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Abstract. Face recognition with single sample per person (SSPP) is a
very challenging task because in such a scenario it is difficult to predict
the facial variations of a query sample by the gallery samples. Consider-
ing the fact that different parts of human faces have different importance
to face recognition, and the fact that the intra-class facial variations can
be shared across different subjects, we propose a local generic represen-
tation (LGR) based framework for face recognition with SSPP. A local
gallery dictionary is built by extracting the neighboring patches from the
gallery dataset, while an intra-class variation dictionary is built by using
an external generic dataset to predict the possible facial variations (e.g.,
illuminations, pose, expressions and disguises). LGR minimizes the total
representation residual of the query sample over the local gallery dictio-
nary and the generic variation dictionary, and it uses correntropy to mea-
sure the representation residual of each patch. Half-quadratic analysis is
adopted to solve the optimization problem. LGR takes the advantages
of patch based local representation and generic variation representation,
showing leading performance in face recognition with SSPP.

1 Introduction

Face recognition (FR) is a very active topic in computer vision research because
of its wide range of applications, including access control, video surveillance,
social network, photo management, criminal investigation, etc [1]. Though FR
has been studied for many years, it is still a challenging task due to the many
types of large face variations, e.g., pose, expressions, illuminations, corruption,
occlusion and disguises. Furthermore, in applications such as smart cards, law
enforcement, etc., we may have only one template sample of each subject, result-
ing in the single sample per person (SSPP) problem [2]. SSPP makes FR much
more difficult because we have little information from the gallery set to predict
the variations in the query face image [3].

Since the intra-class variations cannot be well estimated in the SSPP prob-
lem, the traditional discriminative subspace learning based FR methods can fail
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to work. In addition, since the number of samples per class is so small, the
robustness of extracted features and the generalization ability of learned clas-
sifiers can be much reduced. To alleviate these difficulties of FR with SSPP,
researchers have proposed to generate virtual samples of each subject, extract
more discriminative features, and learn the facial variations from external data,
etc. Generally speaking, the existing FR methods for SSPP can be categorized
into three groups: virtual sample generation, generic learning and patch/block
based methods.

Virtual sample generation aims to estimate the intra-class face variations
by simulating extra samples for each subject. Virtual samples can be generat-
ed by perturbation-based approaches [4], geometric transform and photometric
changes [5], SVD decomposition [6] and 3D methods [7], etc. With the virtual
samples, intra-class scatter can be calculated to make Fisher linear discriminant
analysis feasible in the scenario of SSPP [4][5][6]. Although virtual samples are
helpful to FR with SSPP, they are highly correlated with the original face images
and cannot be considered as independent samples for feature extraction. There-
fore, there may exist much redundancy in the learned discriminative feature
subspace [4][8].

Considering the similarity of face images across subjects, a generic training
set can be used to compensate for the shortage of samples in FR. On one hand,
the face variation information in the generic training set can be used to learn a
projection matrix to extract discriminative features [9][10][11][12]. In [9] and [12],
discriminative pose-invariant and expression-invariant projection matrices are
learned by using a collected generic training set for pose-invariant and expression-
invariant FR tasks, respectively. On the other hand, the abundant intra-class
variations in the generic training set are very useful to more accurately represent
a query face with unknown variations [13][3][14]. The sparse representation based
classification (SRC) [15] represents a query face as a sparse linear combination of
training samples from all classes. SRC shows interesting FR results; however, its
performance will deteriorate significantly when the number of training samples of
each class is very small because in such cases the variation space of each subject
cannot be well spanned. The extended SRC (ESRC) [13] constructs an intra-
class variation dictionary to represent the changes between the gallery and query
images. In the case of SSPP, Yang et al. [3] learned a sparse variation dictionary
by taking the relationship between the gallery set and the external generic set
into account. The so-called sparse variation dictionary learning (SVDL) scheme
shows state-of-the-art performance in FR with SSPP. However, SVDL ignores
the distinctiveness of different parts of human faces.

