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Abstract. Multi-level feature aggregation and part feature extraction
are widely used to boost the performance of person re-identification (Re-
ID). Most multi-level feature aggregation methods treat feature maps on
different levels equally and use simple local operations for feature fusion,
which neglects the long-distance connection among feature maps. On the
other hand, the popular horizon pooling part based feature extraction
methods may lead to feature misalignment. In this paper, we propose
a novel Part-aware Attention Network (PAN) to connect part feature
maps and middle-level features. Given a part feature map and a source
feature map, PAN uses part features as queries to perform second-order
information propagation from the source feature map. The attention is
computed based on the compatibility of the source feature map with the
part feature map. Specifically, PAN uses high-level part features of dif-
ferent human body parts to aggregate information from mid-level feature
maps. As a part-aware feature aggregation method, PAN operates on all
spatial positions of feature maps so that it can discover long-distance
relations. Extensive experiments show that PAN achieves leading perfor-
mance on Re-ID benchmarks Market1501, DukeMTMC, and CUHK03.

1 Introduction

Person re-identification (Re-ID) aims to recognize a person of interest from the
gallery by using a query image or video clip. The state-of-the-art person Re-ID
methods [1–6] usually employ a convolutional neural network (CNN) to extract
the feature vector of a person, and use metric learning or classification loss to
enforce the learned feature representations to be discriminative. How to design
an efficient and effective network structure for feature extraction is critical for
high-performance person Re-ID.

Recent CNN-based person Re-ID methods mainly fall into two territories.
1) The first is creating more effective metrics to fully explore the relations be-
tween features [7–12]. For example, Cheng et al. [13] designed a multi-channel
part-based CNN model under the triplet framework. Chen et al. [12] applied
a quadruplet loss with a margin based online hard negative mining. 2) The
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second is designing efficient and effective architecture for feature extraction [1,
14–18], where off-the-shelf feature extractors and prior knowledge about the hu-
man body are employed. For instance, PCB [5] utilizes ResNet50 backbone and
applies horizon strip pooling and refined part pooling to extract discriminative
and mutual distinctive human part features. MGN [19] employs a multi-branch
network and applies horizon strip pooling on each branch.

One popular direction for effective architecture design is fusing features from
different layers of a network. Existing multi-scale and multi-level Re-ID meth-
ods [16, 20–23] typically use multi-branch or directly apply convolutional layers
on mid-level features to generate multi-level feature maps, and fuse the feature
maps by element-wise operation. However, combining different levels of features
in this way has several problems. First, the spatial resolution of high-level fea-
tures is reduced largely, and fine details may be lost during the down-sampling
process, making the feature fusion less effective. Second, both residual and con-
catenation connections are local operations, neglecting the long-range relation-
ships between different layers of feature maps. Last but not least, due to the lack
of guidance, background, noise, and distractors will also be fused to the target
feature maps and result in inferior performance.

In this paper, we present a Part-aware Attention Network (PAN) by using a
Part-aware Attention Module (PAM) to bridge different layers’ feature maps in
a CNN. A part feature map P is first generated. Then given feature maps X,
PAM takes a feature vector in P as a query vector and compute its compatibility
with features in X, resulting in a comparability map M. The feature warping is
then computed by the weighted sum of X over M. PAN has several advantages
over previous works. First, PAM operates on every position of the original source
feature map in a top-down manner so that the fine details of middle-level features
can be kept to reveal the long-range relations between different parts of an
object or human. Second, PAM can be applied to multi-granularity to propagate
the information from low-level or mid-level features to high-level part features.
The compatibility maps show that PAN can focus on distinctive regions while
neglecting the background.

The contributions of this paper are two folds. First, a novel module, namely
PAM, is proposed, which uses the distinctively learned part features to aggre-
gate information from the source features under the CNN framework. Second, the
proposed PAN can propagate useful information from low-level or mid-level fea-
tures to high-level part features, suppressing background, and distractors while
keeping fine-grained details. Our proposed PAN is simple and demonstrates ex-
ceptional performance. Our experiments show that PAN significantly boosts the
performance of the baseline and achieves leading performance on person ReID.

2 Related Works

Multi-level feature aggregation. It has been found that fusing the feature
maps from multiple layers in CNN can result in better feature discrimination
ability because features from different layers deliver different levels of seman-
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tic information. Generally, features from shallower layers encode image local
structures and more fine-grained information, however, they lack global seman-
tic information and often contain noises. Features of deeper layers are believed
to contain high-level global semantics but lose spatial and detailed information.
Therefore, multi-level feature aggregation has been widely used in many com-
puter vision tasks [24–27, 21].

