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Abstract: This paper addresses the automatic image segmentation problem in a region merging style. With 

an initially over-segmented image, in which the many regions (or super-pixels) with homogeneous color are 

detected, image segmentation is performed by iteratively merging the regions according to a statistical test. 

There are two essential issues in a region merging algorithm: order of merging and the stopping criterion. In 

the proposed algorithm, these two issues are solved by a novel predicate, which is defined by the sequential 

probability ratio test (SPRT) and the minimal cost criterion. Starting from an over-segmented image, 

neighboring regions are progressively merged if there is an evidence for merging according to this predicate. 

We show that the merging order follows the principle of dynamic programming. This formulates image 

segmentation as an inference problem, where the final segmentation is established based on the observed 

image. We also prove that the produced segmentation satisfies certain global properties. In addition, a faster 

algorithm is developed to accelerate the region merging process, which maintains a nearest neighbor graph 

(NNG) in each iteration. Experiments on real natural images are conducted to demonstrate the performance 

of the proposed dynamic region merging algorithm.  
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I. Introduction 

Image segmentation is a fundamental yet still challenging problem in computer vision and image processing. 

In particular, it is an essential process for many applications such as object recognition, target tracking, 

content-based image retrieval and medical image processing, etc. Generally speaking, the goal of image 

segmentation is to partition an image into a certain number of pieces which have coherent features (color, 

texture, etc.) and in the meanwhile to group the meaningful pieces together for the convenience of 

perceiving [1]. In many practical applications, as a large number of images are needed to be handled, human 

interactions involved in the segmentation process should be as less as possible. This makes automatic image 

segmentation techniques more appealing. Moreover, the success of many high-level segmentation techniques 

(e.g. class-based object segmentation [2, 3]) also demands sophisticated automatic segmentation techniques.  

Dating back over decades, there is a large amount of literature on automatic image segmentation. For 

example, the edge detection algorithms [4-7] are based on the abrupt changes in image intensity or color, 

thus salient edges can be detected. However, due to the resulting edges are often discontinuous or 

over-detected, they can only provide candidates for the object boundaries. Another classical category of 

segmentation algorithms is based on the similarities among the pixels within a region, namely region-based 

algorithms. In order to cluster the collection of pixels of an image into meaningful groups of regions or 

objects, the region homogeneity is used as an important segmentation criterion. Many cut criteria in graph 

theory have been studied for this purpose. The most widely used cut criteria include normalized cut [8], ratio 

cut [9], minimum cut [10] and so on. The aim of these algorithms is to produce a desirable segmentation by 

achieving global optimization of some cost functions. However, these cost functions only provide a 

characterization of each cut rather than the whole regions. Another problem is that the optimization 

processes are often computationally inefficient for many practical applications. In recent years, the success 

of combinatorial graph cut methods [41-42] has been attracting significant research attention. These methods 

utilize the user input information along with the cut criteria in optimization and nearly global optima can be 

achieved in linear computational time. As a matter of fact, for most cut-based energy functionals a single 

optimal partition of an image is not easy to obtain. It makes a possibility of finding different level-based 

explanations of an image. From this aspect, there are methods [11-12] tackling the image segmentation as a 

hierarchical bottom-up problem.  
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In region-based methods, a lot of literature has investigated the use of primitive regions as a 

preprocessing step for image segmentation [13-15]. The advantages are twofold. First, regions carry on more 

information in describing the nature of objects. Second, the number of primitive regions is much fewer than 

that of pixels in an image and thus largely speeds up the region merging process. Starting from a set of 

primitive regions, the segmentation is conducted by progressively merging the similar neighboring regions 

according to a certain predicate, such that a certain homogeneity criterion is satisfied. In previous works, 

there are region merging algorithms based on statistical properties [16, 22-23, 50-51], graph properties 

[17-19, 24-25] and spatio-temporal similarity [20]. Although the segmentation is obtained by making local 

decisions, some techniques [16-21] have shown satisfying results with efficient implementation. Most region 

merging algorithms do not have some desirable global properties, even though some recent works in region 

merging address the optimization of some global energy terms, such as the number of labels [43] and the 

area of regions [44]. As a good representation of morphological segmentation, watershed transform [45] can 

also be classified as region-based segmentation methods. The intuitive idea comes from geography, where 

watersheds are the dividing lines of different catchment basins. The major drawback of watershed transform 

is the over-segmentation of the image. To overcome this problem, one solution is “flooding” from the 

selected markers [46-48] such that only the most important regional minima are saved for the segmentation. 

The other [49] is based on a hierarchical process, where the catchment basins of the watershed image are 

merged until they belong to almost homogeneous regions.  

In this paper, we implement the segmentation algorithm in a region merging style for its merit of 

efficiency, where similar neighboring regions are iteratively merged according to a novel merging predicate. 

As stated above, homogeneity criteria (cues) are essential to the region merging process. Although a good 

enough cue is needed in order to obtain a valuable segmentation, our work does not focus on finding a more 

complex region model. Instead, we model the cues by a function of random variables. In this way, the 

properties of cues are not mainly concerned, but the reliability of the cues. In many traditional segmentation 

algorithms (e.g. [8-10]), the reliability is predetermined and thus researchers often try to use more reliable 

cues for implementation. In contrast, some statistical segmentation methods are able to calculate the 

reliability of cues, for example, using the parametric probability models [50-51]. But they cannot be used in 

a general scenario. Another statistical method [16] directly uses the statistical property of image data (e.g., 

colors) to identify the region border. Particularly, a homogeneity criterion is proposed based on the 
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expectation of pixel colors inside a region, which naturally leads to a merging predicate. In the recent work 

of region merging [22], a likelihood ratio test is applied as the measure of region similarity. The probability 

of adjacent regions and that of their merging are both computed. To minimize both probabilities of error, the 

optimal merging will take place along with the largest decreasing of the likelihood ratio.  

