Subtraction,
Pairwise Non-Local Operation, Misalignment, Surveillance Video

I. INTRODUCTION

BJECT detection is defined by localizing all the objects

in an image with tight bounding boxes and simulta-
neously classifying them into the right categories. It is a
fundamental high-level task in many computer vision problems
such as object tracking [1], [2] person re-identification [3],
[4], object instance segmentation [5], [6] and human action
detection [7], [8]. Owing to deep convolutional neural net-
works (CNNs), we have been witnessing significant advances
in object detection in recent years. For generic object detec-
tion, CNN-based methods [9]-[13] have achieved remarkable
performances on both images and videos.

Detecting objects in surveillance videos, however, still has
its unique features challenging the algorithms. False positive
on the frame background regions is one of the most critical
problems for object detection in surveillance videos. A false
positive is a result that indicates a given condition exists, when
it does not. In the task of object detection, it refers to that
a method incorrectly detects a region as an object with a
high confidence score. Because all today’s conventional meth-
ods [5], [9], [11], [13]-[15] choose Region of Interests (Rol)
by sliding window method, false positives on background

regions is inevitable. This problem, however, is more serious
in surveillance object detection. Backgrounds in surveillance
videos change very slowly and a false positive, if it occurs,
will exist in the same background area for a while, as shown
in Fig. 1(a).

In order to reduce false positives on background regions,
many methods [16], [17] subtract the background before de-
tecting objects. The background of a surveillance video can be
subtracted by some independent Background Subtraction (BS)
methods [18], [19]. But simply implementing BS methods
would introduce other issues. The conventional BS methods
just subtract the static elements in a video, which means they
can falsely eliminate the static foreground objects such as cars
and pedestrians waiting in front of the traffic lights. That’s why
the BS methods are commonly used in the field of moving
object detection rather than object detection.

Another problem related to BS process is misalignment.
Camera vibration is common in traffic surveillance scenarios
due to the complicated situations outdoors. It would lead to
misalignments between frames, and further make backgrounds
blurred and foregrounds full of noise, as shown in Fig.
1(b). Moreover, since some effective information is removed
after BS process (e.g., static foreground objects such as cars
and pedestrians), it is not enough to only use the obtained
foreground frame as an input to the detection framework.
To get a better detection performance, both the original and
foreground frames are needed. Thus, misalignment between
the feature maps of original and foreground frames also should
be considered when using both of them as inputs.

In addition, the object detection in surveillance is a fun-
damental task. It provides the object information for the
subsequent tasks, such as person or vehicle re-identification,
vehicle violation lane change detection, which highly depend
on the object localization accuracy. Therefore the assessment
criteria for evaluating detection methods is much more strin-
gent: the mean Average Precision (mAP) is computed with
a higher Intersection over Union (IoU) threshold (0.7) than
the conventional one (0.5) in many traffic benchmarks [20],
[21]. The high IoU threshold demands high overlaps between
detection results and the ground-truth labels, and more efforts
are needed to optimize the algorithms for getting high quality
bounding boxes.

In this paper, we propose a Foreground Gating and Back-
ground Refining Network (FG-BR Net) to accurately detect
objects in surveillance videos. The proposed method works on
two stages. First, the Foreground Gating (FG) stage supplies
high quality Rol proposals by amplifying feature activations on
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Fig. 1. Challenges on surveillance object detection: (a) false positive problem: the stone in the center of the images has been detected as a car in this video
sequence; (b) misalignment problem in Background Subtraction (BS), the left image is a fusion of two frames in different time, showing that the camera has
moved slightly, and the right image is the corresponding foreground image using the conventional BS method; (c) the criteria for evaluating detection methods

are stringent (IoU > 0.7) in many surveillance datasets.

foreground objects while suppressing background regions (i.e.,
reducing false positives on these regions). Then, the Back-
ground Refining (BR) stage refines those proposals by pairwise
non-local operations which pay attention to the background,
instead of the frame input itself, to deal with the misalignment
problem.

To this end, we set up the Foreground Gating stage with
two branches: a multi-layer semantic feature extraction branch
which extracts features for proposal generation, and a fea-
ture mask branch which first subtracts the backgrounds of
current frames and then generates feature-level masks from
the foreground frames. Inspired by BS through low-rank
subspace exploration [22], we formulate the BS process as a
Recurrent Neural Network (RNN) and integrate it into CNN-
based network. As a result, the whole stage can be trained
end-to-end. We also introduce a feedback connection from
detection results to BS process, which helps our BS-RNN
block distill both static and moving objects in surveillance
videos. And in the Background Refining stage, we recycle the
background frames, crop the Rol proposals from both original
and background frames and send them as input pairs into a
weight sharing convolutional network to get refined detection
results. In this stage, pairwise non-local operation is proposed,
which is inspired by [23], [24], to cope with the misalignments
between features of original and background frames. Briefly,
it computes the response at a position of original frames as a
weighted average of the features at all positions of background
frames.

The contributions of this paper are summarized as follows.

o First, we simplify the state-of-the-art online BS method
OMoGMF [22], and formulate it as an RNN to get
foregrounds frame by frame. We integrate this BS-RNN
into Foreground Gating stage and fine-tune the parameter
(p) in BS-RNN by high-level detection loss.

e Second, we introduce pairwise non-local operations into
Background Refining stage to compute the correlations
between the features of original and background frames.
As far as we know, we are the first to introduce non-local
operations to handle the misalignment problem.

o Finally, we propose a novel FG-BR Net for detecting
objects in surveillance videos, which we will demonstrate
is accurate and robust. Experiments are conducted on
several surveillance datasets, and the FG-BR Net outper-
forms the state-of-the-art methods. The results are made
publicly available.

