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Abstract. Recently, transformer-based methods have demonstrated im-
pressive results in various vision tasks, including image super-resolution
(SR), by exploiting the self-attention (SA) for feature extraction. How-
ever, the computation of SA in most existing transformer based models
is very expensive, while some employed operations may be redundant
for the SR task. This limits the range of SA computation and conse-
quently limits the SR performance. In this work, we propose an effi-
cient long-range attention network (ELAN) for image SR. Specifically,
we first employ shift convolution (shift-conv) to effectively extract the
image local structural information while maintaining the same level of
complexity as 1x1 convolution, then propose a group-wise multi-scale
self-attention (GMSA) module, which calculates SA on non-overlapped
groups of features using different window sizes to exploit the long-range
image dependency. A highly efficient long-range attention block (ELAB)
is then built by simply cascading two shift-conv with a GMSA mod-
ule, which is further accelerated by using a shared attention mechanism.
Without bells and whistles, our ELAN follows a fairly simple design by
sequentially cascading the ELABs. Extensive experiments demonstrate
that ELAN obtains even better results against the transformer-based SR
models but with significantly less complexity. The source codes of ELAN
can be found at https://github.com/xindongzhang/ELAN.
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1 Introduction

Singe image super-resolution (SR) aims at reproducing a high-resolution (HR)
output from its degraded low-resolution (LR) counterpart. In recent years, deep
convolutional neural network (CNN) [24] based SR models [11, 12, 48, 30, 6,
51, 65, 47, 55] have become prevalent for their strong capability in recovering or
generating [25, 56] image high-frequency details, showing high practical value in
image and video restoration, transition and display. However, many CNN-based
methods extract local features with spatially invariant kernels, which are inflex-
ible to adaptively model the relations among pixels. In addition, to enlarge the
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receptive field, the CNN-based SR models tend to employ very deep and com-
plicated network topology [65, 10, 69, 42, 41] to recover more details, resulting
in much computational resource consumption.

Recently, the transformer based methods have shown impressive performance
on natural language processing tasks [4, 14, 34, 44] for their strong ability on
modeling the self-attention (SA) of input data. The great success of transformers
on NLP has inspired researchers to explore their application to computer vision
tasks, and interesting results have been shown on several high-level vision tasks
[13, 27, 35, 36, 45, 54]. Generally speaking, the input image is first divided into
non-overlapped patches with different scales as tokens, and then the local feature
extraction and SA modules are applied to the collection of patches. Though
SA has proven to be effective for high-level vision tasks, its complexity grows
quadratically with the input feature size, limiting its utilization in low-level
vision tasks such as SR, where the feature size is usually very large.

A few attempts have been made to reduce the computational cost of SA
in the application of SR. Mei et al. [41] divided an image into non-overlapped
patches for modeling local feature and SA independently, which however may
introduce border effect and deteriorate the visual quality of restored images.
SwinIR [29] follows the design of Swin Transformer [36], where the local feature
is first extracted by two cascaded 1× 1 convolutions and then SA is calculated
within a small sized window (i.e., 8 × 8) with a shifting mechanism to build
connections with other windows. However, local features extracted by 1 × 1
convolutions with small receptive field may produce weak feature representations
to calculate the SA for long-range modeling. Furthermore, calculating SA with a
small window size restricts the ability of modeling long-range dependency among
image pixels. Restormer [61] calculates the SA with dependency on the channel
space which remains applicable to large images. However, modeling dependency
on channel space may sacrifice some useful spatial information of textures and
structures which is important for reproducing high quality HR images.

In this paper, we aim to develop an effective and efficient way to exploit im-
age long-range attention for image SR with a simple network architecture. The
existing transformer-based models such as SwinIR [29] have many redundant
and fragmented components which are not cost-effective for the SR task, such
as relative position bias, masking mechanism, layer normalization, and several
sub-branches created with residual shortcut. We therefore aim to build a highly
neat and efficient SR model, where the LR to HR image mapping is simply built
by stacking local feature extraction operations and SA sequentially. Two suc-
cessive shift convolution (shift-conv) operations are used to efficiently extract
local structural information, while a shift-conv has larger receptive field but
shares the same arithmetic complexity as a 1 × 1 convolution. For SA calcula-
tion, we propose a group-wise multi-scale self-attention (GMSA) operator, which
divides features into different groups of different window sizes and calculates SA
separately. This strategy provides a larger receptive field than a small fixed-
size window for long-range attention modeling, while being more flexible than
a large fixed-size window for reducing the computation resource cost. Further-
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more, a shared attention mechanism is proposed to accelerate the calculation for
successive GMSA modules. Arming with the shift-conv and GMSA with shared
attention, an efficient long-range attention network, namely ELAN, is readily
obtained for SR. Our contributions are summarized as follows:

1) We propose an efficient long-range attention block to model image long-range
dependency, which is important for improving the SR performance.

2) We present a fairly simple yet powerful network, namely ELAN, which
records new state-of-the arts for image SR with significantly less complexity
than existing vision transformer based SR methods.