Multi-level networks can be implemented by using multiple branches on dif-
ferent scales and regions. Li et al. [22] proposed a network with multiple branches
to fuse local and global features for human feature representation. Qian et al. [23]
proposed a multi-scale stream layer, which is inspired by GoogLeNet [28] to learn
features on different scales. FPN [27] combines feature maps of different scales
with element-wise operations. Some methods try to use layers with various scales
in a bottom-up manner. For example, SKNet [29] uses multiple branches with
different kernel sizes. ACNet [30] adaptively determines connections among fea-
ture nodes, which is a general form of connections in CNNs, MLP, or NLN [31].

Attention mechanism for person re-identification. Attention mecha-
nism has been used in many computer vision tasks to regularize the network to
focus on essential signals without being interfered with much by outliers. Zhao et

al. [14] used convolutional layers to learn spatial attention masks for different
human parts, which are applied to the feature maps to select the region of in-
terests. In addition to spatial attention, channel attention has also been studied
in [22], where the spatial dimension is squeezed and the channel scaling is learned
by fully connected layers.

Our work is related to the self-attention [32] and non-local neural networks [31].
Self-attention [32] allows the model to identify multiple locations of the encoded
features for machine translation. In [31], a non-local layer is proposed as a basic
building block, and a non-local operation is employed to capture spatial and
temporal long-range correlations within a feature map. However, the non-local
operation has a high time and space complexity when applied to spatially large
feature maps. Besides, when the non-local operation is applied to high-level fea-
ture maps, the performance gain is marginal because the spatial resolution of
high-level feature maps is relatively small. Our work differs from [32, 31] in that
we consider the relations between two feature maps on different layers of a CNN.

A top-down attention module is proposed in [33], which takes the final feature
representation as a query vector to extract information from the mid-level feature
maps. However, the spatial structure of the final feature map is also valuable for
fine-grained feature learning. For example, the human body prior is important
for person ReID. Simply applying max/avg pooling on the final feature map to
aggregate information from mid-level features without considering the spatial
structure of the final feature map will limit the model performance. Besides,
we use attention modules to learn part features automatically, which utilize the
part feature prior to relieve the misalignment issue. Our experiments show that
PAN can aggregate the information while retaining the spatial structure of the
feature map. Different spatial parts of the final feature map would extract useful
information from different parts of the objects.
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Fig. 1: Illustration of our proposed PAN.

3 Part-aware Attention Network

The motivation of the proposed Part-aware Attention Network (PAN) is to en-
hance the attentiveness of feature extraction with learned part features. As illus-
trated in Fig. 1, it contains two modules: part-aware attention module and part
feature learning module. The part-aware attention module uses part features as
attentiveness guidance and provides strong supervision information for the net-
work at the middle layers. Part feature learning module generates part features
by applying both spatial and channel attention to the output of the feature ex-
traction backbone. The output features of PAM are then fused to generate final
feature representation. We introduce these modules in the sections below.

3.1 Part-aware attention

The Part-aware Attention Module (PAM) takes part features as guidance for
feature learning at the middle layers of the network. We use P to represent the
part feature map, which is the combination of part feature vectors. The details
of the part feature learning module would be introduced in the next section.
The part-aware attention calculation between a part feature vector Pi and the
middle-level feature map X can be represented as follows:

Zi =
θ(Pi,X)f(X)

N
. (1)

where N is the number of total positions in X. PAM takes a target part feature
vector Pi as query and computes its compatibility score with X using function
θ. After computing the compatibility score for each pair of Pi and X, the feature
mapping is computed as a weighted sum over feature map f(X). This process
generates a mapping feature Zi for every Pi. Function f transforms feature
map X for mapping. The feature map is then normalized with constant N . For
implementation of θ, we apply dot-product due to its simplicity and efficiency:

θ(Pi,X) = φ(Pi)
Tψ(X), (2)

where the function φ and ψ transform the features to the same embedding space
D. The dimension of D is a hyper parameter, and we would discuss it in the
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Fig. 2: Our proposed part-aware attention module, which can be applied between
part features and middle-level features of a CNN.

ablation study section. It is worth mentioning that when dot-product is applied,
the compatibility score computation can be viewed as applying a 1×1 convolution
on the feature map X with kernel Pi.