A preliminary version of this work was published pre-
viously [25]. The present work adds to the initial version
in significant ways. First, we improve the framework in the
previous manuscript by introducing an image transformation
to reduce the impact of camera vibration to some extent
during the background subtraction process. The modifications
of the method made for UA-DETRAC [21] dataset are also
provided in this manuscript (Section III). Second, we extend
the previous method with a novel Background Refining stage.
The new stage further copes with the misalignment problem
and enhances the detection performance. Third, considerable
new analyses and intuitive explanations are added to the initial
results. We also attend the detection competition of UA-
DETRAC. Without any bells and whistles, our method ranks
on the top among all the methods on hard and sunny subsets.
In addition, we compare with a number of recently published
methods and confirm that our FG-BR Net still outperforms the
existing approaches.

II. RELATED WORK

Surveillance Object Detection. Detecting objects in
surveillance videos has its own unique challenges, as we
mentioned in Section I. Previous works usually rely on a
wide spectrum of analysis tools, from frame differencing [17]
to background subtraction [16], to generate semantic features
for object detection. These methods mainly focus on moving
foreground objects in spite of existence of many static ones
that need to be detected such as cars and pedestrians waiting
in front of traffic lights at intersections. Object detection
in nighttime also imposes additional challenges on those
methods for surveillance object detection that should properly
deal with over-exposure and defocus aberration. A recent
work [26] attempts to solve night object detection problem
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by combining HOG and background subtraction. However, it
differs from conventional methods by using thermal images as
inputs. NoScope [27] proposes an extremely fast framework
for surveillance object detection. It is promising to speed up
object detection but remains unsatisfactory as it significantly
sacrifices its generalization capability to reduce computing
costs.

Background Subtraction. The goal of background subtrac-
tion is to separate foreground objects from their background
in a video sequence. The academic community has achieved
fruitful breakthroughs in the field of background subtraction
in the past few decades. And several surveys [28]-[30] could
be found in literature, providing complete overviews for both
novices and experts.

The simplest method only uses a statistic measure, like me-
dian [31] or mean [32] over multiple frames to model the static
background. Other complex distributions on background pix-
els, such as MoG [18], are more effective and robust to model
slightly changed background. In recent years, online subspace
learning approaches have made significant progress on back-
ground subtraction from live streams of videos in a real-
time online fashion. Several renowned studies [33], [34] focus
on this field, among them are GRASTA [19], incPCP [35],
OMOoGMEF [22], ReProCS [36], [37] and MEROP [38]. These
online models can greatly speed up the background subtraction
through updating the low-rank structure of video background
by processing only one frame at a time. They are amenable
to efficiently process videos without storing and analyzing a
large number of frames.

In OMoGMF, a re-weighted Ly norm loss function is finally
formulated for the tth frame based on current background
subspace U and the coefficient parameter v for background.
Briefly, the loss function minimizes the residual between the
tth frame and the corresponding background with a regular-
ization term R (U):

LY(U,v) = |lw' © (x' = Uv)[|3 + R(U)

d
R(U) = p3 (s — ul )T (AL (g — )
i=1
where xt € R¢ is a column vector by simply vectorizing
the ¢th frame. d is the number of pixels of the ¢th frame.
U € R4*" and each column of U represents a base vector of
background subspace. The background image of the current
frame, namely Uv, is formulated as the linear combination of
all these base vectors. 7 is the rank of U and v € R"*! is the
coefficient vector. ® is element-wise multiplication. w' € R4
is the weight vector of the residual between the tth frame x*
and the corresponding background Uv. It controls the extent
to which the residual at each pixel position affects the re-
weighted Lo norm loss. The definition of w? depends on the
distribution of foreground residual. In OMoGMEF, it assumes
that the foreground follows a Mixture of Gaussians (MoG)
distribution, thus w' is related to parameters of MoG and
residual. In this paper we will make a simple formulation for
w'. R4 (U) is the background subspace regularization term,
p is a regularization parameter which controls the strength of
impact that the previous frames make on current one. u; and

uffl denote the row vector of U and old background subspace
U1 respectively, and {A!}¢ | is an auxiliary variable.
Equation (1) can be solved by the following re-weighted
iterative algorithm [39] through solving each iteration.

vi = (Ut_leiag(wt)2Ut_1)_lUt_leiag(Wt)th 2

The closed-form solution for U? for i = 1,--- ,d is:
at=l(pr wlATVVE AT
o\ p+uwvtT Ayt |7
) K3 1 (3)
b’; = pbﬁ_1 + wf xﬁvt.
ul = AlD

where {b!}% | is another auxiliary variable for recurrently
updating U? together with {A!}¢ ;. Finally U'v? is the
background of the tth frame x*.

In addition, transformed-OMoGMEF [22] has introduced an
image transformation operator to mitigate the effects of video
shakes. The parameters of the transformation can be obtained
by optimizing the objective function. Due to the complicated
installation situation in the outdoor, camera vibration is com-
mon in traffic surveillance scenarios. Image transformation
needs to be considered in response to the camera vibrations.

However, there exists flaws when simply shifting this
method to detection problem for pixel-level mask generation.
For example, it cannot handle the situation where target objects
stop moving for a while in videos. We address this problem
with a close-loop pipeline by feeding back object detection
results to model static foreground objects.

Non-Local Operation. The method non-local means [40]
was originally proposed for image denoising. It is based on
a non-local averaging of all pixels in an image and allows
distant pixels to contribute to the filtered response at a location
based on patch appearance similarity. Subsequently, several
elegant methods share the non-local matching insights in other
research fields such as super-resolution [41] and image restora-
tion [42]. The self-attention method for machine translation
in [24] computes the response at a position as a weighted
average of correlations at all positions in a sequence. As
discussed in [23], the self-attention can be viewed as a form
of the non-local means operation. Besides, the work [23]
also proposes a non-local block based on neural networks.
It computes the response at each position of CNN feature
layers rather than the image pixels. It has achieved great
improvements on the task of video classifications.