Patch/block based methods [16][8][17][18] [19] partition each face image into
several patches/blocks, and then perform feature extraction and classification on
them. First, patches can be viewed as independent samples for feature extraction
[16][8]. In [16], the patches of each subject are considered as the samples of
this class and then the within-class scatter matrix can be computed. In [8], the
patches of each subject are considered to form a manifold and a projection matrix
is learned by maximizing the manifold margin. Second, a weak classifier can be
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obtained from each patch, and then the classifiers on all patches can be combined
to output the final decision (i.e., a strong classifier) [17][18]. In [17], the nearest
neighbor classifier (NNC) is used for classification on each patch, and a kernel
plurality method is proposed to combine the decisions on all patches. In [18],
the collaborative representation based classifier (CRC) [20] is applied to each
patch, and the majority voting is used for decision combination. Although the
patch based methods in [17] and [18] significantly improve the FR performance
compared with the original NNC and CRC classifiers, respectively, they do not
solve the problem of lacking facial variations in the gallery set.
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Fig. 1. Framework of local generic representation based classification. Gallery set is
composed of the training face images. Generic training set includes reference subset
and variation subset, while reference subset is composed of the neutral face images or
the mean faces of each subject, and variation subset is composed of face images with
different facial variations.

In this paper, we propose a local generic representation (LGR) based scheme
for FR with SSPP, whose framework is illustrated in Fig. 1. The training sam-
ples in the gallery set are used to build a gallery dictionary. To introduce the
face intra-class variation information that is lacked in the gallery set, a gener-
ic training set, which contains a reference subset and several variation subsets,
is collected. A generic variation dictionary is then constructed as the differ-
ence between the reference subset and the variation subsets. Considering the
different importance of different facial parts in FR, we adopt a local representa-
tion approach, i.e., each patch of the query sample is represented by the patch
gallery dictionary and patch variation dictionary at the corresponding location.
LGR aims to minimize the total representation residual of all patches. Since
the residuals are non-Gaussian distributed, we use correntropy to measure the
loss in minimization. The half-quadratic optimization technique is used to solve
the optimization problem. Finally, the classification is performed based on the
overall representation residual of the query sample by each class. The experi-
mental results on benchmark face databases, including Extended Yale B [21],
CMU Multi-PIE [22], AR [23] and LFW [24], show that LGR outperforms many
state-of-the art methods for FR with SSPP.
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2 Local generic representation

2.1 Generic representation

In FR with SSPP, we have a gallery set X = [x1, ...,xk, ...,xK ] ∈ R
d×K , where

xk ∈ R
d is the only single gallery sample of class k, k = 1, 2, ...,K. Given a

query sample z∈ R
d, representation based classifiers such as SRC [15] represent

it over the gallery set X as:

z = Xα+ e (1)

If the gallery set has many training samples for each subject, most of the
facial variations in the query sample can be synthesized by the multiple samples
from the same class, and consequently correct classification can be made via
comparing the representation residual of each class. For FR with SSPP, unfor-
tunately, there is only one training sample per subject, and the variations (e.g.,
illumination, pose, expression, etc.) in z cannot be well represented by the single
same-class sample in X. Thus, the representation residual of z can be big, and z

can be wrongly represented by samples from other classes, leading to misclassifi-
cation of z. Fig. 2(a) shows an example. The query image has some illumination
change compared with the single gallery sample of its class. We use the SRC
model to solve the representation in Eq. (1), i.e., minα ‖z −Xα‖2

2
+ λ‖α‖

1
.

One can see from Fig. 2(a) that the synthesized image Xα does not overcome
the problem of illumination change, and the illumination change is put forward
into the representation residual e. Such a representation will cause trouble in
the classification stage.

z X e z X eD!

Fig. 2. Sparse representation versus generic representation.

Considering that the intra-class facial variations caused by illumination, pose,
and expression changes and disguise can be shared across subjects, an external
generic training set which consists of enough face images with various types of
variations can be adopted to construct an intra-class variation dictionary [13][3].
Suppose that we have collected a generic training set G = [Gr,Gv], where Gr

and Gv are the reference subset and variation subset, respectively. The reference
subset Gr ∈ R

d×n is composed of neutral face images or the mean faces of
each subject. The variation subset Gv involves M possible facial variations:
Gv = [Gv

1, ...,G
v
m, ...,Gv

M ], where Gv
m is the subset of the mth variation, m =

1, 2, ...,M . In [3], a sparse variation dictionary is learned from G. In our work,
we simply construct an intra-class variation dictionary, denoted by D, by using
the difference between Gr and Gv:

D = [Gv
1 −Gr, ...,Gv

m −Gr, ...,Gv
M −Gr]∈ R

d×nM (2)
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We then propose to represent the query sample z over the gallery set X and
the generic variation dictionary D simultaneously:

z = Xα+Dβ + e (3)

where α and β are the representation vectors of z over X and D, respective-
ly, and e is the representation residual. We call the representation in Eq. (3)
generic representation, which uses a generic intra-class variation dictionary D

to account for the variations in the query sample. Fig. 2(b) shows the generic
representation of the query sample in Fig. 2(a). We use the following model to

solve Eq. (3): min{α,β} ‖z −Xα−Dβ‖2
2
+λ(‖α‖

1
+‖β‖

1
). One can clearly see

that the illumination change in the query sample is well encoded by the generic
variation dictionary D, and the residual e has much lower energy (‖e‖2

2
=0.0049)

than the residual in Fig. 2(a) (‖e‖2
2
=0.0502).

2.2 Patch based local generic representation

Different parts (e.g., eye, mouth, nose, cheek) of human faces exhibit distinct
structures, and they have different importance in identifying the identity of a
face. Taking this fact into account, we propose to localize the representation
model in Eq. (3) and present a patch based local generic representation scheme.

We partition the query sample z into S (overlapped) patches and denote
these patches as {z1, z2, ..., zS}. Correspondingly, the gallery dictionary X and
the generic variation dictionary D can be partitioned as {X1,X2, ...,XS} and
{D1,D2, ...,DS}, respectively. For each local patch zi, i = 1, 2, .., S, its asso-
ciated local gallery dictionary and local variation dictionary are Xi and Di,
respectively. To increase the representation power of local gallery dictionaries
and better address the local deformation (e.g., misalignment) of a patch, we ex-
tract the neighborhood patches at location i from each gallery sample, and add
them to Xi. Such a sample expansion of local gallery dictionaries can improve
much the stability and robustness of local representation [18]. In our implemen-
tation, the 8 closet neighboring patches to the underlying patch at location i are
extracted. With Xi and Di, we can represent each local patch zi as:

zi = Xiαi +Diβi + ei, i = 1, 2, ..., S (4)

whereαi and βi are the representation vectors of zi overXi andDi, respectively,
and ei is the representation residual.

Clearly, in order to find meaningful solutions of vectors αi and βi, appro-
priate loss function should be defined on the representation residual ei and
appropriate regularization can be imposed on αi and βi. Denote by l(‖ei‖2)
the loss function defined on the l2-norm of ei and denote by R(αi,βi) some
regularizer imposed on the representation coefficients. We consider the following
optimization problem to solve {αi,βi}:

min{αi,βi}

∑S
i=1

l(‖ei‖2) + λR(αi,βi)
s.t. zi = Xiai +Diβi + ei, i = 1, 2, ..., S

(5)
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The problem now turns to how to define the loss function l(‖ei‖2) and regularizer
R(αi,βi).

Query sample Histogram of Query sample Histogram of
2i

e
2i

e

Fig. 3. The histogram of ‖ei‖2, i = 1, 2, ..., S, for two query samples.

Let ei = ‖ei‖2. Due to the special structure of human face, the different

patches will have very different representation residuals ei. We solve {α̂i, β̂i} =

min{αi,βi} ‖zi −Xαi +Diβi‖22 + λ(‖αi‖22 + ‖βi‖22) and then calculate ei =
∥

∥

∥
zi −Xα̂i +Diβ̂i

∥

∥

∥

2

. Fig. 3 illustrates the distribution for ei for two query

face images. One can see that the distribution of ei is highly non-Gaussian. The
widely used l2-norm loss function relies highly on the Gaussianity assumption
of the data [25] and hence it is not suitable to measure such non-Gaussian dis-
tributed residual. In [26], the concept of correntropy is proposed to measure the
loss of non-Gaussian data. A correntropy induced metric (CIM) for residual ei
is defined as [26]:

CIM(ei) = (kσ(0)− kσ(ei))
1/2 (6)

where kσ(·) is a kernel function. The Gaussian kernel function kσ(x) = exp(−x2/2σ2)
is widely used with good performance [26] [25]. The robustness of CIM to non-
Gaussian residual/noise has been verified in signal processing [27], feature selec-
tion [28], and FR [29]. Hence, we adopt correntropy to model the representation
residual of different patches.