Combining Eqs. 1-2, we can reformulate the part-aware feature attention
module as below:

Z = φ(P)ψ(X)T f(X), (3)

where φ, ψ and f are convolutional layers, which learn to transform features.
The computation process is illustrated in Figure 2. The input feature maps X

and P are transformed and reshaped so that the computation of compatibility
score and feature mapping can be represented as matrix multiplication. The
aggregated feature could then be added or concatenated to generate the final
feature.

For middle-level feature extraction of PAN, we apply PAM between part fea-
tures with outputs of the middle blocks of networks. For instance, as shown in
Fig. 1, when resnet50 is used as the backbone network, the first three block out-
puts Xl, l ∈ {1, 2, 3} and part feature P are used for PAM. PAN can efficiently
take the high-level feature map as the query and gather the feedback information
from low-level or mid-level feature maps. The features from mid-level layers of
a neural network could provide more part details of the human body in person
Re-ID. It is an efficient way for multi-level feature learning, where features from
different layers of the network are all mapped to the final feature map. This
is more computationally efficient than multi-branch networks for multi-scale
feature learning, and is more powerful than vanilla addition or concatenation
connection for feature fusion, as it operates on all spatial positions.
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Fig. 3: The proposed part-feature learning module. It contains spatial and chan-
nel attention to learn part feature maps.

3.2 Multi-granularity part feature learning

The typical part feature generation process uses priors in humans to model
different parts of the human body. For example, human part masks and horizon
strips are two popular pooling strategies for learning discriminative human body
part representations [5, 14]. Horizon strip [5] is a popular strategy for human
part feature generation, due to its simplicity and effectiveness. It divides the
final feature map evenly into multiple regions in the height direction. For the
feature map of each region, average pooling is applied and the feature is passed
into an embedding learning layer. However, this can cause misalignment of the
human body due to the differences in the human body in scale, and a person
may not be well located at the center of the image. Although, the refined part
pooling can be used to reduce the influences of outliers, however, the initial part
feature generation can still be affected by the misalignment.

We propose a part-feature learning module (PLM) to learn the part repre-
sentation automatically. As shown in Fig. 3, the module consists of both channel
and spatial attention layers. The spatial attention module consists of a convolu-
tional layer, BN layer, and ReLU activation. The design of the channel attention
layer follows [34], where average pooling, fully connected layers, and ReLU acti-
vation are used to obtain channel scale vector. To obtain multiple granularities
of part features, we propose a multi-granularity part learning strategy. For gran-
ularity at scale-i, several i parts are learned automatically by PLM. Here, we
use sij ∈ R

h×w to represent the spatial attention mask, where h × w represents
the spatial position in a feature map, (i, j) represents mask for scale i and part
j ∈ {1, . . . , i}. Denote by ci ∈ R

c the channel attention vector. The total atten-
tion mask is mi

j = ci⊗sij ∈ R
c×h×w. For example, m1 is the proposed body part

at scale 1 ; two distinct part region m2

1
,m2

2
are learned at scale 2 to divide the

feature map into two parts. As shown in Fig. 1, given the X4 ∈ R
c×h×w, which is

generated by the backbone feature extractor, the part feature vector can be com-
puted as AvgPool(mi

j ⊙X4). The final part feature map P is the combination
of all part feature vectors. All the part features are trained with cross-entropy
loss, and we use orthogonal regularization to learn distinct part-feature maps.
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This multi-granularity part feature learning strategy can learn different granular
part features and boost learning efficiency.

3.3 Loss functions

In addition to the classical cross-entropy loss [35], denoted by Lxent, we also
employ the triplet loss and an orthogonal regularization loss to train our models.
For triplet loss, we adopt the online hard triplet mining strategy proposed in [36],
which considers the hardest triplets within a mini-batch.

To enforce the learned part regions to be distinctive, we add an orthogonal
regular term to reduce the overlap of different part masks:

Lorth =
1

L

∑

l∈{1,...L}

‖MlMlT − I‖F, (4)

where Ml is the part region masks at scale-l and each row of it represents a part
region. L is the total number of scales. I is an identity matrix.