III. APPROACH

In this section, we present the FG-BR Net to enable effec-
tive object detection for surveillance videos. The framework
consists of two stages: 1) a Foreground Gating stage which
supplies high quality Rol proposals by amplifying feature ac-
tivations on foreground objects while suppressing background
regions; 2) a Background Refining stage which handles the
misalignment between features of backgrounds and original
frames, and refines those proposals by pairwise non-local
weighted background fusions.
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Fig. 2. Pipeline of our FG-BR Net. In FG stage, a frame is fed to two branches in parallel. In BS-RNN block, the frame is vectorized as a column vector
zt first. wt, {AL}E |, {b!}L | and U* are updated in turn based on Ut~ {AT=11d  fpi=11d and the feedback masks QP~1 from the (¢t — 1)th
frame. In BR stage, the backgrounds from BS-RNN block is combined with the original patch as the input pair. The pairwise non-local operation is embedded

before the last residual block (Res4). Time delay is indicated with dash line.

A. Foreground Gating stage

1) Feature-level Mask Generation Branch: Masking mech-
anism has been proved effective on many computer vision
tasks such as semantic segmentation [43] and image classifica-
tion [44]. For object detection, we experimentally show in this
paper that the masking operation also helps object detection
and it is sensitive to the inputs. We introduce a BS-RNN block
and a feature gating block which distills both static and moving
foregrounds and reduces false positives on background regions
respectively.

BS-RNN Block. OMoGMF [22] constructs a background
subspace U? with the rank of r, and a learnable coefficient
parameter v! to handle the cases with fast changes in lumi-
nance. We simplify this method and formulate it as an RNN
to explore the temporal information.

OMoGMF models the distribution of input z! to solve the
weight parameter w! in (1). The method in OMoGMF is
intricate and does not fit for our detection network. Based on
the principle proposed in OMoGMEF that w! should be large to
increase its impact on loss function where the residual, namely

T . .
|zt — uf™ vt is small, we reformulate w' as following:
_ 1
T “)

t
B e

w;

where € is set to be a very small number. The performance is
not sensitive to p ranging from 0.5 to 1 in our experiments and
we set L, norm as p = 1 for convenience. Equation (4) keeps
the core property that w! should be large where the residual
is small.

In real applications, the subspace U? only changes slightly
over time, thus we set r to a small value, even to rank-
one, which still works well in our experiments. So the vector
vt € R" degenerates into a real number and we set it to

(a) (b)

Fig. 3. Foreground frame by (a) OMoGMF [22]; (b) BS-RNN with detection
result feedbacks. Static cars and cyclists are preserved as foreground by
feedbacks.

1 for simplification. Besides, fixing v? to 1 in this paper is
also based on the precondition that luminance in surveillance
scenarios usually changes slowly and it can be handled by
updating U’ frame by frame. Due to r = 1, Al € R™™",
b! € R and u! € R" all degenerate into real numbers
At bt ul fori=1,--- ,d.

17 )

We further parameterize the regularization parameter p € R
to multiple {p;}¢_, € R? which could fine-tune outputs of
BS-RNN through different RGB channels and positions. The
corners in surveillance videos, for example, almost remain
unchanged compared with the center and thus a larger p;
is needed in these corner areas. We automatically fine-tune
{pi}L, in the FG stage.
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Fig. 4. Explanation of how Foreground Gating stage helps detection. Enhanced by feature masks of the foreground frame, the red circle regions in the left
image are finally detected or eliminated. For a simple visualization, we select only one channel in 1/16 (conv4) feature layer and up-sampling it by bilinear
interpolation. A bounding box is plotted if its confidence score is larger than 0.3.

Conv 3x3x256

Elt-wise product
Conv 3x3x4(c+4)

1
IDetection features

Fig. 5. Details of a gate module. The number of output channel is 4 X (c+4).
¢ denotes class number, the first 4 is anchor number and the second denotes
4 coordinates for localization.

In short, Equation (2) and (3) can be simplified as following:

wh = _

Dol uT e

ATt

At = — ¢

’ pi + ’U)E2A§_1 )

_ 2

bt = pibl !+ wlat
ul = Albt

We just need compute U? through updating w’, At and b? in
a recurrent fashion and no longer have to iteratively solve v'.
U turns out to the background of current frame ! as v is set
to be 1. The above iterative computing can be implemented
recurrently in an RNN structure, and thus we call it BS-RNN
block. This network view of the BS-RNN block allows us
to train it together with the feature extraction and detection
branches in an end-to-end fashion.

In addition, as illustrated in Fig. 2, one of the most distinc-
tive features in the proposed stage is that we allow the high-
level detection results to feed back into the BS-RNN block to
further improve its accuracy. Denote by Q'~! € R? the binary
masks that are complement to the masks of detected objects
for the previous frame !~

- ot-1
Q§_1:{0, i€0 ©)

1, otherwise

where ©°~! denotes the set of indices of pixels which locate
in the detection bounding boxes in the (¢ — 1)th frames. Then,
instead of updating {A!} and {b} for all i = 1,--- ,d, we
only update those background pixels for 2'~! = 1. Feeding
back the object detection results into BS-RNN plays an
important role in our application, as it could avoid neglecting
static foreground objects of interest (e.g., the cars waiting for
traffic lights).

With these feedbacks, the BS-RNN block is able to distill
both static and moving objects in surveillance videos. Fig.
3 shows how the feedbacks of object detections successfully
correct the errors in BS-RNN block.

Feature Gating Block. With the above BS-RNN block,
foreground masks are extracted from video frames at pixel
level. These foregrounds are then fed into a feature gating
block to generate feature masks.

As shown in Fig. 2, the feature gating block consists
of hierarchical feature layers with connected gate modules.
Since we use multi-layer features to detect objects at different
scales, namely multi-scale detector, the layers in feature gating
block are extracted to generate corresponding feature-level
masks. The role of feature-level masks is to assist the feature
extraction branch in further optimizing its feature activations:
amplifying foreground regions with large mask values, while
suppressing the activations in background regions with small
mask values. The feature-level masks are generated from the
foreground frame, in which the disturbance that causes false
positives in background regions has been already subtracted.
Intuitive examples are shown in Fig. 4. Since most of image
regions are suppressed as background, the feature map can be
quickly down-sampled to 1/8 of input size by convolutional
layers with a stride of 2. Then we continue to perform down-
sampling until the feature size reduces to 1/128 of input size.
To balance between computation cost and detection accuracy,
the channel number is set to 32 all through the down-sampled
layers.