For the regularizer R(αi,βi), we define it as the l2-norm of αi and βi. It
has been shown that the l2-norm regularization on representation coefficients
can lead to similar classification performance to l1-norm regularization but with
much less computational cost [20]. Finally, the proposed local generic represen-
tation (LGR) model becomes:

min{αi,βi}

∑S
i=1

(1− kσ(‖ei‖2)) + λ
(

‖αi‖22 + ‖βi‖22
)

s.t.zi = Xiαi +Diβi + ei, i = 1, 2, ..., S
(7)

3 Optimization and classification

3.1 Half-quadratic optimization

The minimization problem in Eq. (7) can be solved by half-quadratic optimiza-
tion [27]. If a function φ(x) satisfies the following conditions [27]: (a) x → φ(x)
is convex on R; (b) x → φ(

√
x) is concave on R+; (c) φ(x) = φ(−x), x ∈ R; (d)

x → φ(x) is C1 on R; (e) φ
′′

(0+) > 0; (f) limx→∞φ(x)/ ‖x‖2
2
= 0, there exists a

dual function ϕ such that

φ(x) = infw∈R

{

1

2
wx2 + ϕ(w)

}

(8)
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where w is determined by the minimizer function δ (·) with respect to φ (·). δ (·)
admits an explicit form under certain restrictive assumptions [27]:

w =

{

δ (t) = φ
′′

(0+), if t = 0

φ
′′

(t)/t, if t 6= 0
(9)

Obviously, φσ(x) = 1 − kσ(x) = 1 − exp(−x2/2σ2) satisfies all the conditions
from (a) to (f). Then the problem in Eq. (7) can be equivalently written as the
following augmented minimization problem:

minA,w

∑S
i=1

(

1

2
wi ‖zi −Xiαi −Diβi‖22 + ϕ(wi)

)

+ λ ‖A‖2
2

(10)

where A = [a1,a2, ...,aS] with ai = [αi;βi], and w = [w1, w2, ..., wS ].
According to the half-quadratic analysis [27], Eq. (10) can be easily min-

imized by updating A and w alternatively, and there is no need to have an
explicit form of the dual function ϕ(wi). When w is fixed, A can be solved by

Â = argminA

∑S
i=1

(

wi ‖zi −Xiαi −Diβi‖22
)

+ λ ‖A‖2F (11)

Clearly, the above minimization is a least square regression problem, and we
have the closed-form solution of each {αi,βi}:

[α̂i; β̂i] = wi(wi[Xi,Di]
T [Xi,Di] + λI)−1[Xi,Di]

Tzi (12)

When A is fixed, the weights w can be updated as

ŵi =
1

σ2
exp(−‖zi −Xiαi −Diβi‖22 /2σ2) (13)

The weight wi corresponds to the ith patch, and it is used to control the portion
of ‖ei‖2 in the whole energy of Eq. (10). If the representation residual of a
patch is big (e.g., caused by sunglasses, scarf and/or other large variations), the
corresponding weight wi will become small, and consequently the effect of this
patch in the overall representation will be suppressed.

3.2 LGR based classification

After the optimal solutions of A and w are resolved by the half-quadratic opti-
mization in Section 3.1, an LGR based classification scheme can be proposed to
determine the class label of query face z. Let Xi =

[

X1
i , ...,X

k
i , ...,X

K
i

]

, where
Xk

i is sub-gallery dictionary associated with class k. Accordingly, the represen-
tation vector αi can be written as αi =

[

α1
i ; ...;α

k
i ; ...;α

K
i

]

, where αk
i is the

coefficients vector associated with class k. By using the class-specific sub-gallery
dictionary Xk

i and the generic variation dictionary Di, we can calculate the
representation residual of each patch zi by each class k. Then the sum of the
weighted residual (by wi) over all patches can be calculated. Our classification
principle is to check which class can lead to the minimal residual over all patches.
Specifically, the classification rule of query face z is as follows:
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label(z) = argmin
k