We apply cross-entropy loss Lxent on every part features generated by part
feature learning module. The triplet loss Ltriplet is applied to the final feature
representation (i.e., the concatenation of all part features). The final loss function
is:

L = Lxent + λ1Ltriplet + λ2Lorth, (5)

where Lxent is the sum of all the part cross-entropy loss functions, Ltriplet is the
triplet loss for the final feature and λ1 and λ2 are trade-off parameters.

3.4 Discussion

Multi-level feature fusion. Most current multi-level feature fusion methods
use element-wise operations such as addition or concatenation to fuse feature
maps from different layers. Since the channel and spatial dimensions of the fea-
ture maps are different, usually a function f is first applied to downsample and
reshape the source feature map, and then a function g is applied to fuse the
source and target feature maps. Both f and g are usually implemented by con-
volutional layers. Though simple to implement, the downsides of this process are
two folds. First, the downsampling function f would reduce the spatial dimen-
sions of the feature map and lose fine-scale information contained in the feature
maps. Second, the fusing function g neglects the long-range relations between
two feature maps, as convolution only operates within a local area. The proposed
PAN overcomes these problems by considering fine-grained pair-wise relations
between feature maps.

Comparison with other attention based methods. Some previous works
on Re-ID have also utilized attention modules in feature extraction. For example,
HAN [22] utilizes spatial and channel attention in the middle layers of the net-
work. Both SCAN [37] and IANet [38] use self-attention module in the network
design, which is similar to non-local (NL) [31] module. Spatial attention, channel
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Fig. 4: Comparison of part-aware attention with other attention methods. (1)
Spatial attention applies convolution and softmax functions to produce a spatial
mask. (2) Channel attention uses fully connected layer to generate a scale vector.
(3) Non-local attention uses self-similarity to generate a self attention matrix.
(4) Our part-aware attention generates part-aware attention map for different
human parts.

attention, and self-attention can all be viewed as bottom-up attention methods,
while our proposed PAM is a top-down attention module. Fig 4 compares PAM
with other attention methods. We can see that PAM uses both source feature
map and target feature map to compute the attention maps of different parts,
while other methods only use source feature map for attention computation.

PAM is related to NL modules but they have significant differences. NL
modules capture long-range relations within a feature map, while PAM oper-
ates across different feature maps. To map the low-level or mid-level features to
high-level part features, PAM takes the part features learned from deeper lay-
ers (often have more high-level semantic information) as a query to explore the
discriminative information from shallower layers of a network. Besides, due to
the reduced spatial resolution along with the feed-forward process in CNN, the
computational cost of PAM is significantly less than the vanilla self-attention
methods or NL methods.

4 Experiments on person ReID

4.1 Implementation details

Data preprocessing. We use the same data pre-processing methods on all
datasets. In the training stage, common data augmentation methods are ap-
plied to images, including random flipping, shifting, zooming, cropping, random
erasing [39]. The images are then resized to 384× 128.
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Backbone network. We use ResNet50 as the backbone network since it
has been successfully used in person Re-ID. Specifically, we adopt the modified
ResNet50 architecture in [5], in which the stride of last convolutional layer is
set to 1 to benefit final feature learning. We use a 1 × 1 convolutional layer for
embedding learning and set output dimension to 256 for each embedding layer.

Settings of PLM and PAM. The PLM contains both spatial and channel
attention. The spatial attention contains two stacked Conv2D-BN-ReLU blocks,
as shown in Fig. 3. The design of channel attention follows SE-Net [34], which
consists of an average pooling layer, a fully connected layer and a ReLU. The two
attention maps are then combined to generate the part features. The PAM aim
to transform input feature maps to the same embedding space. We first use a
1× 1 convolutional layer to transform the output dimension of the feature maps
according to the fusion method. For addition and concatenation based feature
fusion, we set the output dimension of feature map Z in Eq. 3 equals to the
dimension of P and X, respectively.

Optimization. Our model is trained by randomly selecting 8 identities with 4
samples each identity as a batch. The SGD optimizer is employed. The learning
rate is set to 1× 10−1 for the parameters of PAN, embedding layer and softmax
classification layer, and the rate is set to 1×10−2 for the pre-trained parameters
of the network. The learning rate is divided by 10 after 5000 and 7500 iterations,
and the training is stopped after 10,000 iterations.