As shown in Fig. 5, the gate modules in the feature gating
block generate feature-level masks by using sigmoid activation
functions, which are used to suppress background regions of
feature maps for detection. Although binary masks work well
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on semantic segmentation [43], we experimentally show that
feature-level masks are much more proper for object detection.
An ablation study is performed in Section IV-B.

2) Semantic Feature Extraction Branch: We use
ResNet18 [45] as the pre-trained model to extract multiple
feature layers for object detection. Similar to SSD, we remove
the average pooling layers from the pre-trained model and
add auxiliary convolutional layers to detect large sizes of
objects. The sizes of feature map for object detection are
1/8 (conv3), 1/16 (conv4), 1/32 (conv5), 1/64 (conv6) and
1/128 (conv7) of the input frames, both in width and height.
At each layer, we consider only 4 anchor bounding boxes
with different scales and ratios at each location. The number
of anchors is reduced to 4 to save memory and cut down
complexity. We adopt cross-entropy loss and smooth I,
loss to jointly train object classification and bounding box
regression.

Although many recent researches [46], [47] show that top-
down structures do boost detection performance especially
for small objects, we do not adopt this structure for two
reasons: 1) pursuit of efficiency and 2) fair comparison with
the baseline methods. It will not be surprising for getting a
better result after adding a top-down structure in FG stage,
but that is beyond the scope of this paper.

B. Background Refining stage

Single stage methods [9], [10] usually under-perform two
stage methods [5], [15], [46], especially in large scale datasets,
such as COCO [48]. Because the features obtained by Rol
pooling operation are more accurate in the two stage methods,
the predictions for classification and localization are both
refined in the second stage. The single stage methods do not
have this refinement process.

Moreover, the misalignment is a crucial problem when using
the foreground or background as a gate for the original frame.
There are two main reasons for this problem. One is camera
vibration, which leads to the misalignment between frames
in pixel level, and further makes the background subspace
blurred, as illustrated in Fig. 1(b). The other one is unshared
parameters between two branches of FG stage, which leads to
the slightly misalignment in feature level.

Based on the above two defects, we introduce a Background
Refining stage as the second stage to complete the detection
framework. Similar to R-CNN [12], we first crop the Rol
proposals, which are generated in the FG stage, from both
original images and backgrounds. These cropped original and
background patches are grouped into pairs, then sent into
a Siamese-like network, which are two ResNet50, sharing
the same weight parameters during training and inference. In
this stage, we handle the misalignment problem by pairwise
non-local operations between the original frames and its
backgrounds. Instead of the pixel-wise multiplication, which
is sensitive to misalignments, we compute the response at a
position in feature maps of the original frames as a weighted
average of the features at all positions in feature maps of
the background frames. Every position in background features
is considered when computing the response at a position of
original frames.

lg(-)

NO) Output
Background Features
—» conv 1x1 conv 1x1
Features
brckg b*s*c 1

softmax

P

b*s*c b*h*w*c

Original

— conv 1x1
Features o

6(-)

Fig. 6. Details of pairwise non-local operations. b % h * w * ¢, namely
batchsize x height * width * channel, indicates the shape of data tensor.
For the convenience of matrix operations, we reshape the input tensors to
bx s % c, where s = h * w, and permute the background tensor to b * c * s.
® denotes matrix product of two tensors and & denotes element-wise sum.

Pairwise Non-Local Operation. Following the non-local
mean operation in [40], Wang et al. [23] defined a generic
non-local operation in deep neural networks as:

yi = ﬁ S Fxi,x7)9(x;) o
\Z]

where x is the input vector and y is the output. ¢ is the index of
the target position whose response is to be computed. C(x) is a
factor that normalize the output. The function f(-) computes
the weight, which represents the relationship between ¢ and
all 5 (all elements in x). Then with the representations of the
input vector, namely g(x;), the output response is obtained as
a weighted sum of all positions of the input vector.

In machine translation field, Vaswani et al. [24] also in-
troduced a self-attention module to draw global dependence
between input and output. The self-attention function is for-
mulated as:

QK"
Vi

where matrices Q, K and V denote a set of queries, keys and
values respectively, and d denotes the dimension of keys. The
self-attention module is described as mapping a query and a set
of key-value pairs to an output. The output is also computed
as a weighted sum of the values. As pointed in [23], self-
attention module can be seen as a specific form of non-local
means operation when in (7):

Attention(Q, K, V') = softmax(

W ®)

fxi,%;) = Ixi) T b(x;)

C(x) = f(xi %)) ©
Vi

The self-attention [24] is reflected in that fact that the output
of a word is related to all words in the sequence it belongs
to (the sequence itself). Similarly, the output response in non-
local operation [23] is also computed as a weighted average
of all elements in the signal (image, sequence, video) itself.
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Contrast to the mechanism of attention to itself, we modify
(7) and introduce a pairwise non-local operation to let the
output response pays attention to its background:

1 NP

Vi< o®m) %: f(xi,%5)9(%;) (10)
where x denotes the features of an image and X denotes the
features of its background. Instead of the pixel-wise multipli-
cation in the FG stage, all positions (Vj) in the background
are considered when computing the response at any position
in this BR stage. The pairwise non-local operation would
alleviate the impact of misalignment by taking all positions
of background into consideration and reassigning the weights
based on similarity. Fig. 6 shows the pairwise non-local
operations in detail.

For simplicity, we follow the settings in [23]: C(-) and f(-)
are defined as in (9), and g(-) is defined as a linear embedding:

9(%j) = WZ; (11)

where W is a weight parameter set of 1 x 1 convolution. Both
0(-) and ¢(-) in (9) are linear embeddings, similar to (11).