∑S

i=1
wi

∥

∥zi − [Xk
i ,Di][a

k
i ;βi]

∥

∥

2

2
/
∥

∥[ak
i ;βi]

∥

∥

2

2
(14)

Note that in Eq. (14), we also use the l2-norm of [ak
i ;βi] to adjust the residual

of patch i by class k. 1/
∥

∥[ak
i ;βi]

∥

∥

2

2
can be considered as a ”class weight”. If class

k has a larger
∥

∥[ak
i ;βi]

∥

∥

2

2
, it means that the query patch is more similar to the

gallery patch of class k, and thus a smaller weight should be assigned to weaken
the representation residual by this class. The query sample z is classified to the
class which has the minimal weighted representation residual over all patches.
The algorithm of LGR based classification is summarized in Table 1.

Table 1. The algorithm of local generic representation (LGR) based classification.

Input: The query sample z, gallery set X , reference subset Gr,
variation subset Gv and regularization parameter λ.

Output: The class label of z

1: Initialize w = [1, 1, ..., 1];
2: Caculate D = [Gv

1 −G
r,Gv

2 −G
r, ...,Gv

m −G
r].

3: Partition z, X and D into patches.
4: While convergence
5: Update A by Eq. (11);
6: Update w by Eq. (13);
7: End
8: Output the class label of sample z by Eq.(14).

3.3 Convergence and complexity

According to half-quadratic optimization [27], the objective function in Eq. (10)
is non-increasing under the update rules in Eq.(11) and Eq. (13). Therefore,
our algorithm is guaranteed to converge based on the theory of half-quadratic
optimization [27]. In Fig.4, the convergence curve of LGR on the AR database
[23] is shown (please refer to section 4.4 for the details of experiment setting).
We can see that the LGR algorithm converges after 5 iterations.
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Fig. 4. The convergence curve of LGR on the AR database.

The main computational cost of LGR is spent on solving the least square
regression problem in Eq. (11), whose time complexity is O(S(n3

d+n2
ddp)), where

S is the number of patches, nd is the total number of patches in [Xi,Di] and dp
is the feature dimension of patches. Denote by T the total number of iteration
in our algorithm, the time complexity of LGR is O(TS(n3

d + n2
ddp)).
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4 Experimental analysis

We test the performance of LGR on four benchmark face databases, including
three face databases in controlled environment, i.e., Extended Yale B [21], large-
scale CMU Multi-PIE [22], and AR [23], and one face database in uncontrolled
environment, i.e., Labeled Faces in the Wild (LFW) database [24]. Extended
Yale B database contains illumination variations; AR database contains illu-
mination and expression variations and disguises; Multi-PIE database contains
pose, illumination and expression variations; LFW reflects the variations in real-
world applications. We compare the proposed LGR method with the following
eleven methods:

– Baseline methods: nearest neighbor classifier (NNC) [30], support vector
machines (SVM) [31], sparse representation based classifiers (SRC) [15] and
collaborative representation based classifiers (CRC) [20];

– Generic learning methods: adaptive generic learning (AGL) [32], extended
SRC (ESRC) [13] and sparse variation dictionary learning (SVDL) [3];

– Patch/block based methods: Block linear discriminative analysis (BlockL-
DA) [16], patch based NN (PNN) [17], patch based CRC (PCRC) [18], and
discriminative multi-manifold analysis (DMMA) [8].

Note that the generic learning method SVDL learns a sparse variation dic-
tionary from the generic training set. The proposed LGR also belongs to the
generic learning methods; however, we use the raw face difference images as the
dictionary rather than learning a dictionary with some objective function. A-
mong the competing methods, we implement NN and DMMA; the code of SVM
is from [33]; and the codes of all the other methods are obtained from the original
authors.

4.1 Parameter setting

In all the experiments, the face images are resized to 80×80 (using the Matlab
function ”resize.m”). For patch/block based methods including BlockLDA, PNN,
PCRC, DMMA, and the proposed LGR, the patch size is fixed as 20×20 and
the overlap between neighboring patches is 10 pixels. That is, the query sample
is partitioned into S=49 patches.