4.2 Ablation study

The number of granularity in PLM. In this section, we study how the
number of granularity affects the performance of our multi-granularity PLM
method and compare it with the horizon strip pooling method [5]. Each pooled
part feature is followed by an embedding learning layer and a softmax cross-
entropy loss function. We test 3, 6, and 8 parts of horizon stripe, as well as four
different granularity. All the features are then passed to an individual embedding
layer and softmax loss function. The final person feature representation is the
concatenation of all part features. For the simplicity of experiments, we set
λ1 = 1, λ2 = 10−3 throughout the experiments.

The experimental results are listed in Table 1. Part feature learning module
(PLM) performs better than horizon strip pooling when they have the same
total part number. For instance, three granularity scales PLM (combined with
scale 1, 2 and 3) and 6-part horizon pooling have the same part number and
final feature dimension, while three scales PLM outperforms 6-part horizon strip
pooling by 0.8% on mAP. Using more than three scales will not further improve
the performance of PAM. As we use orthogonal regularization term to force the
learned attention maps to be distinct, using too many granularity scales may
divide the human body into too many parts, and deteriorate the performance. We
empirically found that using three granularity scales leads to the best results. For
simplicity, we use PLM with three scales by default in the following experiments.
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Table 1: Results of different part feature extraction strategies on Market1501.

Method Top1Top5Top10mAP

Global Pooling 86.0 94.3 96.2 68.9

3 parts 91.7 96.8 97.9 78.1
Horizonstrips 6 parts 92.5 96.8 98.1 79.5

8 parts 92.4 97.0 98.0 79.2

Multi-granularity {1} 90.0 96.4 97.4 75.4
{1, 2} 91.8 96.4 97.5 78.9
{1, 2, 3} 92.9 97.4 98.4 80.4
{1, 2, 3, 4} 92.8 96.9 98.1 79.9

Table 2: The effectiveness of PAN on Market1501. Baseline stands for the model
trained without the multi-layer connection.

Model D Top1mAPParamMemoryTime

Baseline - 93.0 81.1 27.8M 17.79G 72s
Baselinew - 93.4 81.8 29.2M 17.80G 74s
Conva - 93.5 82.0 35.2M 17.83G 76s
Convc - 93.7 82.5 32.3M 17.81G 75s

128,128,128 93.5 83.0 32.5M 17.81G 75s
PANa 256,256,256 93.8 83.5 33.5M 17.82G 77s

256,512,1024 93.9 83.6 36.6M 17.84G 79s

128,128,128 93.8 83.7 33.0M 17.82G 76s
PANc 256,256,256 94.3 84.2 33.9M 17.83G 76s

256,512,1024 94.3 84.1 37.0M 17.85G 78s

NL 128,256,512 93.9 83.9 30.5M 21.63G 79s
PANc + NL 128,256,512/256 94.8 85.3 36.7M 21.66G 84s

Feature fusion in PAN. We investigate how to fuse the transformed fea-
tures in the proposed PAN. The baseline is a plain ResNet50 network with PLM
and trained with triplet loss and softmax loss. PANa and PANc stand for ap-
plying PAN and fusing features with addition or concatenation. We use Conv

connection blocks Conva and Convc for better comparison, which contains convo-
lution (kernel = 1, stride = 2), batch nomalization and ReLU. For convolution,
the channel dimension is gradually increased to 2048 for addition connection
(256 −→ 512, 512 −→ 1024, 1024 −→ 2048), and retain the same for concatenation.

In Table 2, the models trained with feature mapping (PANa and PANc)
improve the performance over baseline network by 1.9% and 2.6% on mAP when
the inter-channel number D is 128. Increasing the number of inter-channels D

can further increase the performance. We choose inter-channel to be 256 for
all the three blocks by considering the trade-off between parameter number and
performance. The performance gain by both connections (PANa and PANc) over
Conva and Convc provides evidence that PAN leverage extra information, and
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Fig. 5: Compatibility maps of PAM for different blocks of ResNet50. The com-
patibility map is computed by using the first scale part feature vector of PLM
against block1-3 (ref to Eq. 2). The strength of yellow color indicates the de-
gree of compatibility. The top right panel shows the compatibility maps without
PAM, which are vague and unclear. The bottom right panel shows the compat-
ibility maps with PAM. PAM learns to focus on discriminative parts and can
capture long-distance relations.

it is not simply due to the increase of number of parameters, as PANa and
PANc have less parameters than Conva and Convc and faster at inference. We
use feature maps of the third stage as the local feature and last stage as global
feature to construct the Baselinew, it performs better than using global feature
alone but lower than our proposed method. The test time is measured by using 1
Quadro GV100 GPU. The results show that PAN has small extra computational
cost and it is efficient in practice.