The residual connection is implemented following the non-
local network [23] and self-attention [24]. When the pair of
positive samples (the patch which contains a car for example)
are sent to the pairwise non-local operation block, the output
responses tend to be small in the main areas because the
background patches have no similarity. But when the pair be-
longs to negative sample, the responses tend to be large as the
most areas of the original image patch are backgrounds. With
the residual connection, the large responses would counteract
those from original image patch and eventually suppress the
classification confidence score of this patch.

C. Algorithm Base for BS-RNN

It is worth noting that there are three main reasons why
we choose OMoGMF [22] as the base for BS-RNN block:
1) OMoGMF is effective on background subtraction and
has a better performance than other online models such as
GRASTA [19], incPCP [35] and ReProCS [36], [37], as
pointed out by Yong et al. [22]. 2) OMoGMF is friendly
to GPU migration because it updates the background frame
through a pixel-wise way without singular value decompo-
sition (SVD). 3) It is convenient to formulate OMoGMF as
an RNN for deep coupling with CNN-based object detection
network. In contrast, GRASTA, incPCP and ReProCS all need
SVD, which is difficult to perform gradient back propagation.

Meanwhile, many deep learning based background subtrac-
tion works [49]-[51] have been introduced in recent years.
Bouwmans et al. [51] reported that the top current background
subtraction methods are based on deep neural networks with
a large gap of performance in comparison on the conventional
unsupervised approaches. These deep learning approaches are
supervised methods and rely on explicit foreground annota-
tions for training. However, we focus on object detection in
this paper and annotations of the datasets used in our experi-
ments are class-specific bounding boxes instead of foreground
pixels. As a result, the unsupervised OMoGMF is a reasonable
choice of the base for BS-RNN block.

D. Implementation Details

Image Transformation Operator 7. As demonstrated in
Section III-B, camera vibrations would lead to misalignment
problem in pixel level. We introduce an image transforma-
tion operator in BS-RNN block to reduce the influence of
camera vibrations and further obtain clearer foreground and
background frames. Owing to t-OMoGMF [22], an image
transformation operator can be introduced to the model to
make all the frames aligned to a central position. The loss
function should be changed as:

L'(U,v,7) = || -x" = Uv|]s + R (U) (12)

where 7 is the parameter of the image transformation operator
and 7-x denotes the transformation with parameter 7 works on
the image x. The 7 can be obtained by optimizing the follow

LU, v, A7) = || -x" + JAT = Uv|p + RB(U)  (13)

where AT is a shift variable of 7, and J is Jacobian matrix of
7 w.rt. X' and 7 can be updated by the equation 7 = T+ Ar.
In addition, image pyramid strategy is adopted to accelerate
computation.

Fine-tune the Parameter p. For the FG stage, an in-
tractable problem during training is that all frames have to
be sent as inputs chronologically when our BS-RNN block
is embedded into network, because the auxiliary variables
A and b? have to be updated frame by frame successively.
When the video sequences are too long, training them in
chronological order would hurt the capacity of stochastic
gradient descent (6-8 point decline in our experiments).

To address this issue, we propose a new way to train our
FG stage. First we set all {p;}¢_, to 0.9 as initial values,
get foregrounds of all frames chronologically and save them
into a cache, and then we randomly choose frames with
their pre-saved foregrounds to train the whole nets excluding
{p;}L_, with SGD, batch size 4 for 40k iterations. Second
we begin to fine-tune {p;}%_; through the backward gradients
from the detection loss. During this period the inputs are
chronologically ordered. After 3k iterations we update the
cache with new parameter {p;}¢_ ;. Then we repeat the first
step for 3k iterations and next repeat in this way. We fine-tune
{p;}_, from a coarse initial value 0.9. It could also be regard
as that the unsupervised problem (background subtraction) is
supervised by the high-level detection loss.

Training Details. We train the FG stage using SGD with
an initial learning rate 0.001, 0.9 momentum, 0.0005 weight
decay, in a batch size of 4. In training phase, ground truth
bounding boxes are used to form masks fed back into the
BS-RNN. Detection results with confidence scores larger than
0.3 are used to generate masks in the inference. The Non-
Maximum Suppression (NMS) threshold is set to be 0.65
to ensure the proposals have a large recall rate. The FG
stage can work as a detector, by switching the class-agnostic
classification to class-specific and setting the NMS threshold to
be 0.5 in our experiments. We treat the FG stage as a detector
for ablations. The object detection accuracy is measured by
Average Precision (AP) and mean Average Precision (mAP).

The Background Refining stage is trained similar to R-
CNN [12]: crop and resize the proposals to 224 x 224, and
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TABLE I
SINGLE-MODEL DETECTION RESULTS ON TSD TEST SET. OBJECT CATEGORIES INCLUDE CAR, BUS, TRUCK, CYCLIST AND PEDESTRIAN. DARKNET19 IS
USED AS BACKBONE IN YOLOV2, AND VGG16 1S USED IN SSD, MS-CNN AND FG-VGG16. THE DEFAULT FG IN TABLE IS BUILT ON RESNET18.
THREE VERSIONS OF MS-CNNS DIFFER FROM EACH OTHER IN THE SIZE OF INPUT IMAGES AND NETWORK DESIGNS [13]. THE AVERAGE PRECISION
(AP) ON EACH CATEGORY IS OBTAINED WITH AN [OU THRESHOLD 0.5.