2 Related work

Numerous deep learning based image SR methods have been developed in the
past decade. Here we briefly discuss the related work from the perspective of
CNN-based methods and transformer-based methods.

2.1 CNN-based SR methods

CNN-based methods have demonstrated impressive performance in the SR task.
SRCNN [11] makes the first attempt to employ CNN for image SR by learning a
non-linear mapping from the bicubically upsampled LR image to the HR output
with only three convolution layers. Kim et al. [21] deepened the network with
VGG-19 and residual learning and achieved much better performance. Since the
pre-upsampling strategy increases the amount of input data to CNN and causes
large computational cost, FSRCNN [12] adopts a post-upsampling strategy to
accelerate the CNN model. An enhanced residual block was proposed in [30] to
train the deep model without batch normalization, and the developed EDSR
network won the first prize of the NTIRE2017 challenge [1].

To build more effective models for SR, the recently developed methods tend
to employ deeper and more complicated architectures as well as the attention
techniques. Zhang et al. proposed a residual-in-residual structure coupled with
channel attention to train a very deep network over 400 layers. Other works like
MemNet [50] and RDN [67] are designed by employing the dense blocks [17] to
utilize the intermediate features from all layers. In addition to increasing the
depth of network, some other works, such as SAN [10], NLRN [31], HAN [42]
and NLSA [41], excavate the feature correlations along the spatial or channel
dimension to boost the SR performance. Our proposed ELAN takes the advan-
tage of fast local feature extraction, while models the long-range dependency of
features via efficient group-wise multi-scale self-attention.

2.2 Transformer-based SR methods

The breakthrough of transformer networks in natural language processing (NLP)
inspired of use of self-attention (SA) in computer vision tasks. The SA mecha-
nism in transformers can effectively model the dependency across data, and it
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has achieved impressive results on several high-level vision tasks, such as image
classification [13, 27, 35, 36, 45, 54], image detection [8, 33, 36, 54], and segmen-
tation [7, 36, 59, 68]. Very recently, transformer has also been applied to low-level
vision tasks [29, 57, 61, 9]. IPT [9] is an extremely large pre-trained model for
various low-level vision tasks based on the standard vision transformer. It com-
putes both the local feature and SA on non-overlapped patches, which however
may lose some useful information for reproducing image details. SwinIR [29]
hence adapts the Swin Transformer [36] to image restoration, which combines
the advantages of both CNNs and transformers. Though SwinIR has achieved
impressive results for image SR, its network structure is mostly borrowed from
the Swin Transformer, which is designed for high-level vision tasks. In particular,
the network design of SwinIR is redundant for the SR problem, and it calculates
SA on small fixed-size windows, preventing it from exploiting long-range feature
dependency. Our proposed ELAN is not only much more efficient than SwinIR
but also able to compute the SA in larger windows.

3 Methodology

In this section we first present the pipeline of our efficient long-range attention
network (ELAN) for SR tasks, and then discuss in detail its key component, the
efficient long-range attention block (ELAB).

3.1 Overall Pipeline of ELAN

The overall pipeline of ELAN is shown in Figure 1(a), which consists of three
modules: shallow feature extraction, ELAB based deep feature extraction, and
HR image reconstruction. The network follows a fairly simple topology with a
global shortcut connection from the shallow feature extraction module to the
output of deep feature extraction module before fed into the HR reconstruction
module. In specific, given a degraded LR image Xl ∈ R3×H×W , where H and
W are the height and width of the LR image, respectively, we first apply the
shallow feature extraction module, denoted by HSF (·), which consists of only a
single 3× 3 convolution, to extract the local feature Xs ∈ RC×H×W :

Xs = HSF (Xl) (1)

where C is the channel number of the intermediate feature.
Xs then goes to the deep feature extraction module, denoted by HDF (·),

which is composed of M cascaded ELABs. That is:

Xd = HDF (Xs), (2)

where Xd ∈ RC×H×W denotes the output. By taking Xd and Xs as inputs, the
HR image Xh is reconstructed as:

Xh = HRC(Xs +Xd), (3)
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Fig. 1. Illustration of the proposed efficient long-range attention network (ELAN).
(a) The overall pipeline of ELAN, which contains several ELABs, two 3 × 3 convolu-
tions and one pixel shuffle operator. (b) The architecture of the efficient long-range
attention block (ELAB). (c) Illustration of shift-conv, which is composed of a shift
operation followed by one 1 × 1 convolution. (d) Illustration of the computation of
group-wise multi-scale self-attention (GMSA). (e) Illustration of our accelerated self-
attention (ASA) computation.

where HRC is the reconstruction module. There are some choices for the design
of the reconstruction module [11, 12, 48, 30]. To achieve high efficiency, we build
it simply with a single 3× 3 convolution and a pixel shuffle operation.