Benefit of orthogonal regularization term. We conducted experiments
to investigate the role of orthogonal regularization. The parameter is {0, 101, 102,
103, 104}. The mAP are 80.36%, 80.21%, 80.87%, 81.14%, 80.46%, respectively.
We thus choose 103 in our experiment One can see that the benet over no
orthogonal regularization is 0.78%.

Visualization of PAM. Figure 5 shows the compatibility map (computed
using Eq. 2) of the first scale part feature vector from PLM against feature maps
of first three blocks. The yellow color indicates the strength of the compatibility.
To better illustrate the advantages brought by proposed method, in the top right
panel of Figure 5 we show the compatibility maps without using PAM, which are
vague and unclear. The bottom right panel shows the compatibility maps with
PAM. We can see that PAM learns to capture the correlations between outputs of
different blocks, and propagate information from mid-level and low-level feature
maps to high-level features to enhance the discriminative parts of human body.
The compatibility maps of first two stages focus on color and texture. While
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Fig. 6: A closer look of the compatibility maps of PAM.

for the third stage, the compatibility maps represent different human parts and
their combinations. This observation indicates PAN learns distinct semantics
mapping from different stages of networks.

In Figure 6, we provide a closer look of PAM at different granularity of the
third stage. For the first granularity scale, the attention map focus on the whole
body. In the second granularity scale, the body is roughly divided into two parts.
While in the third granularity scale, the network learns to divide the body into
three parts. As we can see, all the parts are quite different at each granularity
scale, which indicates PLM’s ability to learn distinct body part feature.

Non-local module and PAN. As we mentioned in the related work section,
the non-local (NL) module used in the previous work [31] is different from our
proposed PAN. NL module captures long-range relations within a feature map,
while our proposed PAN operates across different feature maps. NL module can
be complementary to our PANmodule according to their different functionalities.

We conduct experiments to add NL modules after block1-3. Dot product is
used the compatibility computation and the inter-channel is set to half of the
original channels. We also downsample the feature map by default. The training
memory consumption is tested with batch size 128. The result is in Table 2. Since
the output resolution of block4 is much smaller than earlier blocks (4 times to 16
times smaller in ResNet50), PAN is much faster and costs less memory than NL
for compatibility computation. NL module can improve the performance over
baseline but with a higher computation and memory cost. Combining NL with
PAN can further improve the performance by 0.9%/1.4% on Top1/mAP.

4.3 Comparison with state-of-the-arts

In this section we compare our PANc, denoted by PAN for simplicity in the
following parts, with state-of-the-art methods on the three benchmark person
Re-ID datasets. We adopt BNNeck in [47] to further boost the performance of
our model. All the reported results are single-query without re-ranking.

Market1501. Market1501 is one of the largest benchmark datasets for Per-
son Re-ID, and many methods have been reported on this dataset. We compare
the proposed method with most of the state-of-the-arts. The experimental re-
sults are shown in Table 3. With ResNet50 as the pre-trained network, the
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Table 3: Single-shot performance comparison of different methods on Mar-
ket1501. Methods with * are attention methods and with # are fusion methods.

Method Top1 Top5 Top10 mAP

Spindle# [16] (CVPR17) 76.9 91.5 94.6 -
DLPA [14] (ICCV17) 81.0 92.0 94.7 63.4
SSM [40] (CVPR17) 82.2 - - 68.8
TriNet [36] (Arxiv17) 84.9 94.2 - 69.1
MLFN# [3] (CVPR18) 90.0 - - 74.3
HA-CNN* [22] (CVPR18) 91.2 - - 75.7
DuATM* [4] (CVPR18) 91.4 97.1 - 76.6
PCB [5] (ECCV18) 93.8 97.5 98.5 81.6
MGN# [19] (MM18) 95.7 - - 86.9
Local CNN* [41] (MM18) 95.9 - - 87.4
IANet* [38] (CVPR19) 94.4 - - 83.1
Pyramid# [42] (CVPR19) 95.7 98.4 99.0 88.2
MHN* [43] (ICCV19) 95.1 98.1 98.9 85.0
ABD-Net* [44] (ICCV19) 95.6 - - 88.3
SONA* [45] (ICCV19) 95.6 98.5 99.2 88.8
ST-ReID [46] (AAAI19) 97.2 99.3 99.5 86.7
PAN* 96.0 98.6 99.3 89.0