method test set for the-same-scenario (test set 1) test set for cross-scenario (test set 2)
car bus tru cyc ped | mAP car bus tru cyc ped | mAP
YOLOV2 [10] 61.0 712 59.1 668 442 | 605 | 588 494 457 494 232 | 453
SSD [9] 8.1 770 663 749 51.1 | 705 | 741 617 59.6 63.1 332 | 583
MS-CNN vl [13] | 864 60.5 588 677 465 | 640 | 683 36.1 394 549 363 | 47.0
MS-CNN v2 [13] | 87.0 702 665 734 524 | 699 | 70.7 420 523 622 419 | 538
MS-CNN v3 [13] | 87.3 733 675 747 577 | 72.0 | 702 407 448 61.7 40.7 | 51.6
FG-ResNet18 898 770 694 750 589 | 740 | 700 61.6 557 628 428 | 58.6
FG-VGG16 91.2 812 723 798 633 | 775 | 744 547 549 699 44.7 | 59.8
TABLE I

ABLATION STUDY ON TSD TEST SET. FOREGROUND AND SUBNET DENOTE THE USE OF FOREGROUNDS AND MASK GENERATION SUBNET RESPECTIVELY,
AND ELE-WISE IN p MEANS USE OF {pi}:;i:l FINE-TUNED BY DETECTION LOSS.

model | foreground?  subnet? mask p testl  test2 S M L adverse scenarios
A pixel-level ele-wise | 66.5 50.7 | 20.0 647 75.1 46.6
B N/A N/A 71.6 525 | 302 673 735 48.9
C v N/A 0.9 705 535 | 321 677 714 54.2
D v feature-level N/A 735 551 | 317 69.1 748 51.6
E v v feature-level 0.9 72.8 58.0 | 325 70.1 763 55.8
F v v feature-level ele-wise | 74.0 58.6 | 34.7 70.7 76.5 56.2
TABLE III TABLE IV

RESULTS ON TSD TEST SET. THE FIRST THREE COLUMNS ARE AP ON
DIFFERENT CATEGORIES OF OBJECT SIZES. S DENOTES SMALL SIZE
OBJECTS (HEIGHTS <20 PIXELS), M DENOTES MEDIUM SIZE OBJECTS
(HEIGHTS BETWEEN 20 AND 52 PIXELS) AND L DENOTES LARGE SIZE
OBJECTS (HEIGHTS >52 PIXELS). THE LAST COLUMN IS MAP IN
ADVERSE SCENARIOS FOR DETECTION DUE TO OVER-EXPOSURE AT NIGHT
AND MOTION BLURS CAUSED BY CAMERA VIBRATIONS.

ABLATION ON UA-DETRAC VALIDATION SET. “NON-LOCAL” COLUMN
INDICATES THE TYPE OF NON-LOCAL OPERATIONS THE MODEL INVOLVES.
“POS:NEG” COLUMN INDICATES THE RATIO BETWEEN POSITIVE AND
NEGATIVE PROPOSALS IN A MINI-BATCH. “AP@0.5” MEANS AVERAGE
PRECISION THAT OBTAINED WITH THE IOU THRESHOLD 0.5 AND
“AP@0.7” MEANS AP WITH [IOU THRESHOLD 0.7.

method input size AP on size mAP on .
S M L adverse scenarios
YOLOvV2 416 x 416 126 556 713 42.5
SSD 300 x 300 159 728 734 52.6
MS-CNN vl1 682 x 384 557 66.7 449 38.5
MS-CNN v2 | 1024 x 576 | 51.1 71.0 56.5 46.9
MS-CNN v3 | 1356 x 768 | 50.5 703 614 46.8
FG 496 x 279 347 70.7 76.5 56.2

model non-local  backbone  posineg | AP@0.5 AP@0.7
baseline 82.66 76.67
A ResNet18 1:1 85.05 79.12
B normal ResNet18 1:1 85.93 80.30
C pairwise ~ ResNetl8 1:1 86.31 81.85
D pairwise  ResNet50 1:1 87.65 83.02
E pairwise ~ ResNet50 1:4 87.32 82.76

train the Siamese-like network from ResNetS0 pre-trained on
ImageNet. The cross-entropy loss and smooth L; loss are
still adopted to jointly train object classification and bounding
box regression in BR stage. The pairwise non-local block is
added to right before the last residual block of a stage, to
balance the spatial information and semantic information. The
BR stage is trained using SGD with an initial learning rate
0.001 and which decays 10 times after 40k iterations, 0.9
momentum, 0.0005 weight decay, batch size of 64 (the ratio
between positive and negative proposals is 1 : 1), a total of
60k iterations.

Our framework is implemented using PyTorch [52] and runs
on a workstation configured with an NVIDA P100 GPU card.

IV. EXPERIMENTS
A. Experiment Setup

We perform comprehensive studies on the challenging UA-
DETRAC dataset [53] to demonstrate the outperformance of
the proposed method, namely FG-BR Net. UA-DETRAC [53]
contains 100 challenging video sequences corresponding to
more than 140,000 frames of real-world traffic scenes. There
are more than 1.2 million vehicles labeled with bound-
ing boxes in this dataset. The videos are recorded at 25
frames per seconds (fps), with the JPEG image resolution
of 960 x 540 pixels. The evaluation metric of UA-DETRAC
detection benchmark is strict: 0.7 IoU threshold is adopted
for detecting cars. A website' is available for performance
evaluation of object detection. The results of FR-BR Net,
single model without any bells and whistles, has been made
publicly available.

Uhttp://detrac-db.rit.albany.edu/DetRet
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For further detailed study of each component of FG-BR Net,
a large-scale traffic surveillance dataset (TSD) is collected.
It consists of videos from 18 different traffic scenes, with
13.2k frames for training and 11.8k for test. The test set
can be further split into test set 1 (4.8k frames) from the
same scenarios (but different videos) with the training set,
and test set 2 (7k frames) from different scenes for testing
generalization capability. The dataset has 5 object categories
in total: car, bus, truck, cyclist and pedestrian. Both training
and test sets contain scenarios in the daytime and nighttime,
on overpass and intersection, with fixed cameras and cameras
that horizontally rotate about 90 degrees every 20 minutes. We
conduct experiments on TSD dataset to evaluate and analyze
performance of the FG stage.