In our work, image segmentation is also formulated as an inference problem, and there is no limitation 

on the distribution of random variables. The evaluation of the homogeneity of regions follows the grouping 

principle of Gestalt theory [26-27], which suggests a preference to having consistent elements in the same 

data set. Unlike the method proposed in [22], we do not directly use the ratio test as a similarity measure, but 

take it as an enhancement for the merging evidence. The proposed predicate can be therefore interpreted as a 

combination of the consistency measure and the similarity measure. More specifically, the extent of 

consistency tells whether or not the tested data belong to the same group. It is measured by two hypotheses 

according to the Sequential Probability Ratio Test (SPRT) [28]: a null hypothesis H0 “the tested data are 

consistent” and an alternative hypothesis H1 “the tested data are inconsistent”. The proposed similarity 

measure describes the affinity between two neighboring regions. In each iteration, a region finds its closest 

neighbor at the lowest value according to some cost function. With the consistency measure and the 

similarity measure, the problem of searching in a spatial-time space becomes finding an optimal path that 

mostly satisfies the data consistency. If taking the segmentation as a labeling problem [1], the label of a 

region will transit to the one of its closest neighbor as iteration goes on. As a result, a merging will happen 

when two neighboring regions exchange their labels. We can prove that with this merging scheme, a 

primitive region will be merged into its most similar group at the lowest cost in the final segmentation.  

A good segmentation algorithm should preserve certain global properties according to the perceptual 

cues. This leads to another essential problem in a region merging algorithm: the order that is followed to 

perform the region merging. Since the merging process is inherently local, most existing algorithms have 

difficulties to possess some global optimality. However, we demonstrate that the proposed algorithm holds 

certain global properties, i.e., being neither over-merged nor under-merged, using the defined merging 

predicate. In addition, to speed up the region merging process, we introduce the structure of nearest neighbor 

graph (NNG) to accelerate the proposed algorithm in searching the merging candidates. The experimental 

results indicate the efficiency of the acceleration algorithm.  

The rest of this paper is organized as follows. In Section II, a novel region merging predicate is defined. 
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The consistency test of neighboring regions is defined in Section III by using SPRT. In Section IV, we 

present the dynamic region merging algorithm and prove some global properties it holds for the 

segmentation. In Section V, an accelerated algorithm for the merging process is presented and analyzed. In 

Section VI, we show the segmentation results on real images. Section VII concludes the paper.  

 

II. The Region Merging Predicate 

Automatic image segmentation can be phrased as an inference problem [1]. For example, we might observe 

the colors in an image, which are caused by some unknown principles. In the context of image segmentation, 

the observation of an image is given but the partition is unknown. In this respect, it is possible to formulate 

the inference problem as finding some representation of the pixels of an image, such as the label that each 

pixel is assigned. With these labels, an image is partitioned into a meaningful collection of regions and 

objects. The Gestalt laws in psychology [26-27] have established some fundamental principles for this 

inference problem. For example, they imply some well-defined perceptual formulations for image 

segmentation, such as homogeneous, continuity and similarity. In the family of region merging techniques, 

some methods have used statistical similarity tests [16, 29] to decide the merging of regions, where a 

predicate is defined for making local decisions. These are good examples of considering the homogeneity 

characteristics within a region, from which we can see that an essential attribute for region merging is the 

consistency of data elements in the same region. In other words, if neighboring regions share a common 

consistency property, they should belong to the same group. However, most of the existing region merging 

algorithms cannot guarantee a globally optimal solution of the merging result. As a consequence, the region 

merging output is over-merged, under-merged or a hybrid case. In this section, we propose a novel predicate 

which leads to certain global properties for the segmentation result. 

The proposed predicate is based on measuring the dissimilarity between pixels along the boundary of 

two regions. For the convenience of expression, we use the definition of region adjacency graph (RAG) [30] 

to represent an image. Let G = (V, E) be an undirected graph, where vi∈V is a set of nodes corresponding to 

image elements (e.g. super-pixels or regions). E is a set of edges connecting the pairs of neighboring nodes. 

Each edge (vi,vj)∈E has a corresponding weight w((vi,vj)) to measure the dissimilarity of the two nodes 

connected by that edge. In the context of region merging, a region is represented by a component R ⊆ V. We 
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obtain the dissimilarity between two neighboring regions R1, R2 ⊆ V as the minimum weight edge connecting 

them. That is, 

)),((min),(
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The graph structure of an example partition is shown in Fig. 1, where the image has 7 regions and its 

RAG is shown on the right. The advantage of RAG is that it can provide a “spatial view” of the image.  

 

              

Figure 1. An example of region partition and the corresponding region adjacency graph (RAG). 

 

 

Figure 2.  An example that the predicate P between R1 and R2 is true. The thickness of lines indicates the weights of 
the edges. The most similar pair of regions is connected by an edge with the minimal weight. 

 

Since the merging predicate will decide whether there is an evidence of merging between the pair of 

regions, it involves two aspects: a dissimilarity measure which is used to determine the candidate region for 

merging, and the consistency property which checks if the regions are homogenous. We define the following 

region merging predicate P: 
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where Ω1 and Ω2 are the neighborhood sets of R1 and R2, respectively. The merging predicate on regions R1 

and R2 could thus be “merge R1 and R2 if and only if they are the most similar neighbors in each other’s 

neighborhood and follow the principle of consistency.” The condition (a) is stronger than that of only 

requiring the connecting edge between R1 and R2 to be the minimal one in either of the neighborhood. This 

leads to an interesting property of the proposed region merging algorithm, i.e., the candidates of the pairs of 

regions for merging are uniquely decided by the given graph. We shall see hereafter that such a condition 

uniquely decides the pairs of regions to be merged at a given merging level. Moreover, in Section V we will 

prove that there is always at least one pair of regions which satisfies condition (a). Clearly, without condition 

(b), all the regions will be merged into one big region at the end of region merging process. Therefore, 

condition (b) acts as a stopping criterion. Fig. 2 illustrates an example when the predicate P between regions 

R1 and R2 is true. 

According to the definition of P, the test of consistency is based on the visual cues extracted from the 

image data. In the next section, the SPRT method is introduced for a reliable decision on the consistency of 

regions. 

 

III. Consistency Test of Cues 

In order to obtain the homogenous regions in region merging, the proposed predicate P in Eq. (2) checks the 

consistency of regions. Region information is usually presented by the cues extracted from the observed data. 

The choice of cues can be intensity, color, texture and so on. If we view the cue as a random variable, the 

distribution of the cue depends on the consistency of pairs of regions. In this paper, we formulate the 

evaluation of the region consistency as a sequential test process. Suppose parameter θ is related to the 

distribution of random cues x. More specifically, we gather information of parameter θ by observing random 

variables in successive steps. Since every sample of the cues carries statistical information on parameter θ, 

we may collect the information at the end of observation. This is one of the interesting problems studied in 

sequential analysis, where θ is called a hypothesis. In the context of region merging, two hypotheses are 
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involved in the evaluation task: a pair of regions is “consistent”, and is “inconsistent”, which are denoted by 

a null hypothesis H0: θ = θ0 against an alternative hypothesis H1: θ = θ1, respectively. The property of the 

hypotheses is a hidden state that is not directly observable, but is statistically linked to the observable cues. 