The ELAN can be optimized with the commonly used loss functions for SR,
such as L2 [11, 21, 49, 50], L1 [23, 30, 67] and perceptual losses [17, 46]. For
simplicity, given a number of N ground-truth HR images {Xt,i}Ni=1, we optimize
the parameters of ELAN by minimizing the pixel-wise L1 loss:

L =
1

N

N∑
i=1

||Xh,i −Xt,i||1. (4)

The Adam optimizer [22] is employed to optimize our ELAN for its good per-
formance in low-level vision tasks.

3.2 Efficient Long-range Attention Block (ELAB)

As shown in Figure 1(b), our ELAB is composed of a local feature extraction
module and a group-wise multi-scale attention (GMSA) module, both equipped
with the residual learning strategy.
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Local feature extraction. Given the intermediate features X, previous
researches mostly extract the local features via multi-layer perception or two
cascaded 1 × 1 convolutions [9, 35], which however have only 1 × 1 receptive
field. To enlarge the receptive field for more effective local feature extraction, we
utilize two shift-conv [58] with a simple ReLU activation between them. As shown
in Figure 1(c), the shift-conv is composed of a set of shift operations and one 1×1
convolution. Specifically, we split the input feature equally into five groups, and
move the first four groups of feature along different spatial dimensions, including
left, right, top, bottom, while the last group remains unchanged. Therefore, the
followed 1 × 1 convolution can leverage information from neighboring pixels.
Without introducing additional learnable parameters and much computation,
shift-conv can provide larger receptive fields while maintaining almost the same
arithmetic complexity as 1× 1 convolution.

Group-wise multi-scale self-attention (GMSA). Given a feature map
of C×H×W , the computational complexity of the window-based self-attention
[36, 29] using M×M non-overlapped windows is 2M2HWC. The window size M
determines the range of SA calculation, and a larger M contributes to exploit
more self-similarity information. However, directly enlarging M will quadrati-
cally increase the computational cost and resources. To more efficiently calculate
the long-range SA, we propose the GMSA module, which is illustrated in Figure
1(d). We first split the input feature X into K groups, denoted by {Xk}Kk=1, then
calculate SA on the k-th group of features using window size Mk. In this way,
we can flexibly control the computational cost by setting the ratio of different
window size. For example, supposing the K groups of features are equally split
with C

K channels, the computational cost ofK groups of SA is 2
K (

∑
k M

2
k )HWC.

The SA calculated on different groups are then concatenated and merged via a
1× 1 convolution.

Accelerated self-attention (ASA). The calculation of SA is computation
and memory-intensive in existing transformer models [7, 36, 29, 57]. We make
several modifications to accelerate the calculation of SA, especially in the in-
ference stage. First, we discard the layer normalization (LN), which is widely
employed in previous transformer models [7, 36, 29, 57], because the LN frag-
ments the calculation of SA into many element-wise operations, which are not
friendly for efficient inference. Instead, we utilize batch normalization (BN) [20]
to stabilize the training process. It is worth mentioning that the BN can be
merged into the convolution operation, which does not cause additional compu-
tation cost in the inference stage. Second, the SA in SwinIR [29] is calculated
on the embedded Gaussian space, where three independent 1 × 1 convolutions,
denoted by θ, ϕ and g, are employed to map the input feature X into three
different feature maps. We set θ = ϕ and calculate the SA in the symmetric
embedded Gaussian space [31, 5], which can save one 1× 1 convolution in each
SA. This modification further alleviates the computation and memory cost of
SA without sacrificing the SR performance. Our ASA is shown in Figure 1(e).

Shared attention. Despite the above acceleration, one single forward pass
of SA still consists of two 1 × 1 convolutions and four IO-intensive reshape
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Fig. 2. (a) and (b) illustrate the calculation of GMSA without and with the shared
attention mechanism, respectively. (c) Illustration of the shifted window mechanism
used in consecutive ELABs.

operations. Although the reshape operation is FLOPs-free, it is time-consuming
due to large feature size in the SR task. To further accelerate the SA computation
of the entire network, we propose to share the attention scores among adjacent
SA modules. As shown in Figure 2(b), the calculated attention scores in the i-th
SA module is directly re-used by the following n SA modules on the same scale.
In this way, we can avoid 2n reshape and n 1× 1 convolution operations for the
following n SAs. We found that the proposed shared attention mechanism only
leads to slight drop in SR performance by using a number of n (e.g., 1 or 2),
while it saves much computation resources during inference.

Shifted window. The calculated SA on the group-wise multi-scale windows
still lacks connection across local windows within the same scale. We improve the
shifted window mechanism of SwinIR [29] to reach a simple yet effective shifting
scheme for the SR task. The whole process is visualized in Figure 2(c). We first
employ circular shift to the feature along the diagonal direction and calculate
GMSA on the shifted feature. Then we shift the result back via inverse circular
shift. The circular shift with half window size leads to a new partition of feature
map and introduces connections among neighboring non-overlapped windows in
the previous GMSA module. Although some pixels on the border are shifted to
distant areas via circular shift, we found it has negligible impact on the final SR
performance since such pixels only occupy a small portion of the entire feature
map in the SR task. Benefiting from the circular shift mechanism, we remove
the masking strategy and relative positional encoding adopted in SwinIR [29],
making our network neater and more efficient.