Apart from the setting of patch size and patch number, there are only two
parameters to set in the proposed LGR. The first is the regularization parameter
λ in Eq. (6). We fix it as λ= 0.001 in all our experiments. Another is the scale
parameter σ of the kernel function kσ(x). Based on our experimental experience,
if the representation residual is big, a large value of σ could be set to make the
representation more robust. Therefore, we adaptively set σ as the average rep-
resentation residual after solving the coefficients αi and βi in the first iteration

of our algorithm; that is, σ =
√

1

2S

∑S
i=1

‖zi −Xiαi −Diβi‖22.
For the competing algorithms, we tune their parameters for the best results.

In particular, for SVDL we follow the parameter setting in [3]. The three param-
eters λ1, λ2, λ3 are set as 0.001, 0.01, 0.0001, respectively, and the number of
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dictionary atoms is set as 400 in the initialization. For SRC, CRC and PCRC, the
optimal regularization parameter λ is chosen from {0.0005, 0.001, 0.005, 0.01}. As
BlockLDA and AGL are sensitive to the feature dimension, the best result of
different feature dimensions is reported.

4.2 Extended Yale B database

The Extended Yale B face database [21] contains 38 human subjects and 2,414
face images with 64 illumination conditions. The frontal faces with light source
directions at 0 degree azimuth (A+000) and at 0 degree elevation (E+00) are
used as the gallery set, and the face images under other illumination conditions
are used as the query set. We use the face images of the first 30 subjects to form
the gallery and query sets, and use the face images of the other 8 subjects as
the generic set.

Table 2 lists the recognition rates by different methods. By combining the
decisions of different patches, the PCRC method achieves much higher recogni-
tion rate than the baseline methods. The generic learning based method SVDL
achieves the second highest recognition rate by learning a dictionary that con-
sists of different illumination variations. By exploiting the advantages of both
patch based local representation and generic variation information, the proposed
LGR method achieves the highest recognition accuracy.

Table 2. Recognition rate (%) on Extended Yale B database.

Method NNC[30] SVM[31] SRC[15] CRC[20] BlockLDA[16] AGL[32]

Accuracy 46.5 41.4 49.2 51.2 49.2 59.5

Method DMMA[8] PNN[17] PCRC[18] ESRC[13] SVDL[3] LGR

Accuracy 61.7 67.5 77.8 67.9 85.0 86.6

4.3 CMU Multi-PIE database

The Multi-PIE database [22] contains a total of more than 750,000 images from
337 individuals, captured under 15 viewpoints and 19 illumination conditions
in four recording sessions. The face images of the first 100 subjects in session 1
are used for the gallery set and the other 149 subjects are used as generic set.
Following the experiment setting in [3], in the generic training set, the frontal
images with illumination 7 and neutral expression are used as the reference
subset and the face images with different variations in Session 1 are used as the
variation subset.

Illumination variations In this experiment, we test the performance of LGR
under different illuminations. The frontal face images with neutral expression
from session 2, session 3 and session 4 are used as the query set, respectively.
The recognition rates on Multi-PIE with illumination variations are listed in
Table 3. LGR shows superior performance to all the other competing methods.
Compared with SVDL, which achieves the second highest accuracy, the recog-
nition rate is improved by 2.7%, 3.0% and 4.0% on session 2, session 3 and
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session 4, respectively. Compared with PCRC, the recognition rate is improved
by about 15%. The performance of SRC and CRC is very poor because with only
one gallery face image per person, the query image cannot be well represented.

Table 3. Recognition accuracy (%) on Multi-PIE with illumination variations.

Method Session 2 Session 3 Session 4

NNC[30] 44.3 40 43.8
SVM[31] 43.6 40.5 40.1
SRC[15] 51.9 46.5 50.6
CRC[20] 52.8 47.4 50.5

BlockLDA[16] 68.2 60.4 65.1
AGL[32] 84.5 79.6 78.5
DMMA[8] 64.1 56.6 60.1
PNN[17] 65.1 55.6 60.8
PCRC[18] 83.7 72.7 77.7
ESRC[13] 92.6 84.6 87.6
SVDL[3] 94.2 87.5 90.4
LGR 96.9 90.5 94.4

Expression and illumination variations We then test the robustness of the
proposed LGR method to face images with both expression and illumination
variations. The query set includes the frontal face images with smile expression
in session 1 (Smile-S1), smile expression in session 3 (Smile-S3) and surprise
expression (Surprise-S2). Table 4 presents the recognition results in this exper-
iment. Clearly, LGR outperforms all the other methods. SVDL still works the
second best, but it lags behind LGR by 1.8%, 5.6% and 21.7% for Smile-S1,
Smile-S3 and Surprise-S2, respectively.