B. Experiments on TSD Dataset

The FG stage plays the role of Selective Search [60] in Fast
RCNN [61], which selects high quality region proposals for
the next stage. Moreover, the FG stage can be converted into a
multi-scale single-shot detector by switching the classification
task from class-agnostic to class-specific. The performance of
FG as a detector reflects the quality of the region proposals
when the it acts as a stage. Thus in this section, the FG stage
is converted into a FG detector, to compare it with the state-
of-the-art methods on TSD dataset.

As shown in TABLE I, the FG detector, with either
ResNet18 or VGG16 backbone, outperforms the other models
on both the-same-scenario (test set 1) and cross-scenario (test
set 2) test sets in terms of mAP. In the following, we use FG-
ResNet18 as our default FG detector and simply denote it by
FG.

TABLE I shows FG is fairly good without up-sampling
input frame sizes. The results show the FG outperforms SSD
and YOLOV2 on small categories. MS-CNN performs better
on small size objects, as its input size enlargement trick
plays a critical role in improving its sensitivities on detecting
small objects. However, MS-CNN models make very poor
performance on the large category as the input enlargement
makes it hard to detect too large objects out of their receptive
fields after the enlargements. FG is more stable in detecting
different sizes of objects.

In addition, the subsets with the scenes of nighttime and
camera vibration are picked out from the test set to make
them into a new test set, namely adverse scenarios in TABLE
III. In these scenarios, the image quality is poor, which would
lead to increment false positives of the detection algorithm.
The results in TABLE III demonstrate that the FG is more
robust than the other compared models on these challenging
scenarios. FG performs the best among the compared models
with at least 3-point lead. We suggest that feature-level masks,
which are shown in Fig. 4, amplify feature activations on
foreground objects and suppress the activations on background
regions. Thus FG can reduce the number of false positives
while increasing the recall rate.

Ablation Experiments on FG Stage. Ablation studies are
performed to analyze the FG stage on TSD dataset. Results
are reported in Table II and discussed in detail below.

Pixel-level mask is imperfect for object detection. We
convert the foregrounds distilled by model F' into binary pixel-
level masks, and then use these masks directly for gating
features in model A. Compared with model B that has no
gating operation, A is worse almost in all terms. The results
show that binary masks is not proper for object detection task
as the masks are merely at pixel level.

Both original image and foreground are indispensable.
Foreground images are directly involved in model C' without
feature gating block. Model C' has the same structure with
B except replacing the original images with foregrounds as
inputs. C' is worse than B in test set 1 while outperforming
B in test set 2, which suggests foregrounds cannot completely
replace original images. It is not surprising as useful contextual
information could be removed during background subtraction
process that may improve generalization capabilities of a
detection model.

Masking operation is sensitive to its inputs. In model
D, the original image rather than its foreground is used
to generate feature-level masks, and the model E uses FG
structure while keeping p in BS-RNN fixed to 0.9. Both model
D and E perform better than no-masking model B, but model
E outperforms model D. The results suggest that feature-level
masking design is a more reasonable choice for the object
detection task.

Fine-tuning element-wise {p;}¢ , improves detection.
In model F' we have element-wise {p;}¢ , and fine-tune it
after it is initialized to 0.9 while training. The results show
that model F' is better than model E and performs the best
among all these models. This suggests fine-tuning element-
wise {p;}% , provides an extra flexibility to improve the
detection performance.

In addition, we notice that several embedded smart cam-
era based lightweight algorithms [62]-[65] introduced novel
adaptive image processing techniques to achieve competitive
performances with limited resources. In contrast, it is worth
noting that the proposed BS-RNN block is deployed on
NVIDIA GPU servers. In TSD dataset, BS-RNN processes
videos at 0.6 milliseconds per frame with the resolution of
500x280. We suggest that although the whole framework (FG-
BR Net) is designed for GPU servers, the proposed BS-RNN
block is efficient for embedded systems.

C. Experiments on DETRAC Dataset

In this section experiments on UA-DETRAC [53] are con-
ducted to compare with the state-of-the-art methods on this
dataset. The FG-BR Net is trained on the whole training data,
and evaluated on the test set by submitting the results to the
official websites. It is worth noting that the FG-BR Net is
trained as a single model without any bells and whistles,
such as model/result ensemble, multi-scale testing and etc.
TABLE V compares the proposed FG-BR Net with different
methods evaluated on UA-DETRAC detection benchmark.
The FG-BR Net ranks on the top among all the published
methods on hard and sunny subsets. It is worth noting that
the top two algorithms on the official ranking list, namely
SSD_VDIG and HAVD, are not published as papers up to now.
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TABLE V
DETECTION PERFORMANCE. AP SCORES OF DETECTION METHODS ON THE UA-DETRAC TEST SET IN VARIOUS ENVIRONMENTAL CONDITIONS. BOLD
FACES ARE THE TOP PERFORMER ON EACH SUBSET.

method overall easy medium  hard cloudy night rainy  sunny
DPM [54] 25770 34.42 30.29 17.62 2478 3091 2555 31.77
ACF [55] 46.35  54.27 51.52 38.07 5830 3529 37.09 66.58
R-CNN [12] 4895 5931 54.06 39.47 5973 3932  39.06 67.52
CompACT [56] 5323 64.84 58.70 43.16 6323 4637 4421 71.16
GP-FRCNN [57] 76.57  91.79 80.85 66.05 8123 7720 6859 85.16
EB [58] 67.99  87.77 73.03 5474 7513 71.80 5299  82.04
SSDR [59] 59.07  77.84 64.41 4598 6279  60.88 4855 74.32
FRCNN-Res [59] 61.65  82.90 66.89 48.14 6197 6588 59.13 59.17
DFCN [59] 65.82  86.83 72.96 5047  69.90 6941 54.11 80.79
HAVD 80.51 9448 86.13 69.02 8728 8230 69.37 89.71
SSD_VDIG 82.68  94.60 89.71 70.65 89.81 83.02 7335 88.11
FG-BR Net 7996  93.49 83.60 70.78 8736  78.42 7050  89.89

Fig. 7. Explanation of how the image transformation operator deals with the camera vibrations. The left column shows the results of BS-RNN without
transformation and the right column shows that of with transformation. The images of each column are original frame, foreground and background from top

to bottom.