To decide whether or not a pair of regions belongs to the same group, we look for the solution of its 

hypothesis test.  

An efficient and popular procedure for integrating the statistical evidence is the sequential probability 

ratio test (SPRT) which was proposed by Wald [28]. SPRT shows that the solution to the hypothesis can be 

found by making the smallest number of observations and satisfying the bounds on the predefined 

probabilities of two errors. SPRT is purely sequential in nature, i.e., continuing sampling on the instances of 

a random variable will eventually lead to a reliable inference about parameter θ.  

The application of SPRT to the consistency test of cues is described as follows. We observe the 

distribution of random cues x in a sequence until a likelihood ratio δ goes out of the interval (B, A) for the 

first time by a random walk, where the real numbers A and B satisfy B<0<A. The sequence of successive 

likelihood ratio δi is: 

Ni  
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where P0(x|θ0) and P1(x|θ1) are the distributions of visual cues. P0(x|θ0) and P1(x|θ1) should be different so as 

to make a convincing decision. We use the Gaussian distribution model to approximate the cue distributions. 

The two conditional probabilities are given as follows: 
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where Ia and Ib are the average color of sampled data in regions a and b respectively, and Ia+b is the average 

value of samples’ union. SI is the covariance matrix of the regions, and λ1 and λ2 are scalar parameters. If 

each test is independent, the composition of the likelihood ratios is the sum of the individual δi: 

1

N
ii

δ δ
=

=∑  (5) 

where N is the first integer for which δ ≥ A or δ ≤ B. We can see that the solution to the hypothesis is 

decided by the relationship between δ, an upper limit and a lower limit, denoted by A and B, respectively. If 

δ goes out of one of these limits, the hypothesis is made and thus the test stops. Otherwise, the test is carried 
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on with a new random sampling.  

Intuitively, the likelihood ratio δ is positive and high when the terminal decision is in favor of H0, while 

it is negative and low when the situation is reversed. In the SPRT theory [28], Wald recommended 

implementing the test with a practical approximation: A=log(1-β)/α and B=logβ(1-α), where α and β are 

probabilities of the decision error given by: 

α =Pr{Rejecting H1 when H1 is true} 
β =Pr{Accepting H1 when H0 is true} 

The selection of α and β affects the region merging quality. Intuitively, as error rates decrease, the region 

merging quality grows. However, at the same time the computational effort will increase accordingly. In our 

implementation, both α and β are set to a fixed value 0.05.  

For the uncertainty of the (worst-case) number of tests in SPRT, a truncated SPRT [28] is used here by 

presetting an upper bound N0 on the number of tests. In Wald’s theory, the expected number of tests is: 

where η0, η1 are the conditionally expected number of trails from a single test: η0=E{δ |θ0} and η1=E{δ |θ1}. 

We set N0 to be a constant which is greater than max{E{δ |θ0}, E{δ |θ1}}. The proposed SPRT based 

consistency test of cues is summarized in Table 1. 

 
Table 1.  Algorithm 1: consistency test of cues 

Preset λ1; 
Let λ2=1, α=0.05, β=0.05; 
Compute parameters:  

N0: be a constant greater than max{E{δ |θ0}, E{δ |θ1}}; 
A=log(1-β)/α , B=logβ(1-α); 
P0(x|θ0), P1(x|θ1) are computed using Eq. (4). 
 

Input: a pair of neighboring regions. 
Output: the decision D that the two regions are “consistent” (D=1) or “inconsistent” (D=0). 
 
1. Set evidence accumulator δ and the trials counter n to be 0. 
2. Randomly choose m pixels in each of the pair of regions, where m equals the half size of the 

region. 
3. Calculate the distributions of visual cues x using Eq. (4) based on these pixels. 

4. Update the evidence accumulator 
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5. If n≤N0 
If δ ≥ A, return D=1 (consistent) 
If δ ≤ B, return D=0 (inconsistent) 
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If n>N0 
If δ ≥ 0, return D=1 (consistent) 
If δ <0, return D=0 (inconsistent) 

6. Go back to step 2. 
 

 

IV. Dynamic Region Merging (DRM) 

IV-A. The dynamic region merging algorithm 

In this section, we explain the proposed region merging algorithm as a dynamic region merging (DRM) 

process, which is proposed to minimize an objective function with the merging predicate P defined in Eq. 

(2). As mentioned in Section I, the proposed DRM algorithm is started from a set of over-segmented regions. 

This is because a small region can provide more stable statistical information than a single pixel, and using 

regions for merging can improve a lot the computational efficiency. For simplicity and in order to validate 

the effectiveness of the proposed DRM algorithm, we use the watershed algorithm [31] (with some 

modification) to obtain the initially over-segmented regions (please refer to Section VI-A for more 

information), yet using a more sophisticated initial segmentation algorithm (e.g. mean-shift [32]) may lead 

better final segmentation results. 

Given an over-segmented image, there are many regions to be merged for a meaningful segmentation. 

By taking the region merging as a labeling problem, the goal is to assign each region a label such that 

regions belong to the same object will have the same label. There are two critical labels for a region Ri: the 

initial label li
0, which is decided by the initial segmentation, and the final label li

n, which is assigned to the 

region when the merging process stops. In our problem, the final label li
n for a given region is not unique, 

which means that the same initialization li
0 could lead to different solutions. This uncertainty mainly comes 

from the process of SPRT with a given decision error. The test of consistency/inconsistency depends on the 

error probabilities of the cue decisions α and β. In general, these decisions are precise for homogenous 

regions. If a region contains a small part of non-homogenous data, the SPRT might add a few more times of 

tests to verify its decision. With reasonably small error probabilities, the segmentation results will be more 

reliable. According to our observation, in most cases, the segmentation result is stable for a given image and 

it can be guaranteed that all the results satisfy the merging predicate P defined in Eq. (2). In the process of 

region merging, the label of each region is sequentially transited from the initial one to the final one, which 
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is denoted as a sequence (li
0, li

1,…, li
n).  