Table 4. Recognition accuracy (%) on Multi-PIE with expression and illumination
variations.

Method Smile-S1 Smile-S3 Surprise-S2

NNC[30] 46.8 29.1 18.3
SVM[31] 46.8 29.1 18.3
SRC[15] 50.1 28.1 21.1
CRC[20] 50 29.7 22.4

BlockLDA[16] 49.5 30 26.2
AGL[32] 85.2 39.5 31.5
DMMA[8] 58.5 33.4 23
PNN[17] 53.1 31.1 31.4
PCRC[18] 74.9 44.1 44.9
ESRC[13] 82 50.8 49.9
SVDL[3] 88.9 59.6 52.8
LGR 90.7 65.2 74.5

Pose, expression and illumination variations In this experiment, there are
pose, expression and illumination variations in the query set simultaneously. We
select the face images with pose 05 0 in Session 2 (P1), pose 04 1 in Session 3
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(P2), and pose 04 1 and smile expression in Session 3 (P3) as the query set.
Some face images from the gallery and query set are illustrated in Fig. 5.

Fig. 5. Images of Multi-PIE database with pose, expression and illumination variations.

Table 5 lists the recognition rate of all methods. LGR achieves the highest
accuracy on all the three query sets. Because of the large variations caused by
pose, expression and illumination variations, the FR rates in this experiment
are relatively lower than the experimental results in Table 3 and Table 4. The
patch based methods such as PCRC do not work well because they are sensitive
to pose variation. The generic learning methods, including AGL, ESRC, SVDL
and the proposed LGR, outperform the other methods since they can exploit the
variation information from the external generic training set. LGR consistently
exhibits better results than SVDL, which still works the second best.

Table 5. Recognition accuracy (%) on Multi-PIE with pose, expression and illumina-
tion variations.

Method P1 P2 P3

NNC[30] 25.7 8.8 11.9
SVM[31] 25.7 8.8 11.9
SRC[15] 23.9 6.1 10.1
CRC[20] 24.9 5.4 9.0

BlockLDA[16] 29.5 13.2 15.8
AGL[32] 66.4 25.5 24.0
DMMA[8] 28.2 5.5 12.1
PNN[17] 35.3 11.8 13.5
PCRC[18] 37.3 8.0 10.2
ESRC[13] 63.8 31.9 27.0
SVDL[3] 76.0 37.9 33.5
LGR 79.1 39.5 36.3

4.4 AR face database

The AR face database [23] contains about 4,000 color face images of 126 people,
which consists of the frontal faces with different facial expressions, illuminations
and disguises. There are two sessions and each session has 13 face images per
subject. Following the SSPP experiment setting in [13], a subset with face images
of 50 males and 50 females is selected. The first 80 subjects from sessions 1 are
used for the gallery and query set while the other 20 subjects are used as the
generic training set. We also use the face images from session 2 as the query set to
test the FR performance. There are different variations, including illumination,
expression, and disguise (scarf and sunglass) in this experiment.

The experimental results on session 1 and session 2 are shown in Table 6 and
Table 7, respectively. LGR exhibits significantly better performance than all the
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other methods on both sessions. In particular, on session 2 LGR outperforms
SVDL by 16.4%, 10.8%, 32.5% and 34.7% under different variations. Note that
in this experiment the performance of patch based methods such as PCRC is
very competitive. This is because the disguises (i.e., scarf and sunglass) can be
well dealt with by patch/block based methods. Therefore, PCRC can achieve
higher recognition rate than the global representation based SVDL though it
does not learn any variation information from a generic dataset. The proposed
LGR utilizes both local presentation and generic information, leading to very
promising performance for the task of FR with SSPP.

Table 6. Recognition accuracy (%) on AR face database (session1).