4 Experiments

In this section, we conduct extensive experiments to quantitatively and qual-
itatively validate the superior performance of our ELAN for light-weight and
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Table 1. Performance comparison of different light-weight SR models on five bench-
marks. PSNR/SSIM on Y channel are reported on each dataset. #Params and #FLOPs
are the total number of network parameters and floating-point operations, respectively.
All the efficiency proxies (#Params, #FLOPs and Latency) are measured under the
setting of upscaling SR images to 1280× 720 resolution on all scales. Best and second
best PSNR/SSIM indexes are marked in red and blue colors, respectively. The CNN-
based methods and transformer-based methods are separated via a dash line for each
scaling factor. ’–’ means that the result is not available.

Scale Model
#Params

(K)
#FLOPs

(G)
Latency
(ms)

Set5 [3]
PSNR/SSIM

Set14 [62]
PSNR/SSIM

B100[39]
PSNR/SSIM

Urban100 [18]
PSNR/SSIM

Manga109 [40]
PSNR/SSIM

× 2

CARN [2] 1,592 222.8 72 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765
EDSR-baseline [30] 1370 316.3 71 37.99/0.9604 33.57/0.9175 32.16/0.8994 31.98/0.9272 38.54/0.9769

IMDN [19] 694 158.8 54 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774
LAPAR-A [26] 548 171.0 73 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283 38.67/0.9772
LatticeNet [38] 756 169.5 66 38.06/0.9607 33.70/0.9187 32.20/0.8999 32.25/0.9288 —/—

ESRT [37] 677 — — 38.03/0.9600 33.75/0.9184 32.25/0.9001 32.58/0.9318 39.12/0.9774
SwinIR-light [29] 878 195.6 1007 38.14/0.9611 33.86/0.9206 32.31/0.9012 32.76/0.9340 39.12/0.9783
ELAN-light (ours) 582 168.4 230 38.17/0.9611 33.94/0.9207 32.30/0.9012 32.76/0.9340 39.11/0.9782

× 3

CARN [2] 1,592 118.8 39 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440
EDSR-baseline [30] 1555 160.2 37 34.37/0.9270 30.28/0.8417 29.09/0.8052 28.15/0.8527 33.45/0.9439

IMDN [19] 703 71.5 27 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
LAPAR-A [26] 544 114.0 55 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523 33.51/0.9441
LatticeNet [38] 765 76.3 33 34.40/0.9272 30.32/0.8416 29.10/0.8049 28.19/0.8513 —/—

ESRT [37] 770 — — 34.42/0.9268 30.43/0.8433 29.15/0.8063 28.46/0.8574 33.95/0.9455
SwinIR-light [29] 886 87.2 445 34.62/0.9289 30.54/0.8463 29.20/0.8082 28.66/0.8624 33.98/0.9478
ELAN-light (ours) 590 75.7 105 34.61/0.9288 30.55/0.8463 29.21/0.8081 28.69/0.8624 34.00/0.9478

× 4

CARN [2] 1,592 90.9 30 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084
EDSR-baseline [30] 1518 114.0 28 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849 30.35/0.9067

IMDN [19] 715 40.9 19 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
LAPAR-A [26] 659 94.0 47 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.42/0.9074
LatticeNet [38] 777 43.6 23 32.18/0.8943 28.61/0.7812 27.57/0.7355 26.14/0.7844 —/—

ESRT [37] 751 — — 32.19/0.8947 28.69/0.7833 27.69/0.7379 26.39/0.7962 30.75/0.9100
SwinIR-light [29] 897 49.6 271 32.44/0.8976 28.77/0.7858 27.69/0.7406 26.47/0.7980 30.92/0.9151
ELAN-light (ours) 601 43.2 62 32.43/0.8975 28.78/0.7858 27.69/0.7406 26.54/0.7982 30.92/0.9150

classic SR tasks on five SR benchmark datasets. We also present comprehensive
ablation studies to evaluate the design of our proposed ELAN.

4.1 Experimental setup

Dataset and evaluation metrics.We employ the DIV2K dataset [53] with 800
training images to train our ELAN model, and use the five benchmark datasets,
including Set5[3], Set14[62], BSD100[39], Urban100[18] and Manga109[40], for
performance comparison. PSNR and SSIM are used as the evaluation metrics,
which are calculated on the Y channel after converting RGB to YCbCr format.
For efficiency comparison, we report the latency evaluated on a single NVIDIA
2080Ti GPU in the inference stage. We also report the number of network pa-
rameters and FLOPs as reference, although they may not be able to faithfully
reflect the network complexity and efficiency.

Note that since some competing methods do not release the source codes, we
can only copy their PSNR/SSIM results from the original papers, but cannot
report their results of latency and FLOPS.