To find an optimal sequence of merges which produce a union of optimal labeling for all regions, the 

minimization of a certain objective function F is required. According to predicate P, the transition of a 

region label to another label corresponds to a minimal edge weight that connects the two regions. In this case, 

a sequence of transitions will be defined on a set of local minimum weights, i.e., in each transition the edge 

weight between the pair of merged regions should be the minimal one in the neighborhood. As a result, the 

objective function F used in this work is defined as the measure of transition costs in the space of partitions. 

In other words, as the whole image is a union of all regions, F is the sum of transition costs over all regions. 

That is: 

where Fi is the transition costs of one region Ri in the initial segmentation. Minimizing F in Eq. (7) is a 

combinatorial optimization problem and finding its global solution is in general a hard task. Since the 

exhaustive search in the solution space is impossible, an efficient approximation method is desired. The 

solution adopted here is based on the stepwise minimization of F, where the original problem is broken 

down into several sub-problems by using the dynamic programming (DP) technique [33]. 

The DP is widely used to find the (near) optimal solution of many computer vision problems. The 

principle of DP is to solve a problem by studying a collection of sub-problems. Indeed, there have been 

some works in image segmentation that benefit from this efficient optimization technique, such as DP snake 

[34-35]. In the proposed DRM algorithm, we apply DP on discrete regions instead of line segments. The 

minimization problem for region Ri starting at labeling li
0 is defined as: 
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where Fi(li
0, li

1,…, li
n) is the transition cost from li

0 to li
n, dk,k+1 is the minimal edge weight between the 

regions with labeling li
k and li

k+1, respectively. In conjunction with Eq. (1), we have 

∑=
iR iFF                                  (7)

),(min 11,
1

+Ω∈+
+

= kkRkk RRSd
kk

                            (9)



12 
 

The overall path length from li
0 to li

n is the sum of minimum edges dk,k+1 for each node in that path. This 

problem reduces to a search for a shortest path problem, whose solution can be found at a finite set of steps 

by the Dijkstra’s algorithm in polynomial time. At this point, a minimization process of objective function F 

is exactly described by the predicate P defined in Eq. (2), where P is true if the nodes are connected by the 

edge with the minimal weight in their neighborhood. It means that the closest neighbors will be assigned to 

the same label, which is the cause of the merging. 

In Fig. 3, an example process of region merging is shown by embedding it into a 3D graph. Between two 

adjacent layers there is a transition which indicates the costs of a path. Clearly, this is also a process of label 

transitions. The neighborhood of the highlighted region (in red) is denoted as the black nodes in the graph 

and the closest neighbor is denoted as the red nodes. The directed connections with the lowest cost between 

adjacent layers are made (shown as blue arrows). Note that the connectivity between regions in the same 

layer is represented by the RAG, which is not explicitly shown in Fig. 3. 

 

Figure 3. The dynamic region merging process as a shortest path in a layered graph. The upper row shows the label 
transitions of a graph node. The lower row shows the corresponding image regions of each label layer. Starting from 
layer 0, the highlighted region (in red) obtains a new label from its closest neighbor (in red). If the region is merged 
with its neighbor, they will be assigned to the same label. The shortest path is shown as the group of the directed edges 
(in blue).  

 

The proposed DRM algorithm is summarized in Table 2. Minimization of the objective function follows 

the principle of DP, which is exactly expressed in terms of predicate P. In the k-th decision step, a merging 

occurs when two neighboring regions are connected by the minimum weight edge in each other’s 
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neighborhood. With the observation of this characteristic, we will propose an accelerated region merging 

algorithm in Section V. 

Table 2. Algorithm 2: segmentation by dynamic region merging 

Input: the initially over segmented image S0. 
Output: region merging result.  
1. Set i=0. 
2. For each region in segmentation Si, use Algorithm 1 to check the value of predicate P with 

respect to its neighboring regions. 
3. Merge the pairs of neighboring regions whose predicate P is true, such that segmentation 

Si+1 is constructed. 
4. Go back to step 2 until Si+1 = Si. 
5. Return Si. 

 

IV-B. Properties of the proposed DRM algorithm 

Although the proposed DRM scheme is conducted in a greedy style, some global properties of the 

segmentation can be obtained. More specifically, it can be proved that the proposed DRM algorithm can 

produce a segmentation S which is neither over-merged nor under-merged according to the proposed 

predicate P. Similar to the definitions of over-segmentation and under-segmentation in [18], we define the 

concepts of over-merged segmentation and under-merged segmentation as below. 

Definition 1. Under-merged segmentation. A segmentation S is under-merged if it contains some pair 

of regions for each the predicate P is true.  

Definition 2. Over-merged segmentation. A segmentation S is over-merged, if there is another 

segmentation Sr which is not under-merged and each region of Sr is contained in some component of S. Or 

saying, Sr can be obtained by splitting one or more regions of S. We call that Sr is a refinement of S.  

Definition 3. The evidence of boundary. There is an evidence of boundary between a pair of regions R1 

and R2 if the predicate P is false with condition (a) being satisfied but not condition (b) in Eq. (2). 

Lemma 1. If two adjacent regions are not merged for an evidence of a boundary between them in the 

k-th iteration, they will be in different regions in the final segmentation. Denote by Ri
k and Rj

k two 

neighboring regions in the k-th iteration. Then Ri = Ri
k and Rj = Rj

k, where Ri is the region whose label is Li 

and Rj is the region whose label is Lj in the final segmentation S.  

Proof: If there is an evidence of a boundary between Ri
k and Rj

k, according to Definition 3, we have 
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, where Ωi and Ωj are the neighborhoods of Ri

k and Rj
k, 

respectively. Since Ri
k and Rj

k are not merged, they will not be merged with any other regions in the 

remaining steps before they are merged with each other. So we have Ri = Ri
k and Rj = Rj

k. ■ 

Lemma 1 holds because our merging predicate relies on comparing the minimal weight edge between 

regions. We can prove in the following two theorems that with this measure, some global properties of the 

segmentation can be easily obtained.  

Theorem 1. Given the predefined error bounds, the segmentation S by Algorithm 2 is not under-merged 

according to Definition 1. 