proposed PAN approach achieves 89% mAP and 96.0% CMC top1. PAN out-
performs PCB [5] by 2.2% on CMC top1 and 7.4% on mAP, which applies
horizon part pooling and refine part pooling on the final feature map, on Mar-
ket1501. Comparing to multi-branch methods such as Spindle [16], MLFN [3],
HA-CNN [22] and MGN [19], PAN is a single branch ResNet50 with target
aware mid-level feature connections and much less parameters. It surpasses the
MGN [19] on all three datasets. PAN outperforms Local CNN [41], which fuses
local and global features in the mid-level of CNN with Local CNN module. It
also outperforms state-of-the-art local-global fusion method Pyramid [42] and
self-attention method IANet [38]. Comparing with recent bottom-up attention
methods SONA [45], ABD-Net [44] and MHN [43], our method considers both
bottom-up and top-down attention and achieves slightly better performance.
This indicates the effectiveness of PAN, which use the part feature as guidance
to fully utilize the mid-level features of network.

CUHK03. On CUHK03, we follow the new protocol proposed in [48] and
conduct experiments using labeled datasets. The results are shown in Table 4.
PAN achieves 82.5% CMC top1 and 80.4% mAP on CUHK03 labeled dataset,
respectively, which are leading results on the CUHK03 dataset. PAN exceeds
DaRE [49], which applies deep supervision to the mid-level features without
considering the spatial structure of feature maps. It also outperforms multi-
branch attention method CAMA [50] with much less parameters.

DukeMTMC-ReID. On this dataset, we compare our method with all
the state-of-the-art methods in the literature. As shown in Table 5, our model
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achieves much better performance than other methods. The proposed PAN ob-
tains 89.5% Top1 accuracy and 79.2% mAP, respectively. PAN beats several
attention and multi-scale based methods, including HA-CNN [22] (harmonious
attention and local features of every building block are extracted and processed),
IANet [38] (self-attention embedded in the middle of the networks), Pyramid [42]
(multi-loss and pyramidal model to incorporate local and global information),
SONA [45] (Second-order attention with dropblock), ABD-Net [44] (Channel and
Position attention) and MHN [43] (mixed high-order attention). PAN efficiently
suppresses the background noise and utilize the useful middle-level features. The
strong performance shows that PAN is a promising direction to utilize attention
for feature fusion.

Table 4: Single-shot performance com-
parison on CUHK03 dataset.

Method Top1 mAP

SVDNet [1] (ICCV17) 41.5 37.3
HA-CNN* [22] (CVPR18) 44.4 41.0
MLFN# [3] (CVPR18) 54.7 49.2
DaRE [49] (CVPR18) 58.1 53.7
Local CNN* [41] (MM18) 58.7 53.8
MGN* [19] (MM18) 68.0 67.4
CAMA [50] (CVPR19) 70.1 66.5
MHN* [43] (ICCV19) 77.2 72.4
SONA* [45] (ICCV19) 81.4 79.2
PAN* 82.5 80.4

Table 5: Single-shot performance com-
parison on DukeMTMC-ReID.

Method Top1 mAP

HA-CNN* [22] (CVPR18) 80.5 63.8
Local CNN* [41] (MM18) 82.2 66.0
PCB [5] (ECCV18) 83.3 69.2
MGN# [19] (MM18) 88.7 78.4
IANet* [38] (CVPR19) 87.1 73.4
MHN* [43] (ICCV19) 89.1 77.2
SONA* [45] (ICCV19) 89.4 78.3
ABD-Net* [44] (ICCV19) 89.0 78.6
ST-ReID [46] (AAAI19) 94.0 82.8
PAN* 89.5 79.2

5 Conclusions

We proposed a simple yet effective part-aware attention network to leverage and
strength multi-layer features in convolutional neural networks. The so-called
part-aware attention network (PAN) connects source features to the target fea-
tures and learns to leverage their pair-wise correspondence for feature enhance-
ment. It considers not only the local spatial relations of multi-layer feature maps
but also the long-range relations among them. In person Re-ID, PAN provides an
effective way to facilitate the interaction between low-level/middle-level features
and high-level features to strength the discrimination of human body. Detailed
analysis and extensive experiments were conducted on three widely used datasets
to validate the effectiveness of our PAN approach for person Re-ID.
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