
Supplemental Materials to “A PID Controller Approach for Stochastic
Optimization of Deep Networks”

1. Connection
In this section, we show the mathematical connection between deep learning optimizer and PID controller.

1.1. PID Controller

The PID controller is the most commonly used control algorithm in industry since its origin in the 1940s. More than 90%
of the controllers in the industrial products are PID [2]. Which has the following definition:

u(t) = Kpe(t) +Ki

t−1∑
i=0

e(i) +Kd(e(t)− e(t− 1)) (1)

where u(t) is the controller’s update, and e(t) is the error between the system’s output and the desired output. Kp, Ki and
Kd are positive constants to balance present, past and future of the error e(t).

By replacing the error e(t) in PID controller with the gradient in deep learning optimization, the PID controller for deep
learning optimization is given by:

u(t) = Kp∂Lt/∂θt +Ki

t−1∑
i=0

(∂Li/∂θi) +Kd(∂Lt/∂θt − ∂Lt−1/∂θt−1) (2)

where u(t) is the update of the weight, θt is the weight at iteration t and ∂Lt/∂θt is the gradient of the network.

1.2. Deep Learning Optimizers

1.2.1 SGD is a P Controller

The update rule of SGD is:

θt+1 − θt = −r∂Lt/∂θt, (3)

where r is the learning rate.
Comparing Equation. 3 with Equation. 2, we can see that the update of parameters relies on current gradient, and SGD is

a P controller.

1.2.2 SGD-Momentum is a PI Controller

The update rule of SGD-Momentum is given by:{
Vt+1 = αVt − r∂Lt/∂θt
θt+1 = θt + Vt+1

(4)

where α is a value to balance past and current gradients, usually set to 0.9 [3]. Dividing both sides of the 1st formula of
Equation. 4 by αt+1:

Vt+1

αt+1
=
Vt
αt
− r ∂Lt/∂θt

αt+1
(5)

By applying Equation. 5 from time t+ 1 to 1, we have:

Vt+1

αt+1
− Vt
αt

= −r ∂Lt/∂θt
αt+1

Vt
αt
− Vt−1
αt−1

= −r ∂Lt−1/∂θt−1
αt

...... =
V1
α1
− V0
α0

= −r ∂L0/∂θ0
α1

(6)

Add the above t+ 1 equations together, there is:

Vt+1

αt+1
=
V0
α0
− r(

t∑
i=0

(
∂Li/∂θi
αi+1

)) (7)

Without loss of generality, we set the initial condition V0 = 0, and thus the above equation can be simplified as follows:

Vt+1 = −r(
t∑
i=0

(αt−i∂Li/∂θt−1)) (8)

Put Vt+1 into the 2nd formula of Equation. 4, we have:

θt+1 − θt = −r
∂Lt
∂θt
− r(

t−1∑
i=0

(αt−i∂Li/∂θi)) (9)

We can see that the update of the parameter relies on both the current gradient (P control) and the integral of past gradients (I
control). If we assume α = 1, there is:

θt+1 − θt = −r(∂Lt/∂θt)− r(
t−1∑
i=0

(∂Li/∂θi)) (10)

Comparing Equation. 10 with Equation. 2, we can see that SGD-Momentum is a PI controller with Kp = r and Ki = r.

1.2.3 Nesterov′s Momentum is a PI Controller with larger P

The update rule of Nesterov′s Momentum is :{
Vt+1 = αVt − r∂Lt/∂(θt + αVt)

θt+1 = θt + Vt+1

(11)

The expression is almost the same as SGD-Momentum except for the location where the gradient is evaluated. By using a
variable transform θ̂t = θt + α ∗ Vt, we have:

{
Vt+1 = αVt − r∂Lt/∂θ̂t
θ̂t+1 = θ̂t + (1 + α)Vt+1 − αVt

(12)

Similar to the derivation process in Equations. 5, 6 and 7 of SGD-Momentum, we have:

Vt+1 = −r(
t∑
i=1

(αt−i∂Li/∂θ̂i)) (13)

With Equation. 13, Equation. 11 can be rewritten as:

θ̂t+1 − θ̂t =− r(1 + α)∂Lt/∂θ̂t − αr(
t−1∑
i=1

(αt−i∂Li/∂θ̂i)) (14)

One can see that the update of parameters relies on the current gradient (P control) and the integral of past gradients (I
control). If we assume α = 1, then:

θ̂t+1 − θ̂t =− 2r(∂Lt/∂θ̂t)− r(
t−1∑
i=0

(∂Li/∂θ̂i)) (15)

Comparing Equation. 15 with Equation. 2, we can see that Nesterov′s Momentum is a PI controller with Kp = 2r and
Ki = r.

2. Laplace Transform of PID Optimizer
2.1. Laplace Transform

The Laplace Transform converts the function of real variable t (iteration) to a function of complex variable s (frequency).
Denote by F (s) the Laplace transform of f(t). There is

F (s) =

∫ ∞
0

e−stf(t) dt, for s > 0. (16)

Usually F (s) is easier to solve than f(t), and f(t) can be recovered from F (s) by the Inverse Laplace Transform:

f(t) =
1

2πi
lim
T→∞

∫ γ+iT

γ−iT
estF (s) ds, (17)

where γ is a real number and i is the unit of imagery part. In practice, we could decompose a Laplace transform into known
transforms of functions in the Laplace table [5], which includes most of the commonly used Laplace transforms, and then
construct the inverse transform.