Proof. If S is under-merged, there must be some pair of regions Ri
k and Rj

k which have a true value of the 

predicate, but do not cause a merge in the merging process. Therefore, the evidence of a boundary does not 

hold for Ri
k and Rj

k. According to Lemma 1, if Ri
k and Rj

k are not merged, Ri = Ri
k and Rj = Rj

k. This implies 

that Algorithm 2 does not merge Ri
k and Rj

k. The evidence of a boundary holds for them, which is a 

contradiction. ■ 

Theorem 2. Given the predefined error bounds, the segmentation S by Algorithm 2 is not over-merged 

according to Definition 2. 

Proof. If S is over-merged, there must be a proper refinement T that is not under-merged. Let a region 

C∈S, and there are two adjacent regions A⊂C, B⊂C, such that A and B satisfy the refinement T. According 

to Algorithm 2, A and B will not merge with any other regions in C before they merge with each other. Then 

C does not contain A and B, which is a contradiction. ■ 

In Theorem 1 and Theorem 2, we claim that the proposed DRM method brings global properties to the 

segmentation result. The under-merging and over-merging issues are essential problems to deal with in 

many region merging algorithms. Although the predicate P is locally defined in Eq. (2), it can lead to some 

desirable properties which are held in the mediate segmentation after several iterations, and especially in the 

final segmentation. The under-merging error in Definition 1 is easier to overcome, because once two 

regions are merged, there is no chance to judge them again. While for the over-merging error in Definition 2, 

the proposed DRM method forces the predicate P to make the same decision on the evidence of a boundary, 

and therefore it can bring a global property for the final segmentation result. This is not a trivial problem in 

region merging techniques. Many existing algorithms have difficulties to preserve the global property. For 
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example, the method in [16] cannot overcome the over-merging error, which means that the merging of a 

pair of regions may contradict to some previous judgments on them, and in [22-23], the under-merging and 

over-merging problems are not solved with theoretical guarantees.  

 

V. Algorithm Acceleration by Nearest Neighbor Graph (NNG) 

The DRM process presented in Algorithm 2 depends on adjacency relationships between regions. At each 

merging step, the edge with the minimal weight in a certain neighborhood is required. This requires a scan 

of the whole graph by which the relations between neighboring regions are identified. The edge weights and 

nodes of RAG are calculated and stored for each graph layer. Since the positions of the edges are unknown, 

the linear search for these nodes and edges requires O(||E||) time. After each merging, at least one of the 

edges must be removed from RAG, the positions and edge weights are updated. Then a new linear search is 

performed for constructing the next graph layer. If the number of regions to be merged is very large, the total 

computational cost in the proposed DRM algorithm will be very high. 

Based on the observation that only a small portion of RAG edges counts for the merging process, we can 

find an algorithm for accelerating the region merging process. The implementation of the algorithm relies on 

the structure of nearest neighbor graph (NNG), which is defined as follows. For a given RAG, where G = <V, 

E>, the NNG is a directed graph Gm = <Vm, Em>, where Vm = V. If we define a symmetric dissimilarity 

function S to measure the edge weights, the directed edge is defined as: 

}),(),,(min)),((|),{( EvvvvSvvwvvE kikijijim ∈==  

 
 

 

Figure 4. A possible NNG of the RAG in Fig. 1 and a cycle in the NNG. 
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Fig. 4 shows an example of NNG with respect to the RAG in Fig. 1. From the definition we can see that 

the out-degree of each node equals to one and the number of edges in an NNG is ||V||. The edge starting at a 

node points toward its most similar neighbor. For a sequence of graph nodes, if the starting and ending 

nodes coincide, we call it a cycle (see Fig. 4).  

It is easy to verify that the NNG has the following properties [36]:  

(1) Along any directed edge in NNG, the weights are non-increasing.  

(2) The maximum length of a cycle is two. 

(3) NNG contains at least one cycle. 

(4) The maximum number of cycles is ⎣||V||/2⎦. 

From the definition of merging predicate in Eq. (2), we see that when the predicate value between two 

regions is true, there is exactly a cycle between them. This demonstrates the stop criterion for the proposed 

DRM algorithm, i.e., if there is no cycle in the NNG, the region merging will stop. In other words, before the 

process stops, we can always have at least one pair of regions to merge according to the above property (3). 

This suggests that we can keep the NNG cycles during the region merging process instead of searching over 

the whole RAG. The original RAG is constructed from the over-segmented image, and the NNG is formed 

by searching for the most similar neighbors of each graph node. The NNG cycles are identified by a scan of 

the NNG. The accelerated region merging process is described in Table 3. In the graph theory, the NNG is 

also called a Minimal Spanning Tree (MST). For a general MST algorithm, the edge cost is defined in the 

statistic graph where the minimal cost is chosen for a single path node. While in ours, the shortest path is 

based on a “dynamically changed graph”, in which the graph edges are re-calculated in each iteration.  

Now we have the following theorem to demonstrate that the region merging process will go on until the 

predicate is false for all pairs of regions in the image. 

Theorem 3. In the DRM algorithm, there is at least one pair of regions to be merged in each iteration 

before the stopping criterion is satisfied. 

Proof. According to the property (3) of the NNG, there is always at least one cycle in the graph (the 

number of graph nodes should be greater than 1). Therefore, the region merging process will continue until 

the condition (b) in Eq.(2) is not satisfied. ■ 
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Table 3. Algorithm 3: Accelerating the dynamic region merging process. 

Input: the initial RAG and NNG of the image. 
Output: The region merging result (in the form of RAG). 
1. Set i=0. 
2. For the NNG in the i-th graph layer, find the minimum weight edge of the RAG using the cycles.  
3. Use Algorithm 1 to check the value of the predicate P. If P is between the cycle is true, merge the 

corresponding pair of regions. 
4. Update the RAG, NNG and the cycles. 
5. Set i=i+1. 
6. Go back to step 2 until no cycle can be found. 
7. Return RAG. 

 
 

 

Figure 5. An example of NNG modification. Dotted lines represent the RAG edges, while directed lines represent 
NNG edges. 