Training details. Following SwinIR [29], we train two versions of ELAN
with different complexity. The light-weight version, i.e., ELAN-light consists of
24 ELABs with 60 channels, while the normal version of ELAN has 36 ELABs
with 180 channels. We calculate GMSA on three equally split scales with window
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size: 4× 4, 8× 8 and 16× 16. By default, we set n = 1 for the shared attention
mechanism. Bicubic downsampling is used to generate training image pairs. We
randomly crop 64 patches of size 64×64, and 32 patches of size 48×48 from the
LR images as training mini-batch for the light-weight and normal ELAN models,
respectively. We employ randomly rotating 90◦, 180◦, 270◦ and horizontal flip
for data augmentation. Both models are trained using the ADAM optimizer with
β1 = 0.9, β2 = 0.999, and ϵ = 10−8 for 500 epochs. The learning rate is initialized
as 2× 10−4 and multiplied with 0.5 after {250, 400, 425, 450, 475}-th epoch. We
train the model by Pytorch [43] using 4 NVIDIA 2080Ti GPUs. It takes about 42
and 63 hours to train ELAN-light and ELAN models from scratch, respectively.

4.2 Comparison with light-weight SR models

We first compare our ELAN-light with state-of-the-art light-weight SR mod-
els, including CNN-based models CARN[2], IMDN [19], LAPAR-A[26], Lat-
ticeNet[38], and transformer-based models ESRT [37] and SwinIR-light[29].

Quantitative comparison. The quantitative indexes of different methods
are reported in Table 1. Several observations can be made from the table. First,
with similar #Params and #FLOPs, the transformer-based methods especially
SwinIR-light outperform much CNN-based methods on PSNR/SSIM indexes, by
exploiting the self-similarity of images. However, the latency time of SwinIR-light
is more than ×10 slower than the CNN-based methods, because the calculation
of self-attention in SwinIR is a heavy burden for inference. Benefiting from our
efficient long-range attention design, our ELAN-light model not only obtains
the best or second best PSNR/SSIM indexes on all the five datasets and on all
the three zooming scales, but also is about ×4.5 faster than SwinIR-light. Its
#Params and #FLOPs are also smaller compared with SwinIR-light.

Qualitative comparison. We then qualitatively compare the SR quality of
different light-weight models. The ×4 SR results on three example images are
shown in Figure 3. One can see that all the CNN-based models result in very
blurry and distorted edges on the three images. The transformer based SwinIR-
light can recover the main structure in the first image and half edges in the
second one. Our ELAN-light is the only method that succeeds in recovering the
main structures on all the three images with clear and sharp edges. It is worth
mentioning that the advantage of ELAN-light over SwinIR-light is achieved using
much less computational cost, as we have validated in Table 1. More visual
examples can be found in the supplementary file.

4.3 Comparison with classic SR models

To validate the scalability of ELAN, we further compare the normal version of
ELAN with state-of-the-art classic performance-oriented SR models, including
EDSR [30], SRFBN [28], RNAN [66], RDN [67], RCAN [32], SAN [10], IGNN
[69], HAN [42], NLSA [41] and SwinIR [29]. Note that these models employ
either very deep network topology with large channel number or complicated
self-attention and non-local strategies.
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Fig. 3. Qualitative comparison of state-of-the-art light-weight SR models for ×4 up-
scaling. ELAN-light can restore more accurate and clear structures than other models.

Quantitative comparison. The quantitative results are shown in Table 2.
As can be seen, our ELAN achieves the best results on almost all benchmarks and
all upscaling factors. In particular, compared with SwinIR, our ELAN obtains
better PSNR and SSIM indexes on almost all settings with less number of param-
eters and FLOPs, and more than ×2 faster inference speed. These performance
gains show that the proposed ELAB block succeeds in capturing useful infor-
mation (such as long-range dependency) to conduct super-resolution in a more
efficient and effective manner. Although the classical CNN-based SR models have
huge amount of parameters and FLOPs, their performance is less competitive
than the transformer-based models. Comparing with most CNN-based methods,
our ELAN shows significant advantages in reconstruction performance metrics,
benefiting from its larger receptive field and capability of modeling long-range
spatial feature correlation. Some methods such as HAN and NLSA can also ob-
tain competitive performance by exploiting dedicated attention mechanisms and
very deep network, but their computation and memory cost are very expensive.
For example, the NLSA model on ×2 upscaling task is too heavy to execute on
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Table 2. Performance comparison of different classic performance-oriented SR models
on five benchmarks. PSNR/SSIM on Y channel are reported on each dataset. #Params
and #FLOPs are the total number of network parameters and floating-point opera-
tions, respectively. Noted that all the efficiency proxies (#Params, #FLOPs and La-
tency) are measured under the setting of upscaling SR images to 1280× 720 resolution
on all scales. Best and second best PSNR/SSIM indexes are marked in red and blue
colors, respectively. The CNN-based methods and transformer-based methods are sep-
arated by a dash line. ’NaN’ indicates that corresponding models are too heavy to run
on a single NVIDIA 2080Ti GPU. ’–’ means that the result is not available.