Therefore, the training and testing details of the two methods
are not clear to the academic community. Apart from the two
unpublished methods, the proposed FG-BR Net outperforms
the other methods on detecting objects in surveillance videos.
Fig. 8 shows some examples of the proposed method on UA-
DETRAC test set, and Fig. 9 presents the precision-recall
curves on the different UA-DETRAC test subset.

Ablation Experiments on BR Stage. Detailed analysis of the
design of BR stage is reported below. Because the ground truth
annotations of the UA-DETRAC testing set is not publicly
available, we split the whole training set into mini-training set
and validation set, 30 scenes in each set, containing runny,
rainy, cloudy and night, to conduct analyses about our BR
stage. The results on validation set are reported in TABLE IV
and discussed in detail below.

The second stage helps detection. In baseline model, the
FG stage is treated as a detector and outputs the detection re-
sults without background refining process. By contrast, model
A switches the FG detector into the FG stage to supply region
proposals for the second stage. It crops the proposals from

original frames and uses ResNetl8 as a backbone network
without pairwise non-local operations. The results show that
model A outperforms the baseline with about 3-point lead with
both AP@0.5 and AP@0.7 metric. It indicates that the second
stage refines the results based on the proposals form FG stage.

Normal non-local operation is good, and pairwise non-
local is better. The normal non-local block [23] is added in
model B. Model C' replaces it with the proposed pairwise
non-local operation. It crops the proposals from both original
and background frames to compute the response at a position
of original frames as a weighted average of the features at all
positions of background frames. During training the BR stage,
the batch size is set to 64 and the ratio of positive and negative
samples to 1 : 1. Specifically, we randomly choose 32 positive
samples (IoU > 0.5) and 32 negative samples (0.1 < IoU <
0.5) from all proposals in a frame, and the subsequent models
(D and E) maintain the same sampling strategy. The result of
B and C are better than A, which is just a normal R-CNN
model. It is also worth noting that from model B to C, there is
a greater improvement in AP@0.7 (80.30% — 81.85%) than
that in AP@0.5 (85.93% — 86.31%). It demonstrates that
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Fig. 8. Examples of detection results in various environmental conditional. A bounding box is plotted if its confidence score is larger than 0.1.
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Fig. 9. Precision-recall curves on the UA-DETRAC test set of full, easy, medium, hard, cloudy, night, rainy and sunny respectively.

by pairwise non-local operations, the IoU of more detection
results are regressed to higher values than 0.7.

More powerful backbone brings better performance. In
model D, the backbone is replaced with ResNet50. It is not
surprising that D outperforms C' due to its more powerful
backbone. And we also try different ratio of positive and
negative samples in model E. The results suggest that the
BR stage is not sensitive to the ratio of positive and negative
samples with the comparison between model £ and model D.

D. Analysis of Misalignment

Both qualitative and quantitative experiments are conducted
to verify that the proposed method is effective in handling the
misalignment problem.

First we add the image transformation operator 7 in BS-
RNN block. Fig. 7 illustrates how the operator 7 improves the
image quality. The camera vibrations lead to slight offsets in
frames, and different offsets are applied on the background

image frame by frame, causing the background to become
blurred, which is shown in the left column of Fig. 7. In
contrast, the right column shows sharper backgrounds and
cleaner foregrounds by introducing the image transformation
operator 7. A clean foreground image could reduce noises
generated during the feature extraction in the FG stage, and
a sharp background image could mitigate the misalignment
problem together with pairwise non-local operation in the BR
stage.

Next, the contributions of image transformation and pair-
wise non-local operation to the final detection performance are
both investigated. We select all the subsets marked as “unsta-
ble” in the UA-DETRAC dataset, and divide them into training
sets and validation sets, each containing 19 scenes. These
scenes which are capture by unstable cameras, and it is suitable
for investigating the effect of the method on misalignment
problem. TABLE VI shows the results on this camera-unstable
dataset. It shows that both image transformation and pairwise
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Original frame

Background

Original frame
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Fig. 10. Feature activations before and after pairwise non-local operation
(PNL). For a better visualization, we select only one channel in the feature
maps, then map their values to the interval of 0-255, and up-sample the feature
channel by bilinear interpolation.

TABLE VI
RESULTS ON UNSTABLE CAMERA SETS.

model AP@0.5 AP@0.7
FG w/o image trans. 78.88 72.63
FG w/ image trans. 80.12 73.36
FG w/ image trans. + BR 82.56 74.35

non-local operation are conductive to enhancing detection
performance. Moreover, the BR stage does play the role of
refining detection results to a high localization accuracy, and
the two-stage method achieves the best results in TABLE VI.
In addition, the features before and after pairwise non-local
operations are visualized in Fig. 10. In this experiment the
original region proposals are firstly used as an input pair to
get the feature maps on the top row of Fig. 10. Then the
background patch is manually shifted to the lower left corner
by 20 pixels (in both the X and Y directions) to form a new
input pair for the second row features. In Fig. 10, the features
after pairwise non-local operations are similar with each other
although the second input pair is misaligned with respect to
the first pair.

V. CONCLUSION

This paper presented a two-stage object detection frame-
work called Foreground Gating and Background Refining Net-
work (FG-BR Net) for surveillance videos. In the foreground
gating stage, the proposed method separates foregrounds and

backgrounds, generates gating features to suppress the false
positives. In the Background Refining stage, the proposed
method introduces pairwise non-local operations to handle
the misalignment problem. Extensive experiments showed that
FG-BR Net outperforms the other state-of-the-art models on
benchmark surveillance object detection datasets. In the future,
we will study how to make the whole framework end-to-end
for both training and inference.
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