 

If only use RAG in the merging process, update of the RAG requires O(||V||) searching time. The 

computation will be expensive if there are a large number of nodes in RAG. In Algorithm 3, after the nodes 

of a cycle are merged, the weights of the neighboring RAG and the structure of NNG are modified. There is 

an observation that the new cycles can only form in the second order neighborhood of the merged nodes, 

which is illustrated in Fig. 5. After merging nodes 1 and 2, the closest neighbor of node 3 becomes node 4, 

and that of node 4 becomes node 5. A new cycle is formed between nodes 4 and 5, and by no means to be 

between nodes 5 and 6. In such a way, the causes of new NNG cycles can only be detected in the second 

order neighborhood of merged nodes. Hence, the computational effort for updating the NNG at each 

merging of region pair depends on the distribution of the second order neighborhood size in the RAG. The 

computation time for a merge of NNG cycle is O(γ(2)+1), where γ(2) is the size of the second order 

neighborhood of the new node. In most cases, γ(2) is far less than ||V||, which indicates the reduction of 

computation time by the accelerating algorithm.  
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VI. Experimental Results and Discussions 

In this section, we evaluate the proposed DRM algorithm on the Berkeley Segmentation Dataset2 (BSDS), 

which contains 100 test images with 5-10 human segmentations on each one of them as the ground-truth 

data. In Section VI-A, we test the DRM algorithm with several representative examples. In Section VI-B, we 

compare the well known mean-shift algorithm [32] and the graph-based region merging method [18] with 

the DRM algorithm. In Section VI-C, the performance of the accelerated DRM algorithm is evaluated. There 

are several free parameters in the proposed algorithm, and we test the effects of them in Section VI-D. Some 

discussions on the DRM method and its potential extensions will be referred in Section VI-E. The code and 

software of the proposed method can be found at http://www4.comp.polyu.edu.hk/~cslzhang/DRM.htm. 

 

VI-A. Analysis on DRM by representative examples 

The proposed DRM algorithm starts from an initially over-segmented image. For simplicity, we use the 

watershed algorithm to obtain the initial segmentation. Certainly, a more sophisticated initial segmentation 

method, such as the mean-shift algorithm [32], may lead to a better final segmentation result. Since the 

standard watershed algorithm is very sensitive to noise and hence leads to severe over-segmentation (see Fig 

6(b) for an example), to reduce noise and trivial structures we apply median filtering on the gradient image 

before using the watershed algorithm. Fig. 6(c) shows the result of the modified watershed segmentation, 

where the over-segmentation is reduced a lot while preserving the desired the object boundaries.  

   
(a)                       (b)                            (c) 

Figure 6. (a) Original image; (b) initial segmentation by standard watershed algorithm; and (c) initial segmentation by 
modified watershed algorithm with median filtering on the gradient image. 
 

                                                        
2 http://www.cs.berkeley.edu/projects/vision/grouping/segbench/ 
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Original image                  λ1=0.5                      λ1=1 

   
λ1=1.2                      λ1=1.4                      λ1=1.8 

Figure 7. Segmentation results with λ1=0.5, 1, 1.2, 1.4, 1.8, respectively. 
 

    
(a)       (b)        (c) 

   
(d)         (e)         (f) 

Figure 8. Region merging process. (a) the original image; (b) the result of initial watershed segmentation; (c)-(f) the 
merging results in different stages. (λ1=0.8) 

 

(a) λ1=2.5 

(b) λ1=1.5 
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(c) λ1=1.2 

(d) λ1=1.9 

(e) λ1=3.5 

(f) λ1=3.2 

(g) λ1=3.2 

Figure 9. Segmentation results by the proposed algorithm. From left to right, the first column shows the original 
images. The second column shows the over-segmentation produced by watershed algorithm. The third column shows 
our segmentation results. 
 

As stated in Section III, the values of λ1 and λ2 in the cue distribution functions (refer to Eq. (4)) control 

the degree of consistency between two regions, and hence decide when to terminate the region merging. In 

practice, we set λ2 to be a constant value 1, and hence there is only one parameter λ1 to be set. By 

experimental experience, we set λ1 between 0.1 and 5. Fig. 7 shows the segmentation results of an example 

image with different values of λ1. When λ1 is large, the algorithm is more likely to take two neighboring 

regions as consistency. Therefore it may produce over-merged regions (see the result where λ1=1.8). When 

λ1 is small, the case is inverse and as a result produces under-merged regions (see the results where λ1=0.5, 



21 
 

1). To clearly show the region merging process, we give an example in Fig.8, in which primitive regions (in 

Fig. 8(b)) are merged iteratively until the stop criterion is satisfied (in Fig. 8(f)). 

We illustrate the proposed DRM algorithm using more example images in Fig. 9. It is clear that 

neighboring regions with coherent colors are merged into one, whereas the boundaries are well located on 

the reasonable places. Some of the large regions have substantial variations inside (Figs. 9 (c), (e), (f)) 

however, with relatively slow changes of colors along the boundaries. This indicates that the DRM 

algorithm can tolerate some variations for grouping meaningful regions in an image. 

 

VI-B. Comparison with some well-known methods 

In this section we compare the segmentation results of DRM with the mean-shift algorithm [32] and the 

graph-based algorithm [18], which are among the well-known works in automatic image segmentation. 

Mean-shift performs the segmentation by clustering the data into several disjoint groups. The cluster centers 

are computed by first defining a spherical window and then shifting the window to the mean of the data 

points with a radius r. This shifting process repeats until convergence. The segmented image is constructed 

using the cluster labels. The mean-shift algorithm takes the feature (range) bandwidth, the spatial bandwidth, 

and the minimum region area (in pixels) as input. We need to adjust these three parameters for a good 

segmentation. In the graph-based algorithm [18], the predicate is based on both the external and the internal 

intensity differences of the regions. More specifically, the external difference is calculated as the minimum 

weight edge between two neighboring regions and the internal difference of a region is the largest weight in 

the minimum spanning tree of that region. The predicate is then defined by comparing these two values to 

make an adaptive decision with respect to the local characteristics of an image. The graph-based algorithm 

[18] also contains three parameters, which are used to smooth the image (σ ), to control the minimum region 

size (min) and to set the expected number of regions (K). All of these parameters are in different ranges, 

making the tuning of parameters tricky. As stated in Section III, the proposed DRM algorithm contains five 

free parameters {m, λ1, λ2, α, β} in the consistency test. In implementation, we fix λ2 to be 1, both α and β 

to be 0.05 and m to be half size of the region. Hence only the value of λ1 is needed to tune. In this sense, 

DRM is much more convenient to control than the mean-shift algorithm [32] and the graph-based algorithm 

[18]. 
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Figs. 10(b)-(d) show the segmentation results by the graph-based method [18], the mean-shift method 

[32] and the proposed DRM method. Segmentations are obtained by choosing the results with roughly the 

same number of regions from the three methods. By this setting, we can compare the performance of them in 

the same segmentation granularity. In Figs. 10(b)-(c), some major boundaries in the ground truth are missed, 

and some boundaries are over-detected. In Fig. 10(d), we can see that the proposed method can retain good 

localization of boundaries. In Fig. 10(e), the human labeled segmentation is used as the reference (ground 

truth) for visual evaluation of the segmentation quality. For each image, 5-10 segmentations produced by 

different human observers are chosen, and the consistency among different human segmentations is indicted 

by the probability-of-boundary (Pb) images (Fig. 10(e)), where the darker pixels indicate more people 

marked them as a boundary. For more information about the generation of human labeled ground truth 

segmentation, please refer to [37].  