With Laplace Transform, we convert the PID optimizer into its Laplace transformed functions of s, and then simplify the
algebra. Once we find the transformed solution of F (s), we can inverse the transform to obtain the required solution f as a
function of t.

2.2. Evolution of Weight

A weight of a deep model is initialized as a scalar θ0, and it is updated iteratively to reach its optimal value, denoted by
θ∗. Then the process of each weight in DNN can be viewed as a step response (from θ0 to θ∗) in control theory [4]. We then
use the Laplace Transform as a guide to set hyper-parameter Kd.

The Laplace Transform of θ∗ is θ∗
s [5]. We denote by θ(t) the weight at iteration t. The Laplace Transform of θ(t) is

denoted as θ(s), and that of error e(t) as E(s). Since E(s) = θ∗
s −

theta(s). The Laplace transform of PID [5] is:

U(s) = (Kp +Ki
1

s
+Kds)E(s) (18)

In our case, the u(t) corresponds to the update of θ(t). So we replaceU(s) with θ(s), and withE(s) = θ∗
s −θ(s), Equation. 18

can be rewritten as:

θ(s) = (Kp +Ki
1

s
+Kds)(

w∗
s
− θ(s)) (19)

With this form, it is easy to derive a standard closed loop transfer function [1] as follows:

θ∗
s
− θ(s) = ω2

n

s2 + 2ζωns+ ω2
n

(20)

tmax

θ0

θ∗

θmax

t

θ(t)

Figure 1. The evolution of the weight by PID optimizer

where {
Kp+1
Kd

= 2ζωn
Ki
Kd

= ω2
n

(21)

Equation. 20 can be rewritten as:

θ∗
s
− θ(s) =

(s+ ζωn) +
ζ√
1+ζ2

ωn
√

1− ζ2

(s+ ζωn)2 + ω2
n(1− ζ2)

(22)

We can get the time (iteration) domain form of θ(s) by using the Laplace Inverse Transform table [5] and the initial condition
of the θ (θ0):

θ(t) = θ∗ −
(θ∗ − θ0) sin(ωn

√
1− ζ2t+ arccos(ζ))

eζωnt
√
1− ζ2

(23)

where ζ and ωn are damping ratio and natural frequency of the system, respectively. In Fig. 1, we show the evolution
process of a weight as an example of θ(t). From Equation. (21), we can write ζ as ζ =

(Kp+1)2

4KdKi
. One can see that Ki is a

monotonically decreasing function of ζ. Refer to the definition of overshoot:

Overshoot =
θmax − θ∗

θ∗
(24)

By differentiating θ(t) w.r.t. time t, and let dθ(t)/dt = 0, we have the peak time of the weight as:

tmax =
π

wn
√
1− ζ2

(25)

Put tmax to Equation. 23, we have θmax, and put θmax to Equation. 24, we have:

Overshoot =
θ(tmax)− θ∗

θ∗
= e

−ζπ√
1−ζ2 (26)

One can see that ζ is monotonically decreasing with overshoot. ThenKi is a monotonically increasing function of overshoot.
So more history error (Integral part), more overshoot the system will have. That is the reason why SGD-Momentum which
accumulates past gradients will overshoot its target and spend more time during training.

As can be observed from Equation. (23), the term sin(ωn
√
1− ζ2t+arccos(ζ)) brings periodically oscillation change to

the weight, which is no more than 1. The term e−ζωnt mainly controls the convergence rate. There is a hyper-parameterKd in

calculating the derivate e−ζωn = e
−Kp+1

2Kd . It is easy to observe that the larger the derivate, the earlier the training convergence
we will reach. However, whenKd gets too large, the system will be fragile. In practice, we set the hyper-parameterKd based

on the Ziegler-Nichols optimum setting rule [6], which is widely used by engineers in PID feedback control since its origin
in 1940s.

According to Ziegler-Nichols′ rule, the ideal setup of Kd should be one third of the oscillation period, which means
Kd =

1
3T , where T is the period of oscillation. From Equation. (23), we can get T = 2π

ωn
√

1−ζ2
. If we make a simplification

that α in Momentum is equal to 1, then Ki = Kd = r. Combined with Equation. (21), Kd will have a closed form solution:

Kd = 0.25r + 0.5 + (1 +
16

9
π2)/r (27)

References
[1] H. K. Khalil. Noninear Systems. Prentice-Hall, New Jersey, 1996. 4323
[2] A. O’Dwyer. Handbook of PI and PID controller tuning rules. World Scientific, 2009. 4321
[3] N. Qian. On the momentum term in gradient descent learning algorithms. Neural networks, 12(1):145–151, 1999. 4321
[4] H. Rake. Step response and frequency response methods. Automatica, 16(5):519–526, 1980. 4323
[5] G. E. Robert and H. Kaufman. Table of Laplace transforms. Saunders, 1966. 4323, 4324
[6] J. G. Ziegler and N. B. Nichols. Optimum settings for automatic controllers. trans. ASME, 64(11), 1942. 4325