Scale Model
#Params

(K)
#FLOPs

(G)
Latency
(ms)

Set5 [3]
PSNR/SSIM

Set14 [62]
PSNR/SSIM

B100[39]
PSNR/SSIM

Urban100 [18]
PSNR/SSIM

Manga109 [40]
PSNR/SSIM

× 2

EDSR [30] 40730 9387 1143 38.11/0.9602 33.92/0.9195 32.32/0.9013 32.93/0.9351 39.10/0.9773
SRFBN [28] 2140 5044 920 38.11/0.9609 33.82/0.9196 32.29/0.9010 32.62/0.9328 39.08/0.9779
RNAN [66] 9107 NaN NaN 38.17/0.9611 33.87/0.9207 32.32/0.9014 32.73/0.9340 39.23/0.9785
RDN [67] 22123 5098 846 38.24/0.9614 34.01/0.9212 32.34/0.9017 32.89/0.9353 39.18/0.9780
OISR [16] 41910 9657 — 38.21/0.9612 33.94/0.9206 32.36/0.9019 33.03/0.9365 —
RCAN [67] 15445 3530 743 38.27/0.9614 34.12/0.9216 32.41/0.9027 33.34 0.9384 39.44/0.9786
SAN [10] 15861 3050 NaN 38.31/0.9620 34.07/0.9213 32.42/0.9028 33.10/0.9370 39.32/0.9792
IGNN [69] 49513 — — 38.24/0.9613 34.07/0.9217 32.41/0.9025 33.23/0.9383 39.35/0.9786
HAN [42] 63608 14551 2278 38.27/0.9614 34.16/0.9217 32.41/0.9027 33.35/0.9385 39.46/0.9785
NLSA [41] 41796 9632 NaN 38.34/0.9618 34.08/0.9231 32.43/0.9027 33.42/0.9394 39.59/0.9789
SwinIR [29] 11752 2301 2913 38.35/0.9620 34.14/0.9227 32.44/0.9030 33.40/0.9393 39.60/0.9792
ELAN (ours) 8254 1965 1244 38.36/0.9620 34.20/0.9228 32.45/0.9030 33.44/0.9391 39.62/0.9793

× 3

EDSR [30] 43680 4470 573 34.65/0.9280 30.52/0.8462 29.25/0.8093 28.80/0.8653 34.17/0.9476
SRFBN [28] 2833 6024 672 34.70/0.9292 30.51/0.8461 29.24/0.8084 28.73/0.8641 34.18/0.9481
RNAN [66] 9292 809 NaN 34.66/0.9290 30.52/0.8462 29.26/0.8090 28.75/0.8646 34.25/0.9483
RDN [67] 22308 2282 406 34.71/0.9296 30.57/0.8468 29.26/0.8093 28.80/0.8653 34.13/0.9484
OISR [16] 44860 4590 — 34.72/0.9297 30.57/0.8470 29.29/0.8103 28.95/0.8680 —
RCAN [67] 15629 1586 367 34.74/0.9299 30.65/0.8482 29.32/0.8111 29.09/0.8702 34.44/0.9499
SAN [10] 15897 1620 NaN 34.75/0.9300 30.59/0.8476 29.33/0.8112 28.93/0.8671 34.30/0.9494
IGNN [69] 49512 — — 34.72/0.9298 30.66/0.8484 29.31/0.8105 29.03/0.8696 34.39/0.9496
HAN [42] 64346 6534 1014 34.75/0.9299 30.67/0.8483 29.32/0.8110 29.10/0.8705 34.48/0.9500
NLSA [41] 44747 4579 840 34.85/0.9306 30.70/0.8485 29.34/0.8117 29.25/0.8726 34.57 0.9508
SwinIR [29] 11937 1026 1238 34.89/0.9312 30.77/0.8503 29.37/0.8124 29.29/0.8744 34.74/0.9518
ELAN (ours) 8278 874 530 34.90/0.9313 30.80/0.8504 29.38/0.8124 29.32/0.8745 34.73/0.9517

× 4

EDSR [30] 43090 2895 360 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9148
SRFBN [28] 3631 7466 551 32.47/0.8983 28.81/0.7868 27.72/0.7409 26.60/0.8015 31.15/0.9160
RNAN [66] 9255 480 NaN 32.49/0.8982 28.83/0.7878 27.72/0.7421 26.61/0.8023 31.09/0.9149
RDN [67] 22271 1310 243 32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028 31.00 0.9151
OISR [16] 44270 2963 — 32.53/0.8992 28.86/0.7878 27.75/0.7428 26.79/0.8068 —
RCAN [67] 15592 918 223 32.63/0.9002 28.87/0.7889 27.77/0.7436 26.82/0.8087 31.22/0.9173
SAN [10] 15861 937 NaN 32.64/0.9003 28.92/0.7888 27.78/0.7436 26.79/0.8068 31.18/0.9169
IGNN [69] 49513 — — 32.57/0.8998 28.85/0.7891 27.77/0.7434 26.84/0.8090 31.28 0.9182
HAN [42] 64199 3776 628 32.64/0.9002 28.90/0.7890 27.80/0.7442 26.85/0.8094 31.42/0.9177
NLSA [41] 44157 2956 502 32.59/0.9000 28.87/0.7891 27.78/0.7444 26.96/0.8109 31.27/0.9184
SwinIR [29] 11900 584 645 32.72/0.9021 28.94/0.7914 27.83/0.7459 27.07/0.8164 31.67/0.9226
ELAN (ours) 8312 494 298 32.75/0.9022 28.96/0.7914 27.83/0.7459 27.13/0.8167 31.68/0.9226