Let’s then discuss about the quantitative measure of segmentation quality. This task might be as hard as 

segmentation itself. In the past decades, many researchers have been studying the supervised evaluation 

methods, where the segmented images are compared with a ground truth image. However, in unsupervised 

image segmentation, often there is no ground truth available. In order to build a common platform for 

researchers to evaluate various image segmentation methods, a group of human segmented images for each 

test sample are provided in the Berkeley Segmentation Dataset (BSDS), and a boundary-based evaluation 

method was proposed by Martin et al. [38]. In [38], the precision-recall framework is applied in conjunction 

with the human-marked boundaries. The precision-recall is a well-accepted measure in image segmentation, 

which considers two aspects of boundary qualities: precision is the fraction of detections that are true 

positives rather than false positives, while recall is the fraction of true positives that are detected rather than 

missed. A combination of these two quantities is defined as the F-measure in [39]: 

F=PR/(τR+(1-τ)P) 

where τ is a relative cost between P and R. An F-measure curve can be obtained by changing the algorithm 

parameters. Since the F-measure curve is usually unimodal, the maximal one may be taken as a summary of 

the algorithm’s performance in the sense that large value of F-measure indicates high quality of image 

segmentation. In our experiment, the optimal parameter is chosen for each image and the corresponding 

F-measure is recorded for the overall evaluation.  
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(a) Original images. 

      
(b) Segmentation results by the graph-based region merging method in [18]. 

      
(c) Segmentation results of mean-shift method in [32]. 

      
(d) Segmentation results of the proposed method with watershed initializations. 

      

 (e) Ground truth. 
 
Figure 10. Segmentation results by different methods. The first row shows the original images. The second row shows 
the results by the graph-based image segmentation method [18]. Parameter settings ([σ , K, min]) for images (from the 
left to the right) are (0.5, 1200, 400), (0.5, 800, 200), (0.5, 400, 200), (0.5, 1500, 700), (0.5, 800, 300) and (0.5, 500, 
200), respectively. The third row shows the results by the mean-shift method [32], with the spatial bandwidth and color 
bandwidth being set as (14, 13), (13, 12), (18, 17), (14, 13), (14, 13) and (12, 11), respectively. The forth row shows the 
proposed method. The values of λ1 are 0.6, 0.5, 2, 1.1, 1.1 and 0.9, respectively. The fifth row shows 
probability-of-boundary images of the human segmentation, where the darker boundaries indicate more subjects 
marked a boundary [38].  
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There are two issues to address when use BSDS for evaluating the segmentation results. First, the 

ground truth is defined by a collection of 5 to 10 human segmentations for each image. Simply uniting the 

humans’ boundary maps is not a reasonable choice because it ignores the high overlapping boundaries 

among different humans. Second, when matching boundary pixels, one should avoid over-penalizing the 

slightly mislocalized boundaries. We use the method proposed by Martin et al. to compute the F-measure 

for all algorithms. In this method, the segmentation results are compared with each human segmentation 

separately. False positives are counted as the boundary pixels that do not match any human boundary. The 

recall depends on all the human segmentations, i.e., averaged over different human data. One merit of 

Martin et al.’s method is that it can tolerate some localization errors in the matching process, which is a 

reasonable consideration in the correspondence of ground-truth and segmentation results. In Table 4, we 

compared the F-measures of the Canny edge detector [5], the graph-based method [18], the mean-shift 

method [32] and the DRM algorithm. The best parameter is chosen for each of these methods, and we have 

the F-measures as 0.62 for Canny edge detector, 0.62 for the graph-based method [18], 0.65 for mean-shift 

method [32] and 0.65 (with watershed as initial segmentation) and 0.66 (with mean-shift as initial 

segmentation) for the proposed DRM method.  

Table 4. The best F-measures by the competing methods on the BSDS dataset. The average F-measure for the human 
subjects is 0.79 [40], which represents the human performance for the segmentation task. The DRM algorithm is tested 
when initialized by watershed and mean-shift respectively. 
 

Method Human Graph-based 
method [18]  

Canny 
[5] 

Mean-shift 
[32] 

DRM (initialized 
by watershed)   

DRM (initialized 
by mean-shift)   

F-measure 0.79 0.62 0.62 0.65 0.65 0.66 
 

VI-C. The performance of accelerated DRM algorithm 

In Fig. 11, we show the number of RAG regions and the number of NNG cycles for images Fig. 9(a)-(g) at 

different region merging stages. Apparently, the number of cycles (in red) is much smaller than that of the 

RAG edges (in blue). By using the accelerated region merging algorithm, the computational effort is largely 

saved. The update of NNG cycles depends on the size of RAG in the second order neighborhood. In Fig. 12, 

we show the histogram of RAG node degrees for the over-segmented images in Figs. 9(a)-(g) (in the second 

column). We can see that most of the nodes have the degree less than 15; therefore the computational cost 

for updating the NNG cycles is not expensive. This acceleration algorithm would be very helpful in the 

high-resolution environment where a massive graph containing billions of vertices will exist. In our test of 
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100 Berkeley images, the running time of the proposed algorithm ranges from 5 to 15 seconds on a PC with 

Intel Core 2 Duo 2.66 GHz CPU, 2GB memory. It is largely depended on the number of regions in the initial 

segmentation and that in the final segmentation.  

 

Figure 11. The number of RAG edges (in blue) vs. the number of NNG cycles (in red) for images in Figs. 9(a)-(g) at 
different region merging stages.  
 

 

Figure 12. Histograms of the RAG node degrees for images in Figs. 9(a)-(g) (shown in different colors). 

 

VI-D. The choices for parameters 

In the proposed DRM method, there are five free parameters {m, λ1, λ2, α, β} which control the consistency 

hypothesis evaluation. In implementation, we fixed four of them (i.e., m, λ2, α, β) to be constant. However, 

it is still worth investigating their impact on the stability and robustness of the whole segmentation process.  
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In SPRT, m is used to decide the amount of data selected for the random test. We empirically choose it 

to be the half size of the region, as in the experiments we found that the segmentation results are not 

sensitive to the moderate changes of m. 

Then we test the choices of parameters α and β, which represent the probability of accepting an 

“inconsistent” model as “consistent” and rejecting a “consistent” model as “inconsistent”, respectively. In 

Fig.13, we show 120 segmentation results of Fig. 9(a) in the form of F-measures, which are produced by 

different pre-specified (α, β) values. In the experiment, α ranges from 0.01 to 0.26 and β ranges from 0.01 

to 0.4. In general, we can see that the lower the test error is, the higher the obtained segmentation quality is. 

In our implementation, both α and β are set to a fixed value 0.05. Theoretically, the values of α and β will 

also affect the number of tests needed for the SPRT, as shown in Eq. (6) proposed by Wald. The upper 

bound of the number of tests N0 is set based on the Turncated SPRT [28]. This has been explained in Section 

III.  

The last experiment is performed to test the choices of parameter λ1, which is the only user input 

parameter in the implementation. As defined in Eq. (3) and Eq. (4), if we set λ2=1, λ1 can be used to balance 

the relative weight of P0 and P1 so that only λ1 needs to be tuned. For a small value of λ1, it requires stronger 

evidence for a boundary. In other words, the over-merging is not likely to happen with small values of λ1. 

Generally, reducing the value of λ1 will produce more regions in the segmentation result. The control of this 

parameter leads to a hierarchy of segmentations at different scales. Table V shows the number of segmented 

regions under different values of λ1 (the rest parameters are fixed in this experiment). As λ1 increases, the 

number of regions tends to decrease. In our experiments, the value of λ1 is chosen from 0.1 to 5. Notice that 

it is hard to find a generally appropriate λ1 for all the images, since the variety and multiscale interpretation 

of the image content.  
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Figure 13. The F-measures of Fig. 9(a) with 120 pre-specified (α, β) values. In the experiment, α ranges from 0.01 to 
0.26 and β ranges from 0.01 to 0.4. 
 
Table V. The number of regions w.r.t. different values of λ1. Indices of images are corresponding to the original 
images in Fig. 10 (from the left to the right)  
 

Fig.10-1 λ1 0.3 0.4 0.8 1.0 1.01 1.02 
# of regions 28 27 24 15 7 2 

Fig.10-2 λ1 0.3 0.8 0.92 0.96 0.98 1.0 
# of regions 167 150 134 117 82 67 

Fig.10-3 λ1 0.9 0.98 1.2 1.4 2.0 2.3 
# of regions 375 285 130 126 93 72 

Fig.10-4 λ1 1.0 1.2 1.4 2.1 3.5 4.0 
# of regions 235 124 95 91 80 17 

Fig.10-5 λ1 1.0 1.1 1.2 1.5 1.9 2.0 
# of regions 445 225 178 148 92 21 

Fig.10-6 λ1 0.8 0.9 0.94 1.0 1.2 1.3 
# of regions 192 181 174 121 102 27 

 

VI-E. Discussions 

This paper presents a framework for region merging. The simple cue, i.e., region color, is used in the 

implementation. Naturally, different cues (e.g., color, texture, shape, etc.) or a combination of them can be 

explored by changing the definition of conditional probabilities in SPRT (Eq. (4)). The region merging 

predicate uses the minimal weight edge between two regions to measure the difference between them. It is 

guaranteed that some global properties can be obtained under this predicate. However, the predicate might 

lead to a limitation for capturing the perceptual differences between two neighboring local regions. Some 

failure examples are given in Fig. 14. We can see that the proposed DRM algorithm may miss some long but 

weak boundaries (1st example), and it may also merge the regions with short but high contrast boundary (2nd 

example).   
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Figure 14. Failure examples of the proposed DRM method. The first column shows the original images, the second 
column shows the initial segmentation by watershed algorithm, and the third column shows the region merging results 
by the proposed method. We see that DRM methods may miss some weak boundaries (in the 1st example) and merge 
the regions with short but high contrast boundary (in the 2nd example).  
 

Another problem one might concern is that the randomness nature of SPRT might lead to non-unique 

partitions to an image. To quantitatively evaluate its influence on the segmentation results, we randomly 

select 20 images and run our algorithm for 10 times on each one of them. Segmentations of the same image 

are compared by calculating the ratio of discrepancy to the amount of boundary pixels for an image. The 

result turns out to be 0.88% on average, which indicates an irrelevance of the randomness of SPRT.  

There are several potential extensions to DRM to solve the above problems. For example, we can add a 

global refinement step to correct the miss-classified regions due to local decisions. Many merging errors in 

DRM are due to the insufficient local (perceptual) information used to making the merging decision. 

However, if we view the outputted labels of DRM as initial markers of the image content, then these initial 

markers can be used to calculate some global statistics of the image so that a global refinement can be 

defined to correct the DRM errors according to some criterion. Such a DRM with refinement scheme can 

exploit both local and global image features, and hence better results can be expected.  

Another potential extension is the introduction of user interaction. With some user guidance, the initial 

label of part of the image regions can be assigned beforehand, which will provide useful information for the 

region merging process. An interactive DRM algorithm can then be developed to accomplish the image 

segmentation. 

 

VII. Conclusions 

In this paper, we proposed a novel method for segmenting an image into distinct components. The proposed 
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algorithm is implemented in a region merging style. We defined a merging predicate P for the evidence of a 

merging between two neighboring regions. This predicate was defined by the sequential probability ratio test 

(SPRT) and the maximum likelihood criterion. A dynamic region merging (DRM) was then presented to 

automatically group the initially over-segmented many small regions. Although the merged regions are 

chosen locally in each merge stage, some global properties are kept in the final segmentations. For the 

computational efficiency, we introduced an accelerated algorithm by using the data structure of region 

adjacency graph (RAG) and nearest neighbor graph (NNG). Experiments on natural images showed the 

efficiency of the proposed algorithm. There are several potential extensions to this work, such as the 

introduction of global refinement and user interaction, etc. Those will be further investigated in our future 

work.  
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