a single NVIDIA 2080Ti GPU. Nevertheless, our ELAN obtains better perfor-
mance than these complicated CNN-based models at much less cost.

Qualitative comparison. Because of the space limitation, we compare the
visual quality of SR results by our ELAN and six representative models, includ-
ing EDSR [30], RDN [67], SAN [10], RCAN [67], IGNN [28] and SwinIR [29],
on ×4 upscaling task. The results on three example images are shown in Figure
4. Regarding the first example, all the compared methods yield either blurry or
inaccurate fur textures on the body of tiger, while our ELAN can restore more
accurate and sharper edges. The advantage of ELAN is more obvious on the sec-
ond and third images with repetitive patterns. Most of the compared methods
fail to reconstruct the correct structures, and even generate undesired artifacts.
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Fig. 4. Qualitative comparison of state-of-the-art classic SR models for ×4 upscaling
task. The ELAN can restore more accurate and sharper details than the other models.

In contrast, our ELAN can accurately recover the structure with distinct edges in
both cases. Such obvious advantages of ELAN validate the importance of mod-
eling long-range self-attention to the SR task. More visual comparison examples
can be found in the supplementary file.

4.4 Ablation studies and discussions

To better understand how ELAN works, we present comprehensive ablation stud-
ies to evaluate the roles of different components of ELAN, the depth selection
for the shared attention mechanism, and the window size of GMSA. We also dis-
cuss the generalization capability of ELAN to other low-level vision tasks such
as image denoising.

The components of ELAN. We first utilize the architecture and setting
of ELAN-light to ablate the roles of different components of ELAB, and ob-
serve the change in performance and efficiency. The PSNR/SSIM indexes on five
benchmarks and inference time of variant models are reported in Table 3. The
indexes of SwinIR-light is also listed for reference. Specifically, we start with
a naive baseline by removing the redundant sub-branches from SwinIR-light,
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Table 3. Ablation study on network design for ELAN.

Scale Model
Different components

#Params
(K)

#FLOPs
(G)

Latency(ms)
Set5 [3] Set14 [62] B100[39] U100 [18] Manga109 [40]

Shifted
window

ASA GMSA
Shared
attention

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

× 4

SwinIR-light [29] 897 49.6 271 32.44/0.8976 28.77/0.7858 27.69/0.7406 26.47/0.7980 30.92/0.9151
ELAN-light 767 44.6 247 32.38/0.8971 28.68/0.7832 27.62/0.7368 26.40/0.7973 30.78/0.9142
ELAN-light ✓ 765 44.4 177 32.38/0.8971 28.69/0.7833 27.61/0.7367 26.42/0.7973 30.78/0.9141
ELAN-light ✓ ✓ 641 43.8 66 32.39/0.8970 28.67/0.7831 27.62/0.7368 26.39/0.7972 30.76/0.9139
ELAN-light ✓ ✓ ✓ 641 45.5 75 32.47/0.8977 28.79/0.7858 27.71/0.7405 26.60/0.7985 30.95/0.9151
ELAN-light ✓ ✓ ✓ ✓ 601 43.2 62 32.43/0.8975 28.78/0.7858 27.69/0.7406 26.54/0.7982 30.92/0.9150

where the deep feature extraction module is composed of 24 sequential swin
transformer block. As expected, this simplification leads to slight performance
drop compared with the SwinIR-light while reducing the latency from 271ms
to 247ms. By utilizing our shifted windows mechanism, the performance remain
almost unchanged while the inference speed is decreased from 247ms to 177ms.

We then replace the SA calculation with our proposed ASA, the inference
latency is greatly reduced from 177ms to 66ms without losing PSNR/SSIM per-
formance. By employing the GMSA which can efficiently model long-range de-
pendency, the PSNR and SSIM indexes get significantly improved on all five
datasets. Specifically, the PSNR increases by 0.21dB and 0.19dB on the Ur-
ban100 and Manga109 datasets, respectively, while the latency is only slightly
increased by 9ms. This indicates the effectiveness of GMSA over the SA in
SwinIR with small fixed window size. Finally, by employing the proposed shared
attention mechanism, we can further speed up the inference time of ELAN-light
with little performance drop. Combining all the improvements, the final version
of ELAN-light achieves about ×4.5 acceleration while maintaining comparable
performance to SwinIR-light.

Depth of shared attention. We further conduct a detailed ablation study
on the depth of shared attention blocks (i.e., n in Figure 2(b)) in sequential
layers. ELAN-light is employed for this study and the depth of shared attention
blocks varies in {0, 1, 3, 5}. Note that n = 0 means that each ELAB calculates
self-attention independently. The results of ELAN-light using different n are
reported in Table 4. We also provide one representative CNN-based method
EDSR-baseline for intuitive comparison. One can observe that using larger n can
effectively reduce the number of network parameters, FLOPs and latency time in
the inference stage, at the cost of performance drop. By choosing an appropriate
n, our ELAN can achieve a good trade-off between efficiency and performance.
It is worth mentioning that even using n = 5, the PSNR of ELAN-light on the
challenging Urban100 and Manga109 still outperform EDSR-baseline by a large
margin (up to 0.31 dB and 0.28 dB, respectively), validating the advantage of
modeling long-range attention in our model.

Window size of GMSA. To further validate the efficacy of our design, we
ablate the setting of window size of ELAN-light on ×4 upscaling task and report
the results in the Table 5. One can see that the PSNR/SSIM indices are steadily
increased with the increase of window size. In particular, ELAN-light with [8,
16, 32] window size outperforms SwinIR-light by 0.27dB on Urban100 yet with
more than 2× faster the inference speed.
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Table 4. Ablation study on depth selection of shared attention.

Scale Model Depth(n)
#Params

(K)
#FLOPs

(G)
Latency (ms)

Set5 [3]
PSNR/SSIM

Set14 [62]
PSNR/SSIM

B100[39]
PSNR/SSIM

U100 [18]
PSNR/SSIM

Manga109 [40]
PSNR/SSIM

× 4

ELAN-light 0 641 45.5 75 32.47/0.8977 28.79/0.7858 27.71/0.7405 26.60/0.7985 30.95/0.9151
ELAN-light 1 601 43.2 62 32.43/0.8976 28.78/0.7858 27.69/0.7406 26.54/0.7982 30.92/0.9150
ELAN-light 3 575 40.4 51 32.35/0.8970 28.71/0.7852 27.65/0.7401 26.40/0.7971 30.74/0.9133
ELAN-light 5 571 39.3 48 32.31/0.8967 28.66/0.7846 27.62/0.7400 26.35/0.7967 30.63/0.9120

EDSR-baseline [30] — 1518 114.0 28 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849 30.35/0.9067

Table 5. Ablation study on window size of GMSA.

Scale Model Latency Set5 [3] Set14 [62] B100 [39] Urban100 [18] Manga109 [40]

× 4

[8, 16, 32] 109 32.47/0.8985 28.83/0.7873 27.73/0.7419 26.74/0.8042 31.06/0.9161
[4, 8, 16] 62 32.43/0.8975 28.78/0.7858 27.69/0.7406 26.54/0.7982 30.92/0.9150
[8, 8, 8] 58 32.38/0.8971 28.68/0.7832 27.62/0.7368 26.40/0.7973 30.78/0.9142

SwinIR-light 271 32.44/0.8976 28.77/0.7858 27.69/0.7406 26.47/0.7980 30.92/0.9151

Generalization of ELAN. To verify the generalization capability of ELAN
to other tasks, we apply it to color image denoising with noise level 25, following
the settings of SwinIR [29]. In Table 6, we see that although ELAN is designed
for SR, it achieves slightly better PSNR result than SwinIR and surpasses other
state-of-ther-art CNN-based denoising methods. What’s more, as for the infer-
ence speed, ELAN runs 2.3× faster than SwinIR given 480p image as input.

Table 6. Quantitative comparison with SOTAs for color image denoising.

Dataset RPCNN [60] BRDNet [52] DRUNet [63] SwinIR [29] ELAN

CBSD68 [39] 31.24 31.43 31.69 31.78 31.82
Kodak24 [15] 32.34 32.41 32.89 32.89 32.89
McMaster [64] 32.33 32.75 33.14 33.20 33.21
Urban100 [18] 31.81 31.99 32.60 32.90 32.94

5 Conclusion

In this paper, we proposed an efficient long-range attention network (ELAN)
for single image super resolution. ELAN had a neat topology with sequentially
cascaded efficient long-range attention blocks (ELAB). Each ELAB was com-
posed of a local feature extraction module with two sequential shift-conv and
a group-wise multi-scale self-attention (GMSA) module to gradually increase
the receptive field of self-attention (SA). Benefiting from our accelerated SA
calculation and shared attention mechanism, ELAB can effectively capture the
local structure and long-range dependency in a very efficient manner. Exten-
sive experiments show that ELAN can obtain highly competitive performance
than previous state-of-the-art SR models on both light-weight and performance-
oriented settings, while being much more economical than previous transformer-
based SR methods. Though ELAN achieved significant speedup than SwinIR,
the calculation of SA was still computation- and memory-intensive compared
to those light-weight CNN-based models. In the future, we will explore more
efficient implementations or approximations of SA for low-level vision tasks.
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