Method illumination expression disguise illumination+disguise

NNC[30] 70 79.2 39.4 23.5
SVM[31] 55.8 90.4 43.1 29.4
SRC[15] 80.8 85.4 55.6 25.3
CRC[20] 80.5 80.4 58.1 23.8

BlockLDA[16] 75.3 81.4 65.4 53.5
AGL[32] 93.3 77.9 70.0 53.8
DMMA[8] 92.1 81.4 46.9 30.9
PNN[17] 84.6 86.7 90.0 72.5
PCRC[18] 95.0 86.7 95.6 81.3
ESRC[13] 99.6 85.0 83.1 68.6
SVDL[3] 98.3 86.3 86.3 79.4
LGR 100 97.9 98.8 96.3

Table 7. Recognition accuracy (%) on AR face database (session2).

Method illumination expression disguise illumination+disguise

NNC[30] 41.7 58.8 26.3 12.8
SVM[31] 40.0 58.8 26.9 14.4
SRC[15] 55.8 68.8 29.4 12.8
CRC[20] 55.8 69.6 35.0 13.5

BlockLDA[16] 54.7 61.2 31.9 21.0
AGL[32] 70.8 55.8 40.6 30.7
DMMA[8] 77.9 61.7 28.1 21.9
PNN[17] 77.5 73.8 71.9 52.8
PCRC[18] 88.8 71.7 81.8 63.1
ESRC[13] 87.9 70.4 59.4 45.0
SVDL[3] 87.1 74.2 61.3 54.1
LGR 97.5 85.0 93.8 88.8

4.5 LFW database

The LFW database [24] contains images of 5,749 different individuals in uncon-
strained environment. LFW-a is a version of LFW after alignment using com-
mercial face alignment software [34]. Following the experiment setting in [18]
and [3], a subset of 158 subjects with more than 10 images per person is col-
lected. Each face image is cropped to 120×120 and then resized to 80×80. One
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can see that although face alignment has been conducted, the variations in this
database is still very large compared with the face databases in the controlled
environment. Face images of the first 50 subjects are selected to form the gallery
and query sets, while the face images of the remaining subjects are used to build
the generic training set. Since there are no frontal neutral face images in this
database, the mean face of each person is used to form the reference subset in
the generic set.

The face recognition rates of different methods are listed in Table 8. Be-
cause of the challenging face variations in uncontrolled environment, no method
achieves very high accuracy in this experiment. Nonetheless, LGR still works
the best among all competing methods. The patch based method PCRC works
better than the global representation based CRC, which is similar to what we
observed in the experiments of previous sections. SVDL again achieves the sec-
ond highest recognition rate, demonstrating that the face variation information
learned from other subjects is indeed helpful to improve the robustness of FR
with SSPP, no matter in controlled or uncontrolled environment.

Table 8. Recognition accuracy (%) on LFW database.

Method NNC[30] SVM[31] SRC[15] CRC[20] BlockLDA[16] AGL[32]

Accuracy 12.2 11.6 20.4 19.8 16.4 19.2

Method DMMA[8] PNN[17] PCRC[18] ESRC[13] SVDL[3] LGR

Accuracy 17.8 17.6 24.2 27.3 28.6 30.4

5 Conclusions

We proposed a local generic representation (LGR) based approach for the chal-
lenging task of face recognition with single sample per person (SSPP). LGR
utilizes the advantages of both patch based local representation and generic
learning. A generic intra-class variation dictionary was constructed from a gener-
ic dataset, and it can well compensate for the face variations lacked in the SSPP
gallery set. A patch gallery dictionary was built by using the gallery samples,
which can more accurately represent the different parts of face images. Consider-
ing that the distribution of representation residual of different patches is highly
non-Gaussian, a correntropy based metric was adopted to measure the loss of
each patch so that the importance of different patches in face recognition can be
more robustly evaluated. As a result, LGR can adaptively suppress the role of
patches with large variations. The extensive experimental results on four bench-
mark face databases showed that LGR always achieves higher face recognition
rate than the state-of-the-art SSPP methods used in competition.
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26. Liu, W., Pokharel, P.P., Pŕıncipe, J.C.: Correntropy: properties and applications
in non-gaussian signal processing. Signal Processing, IEEE Transactions on 55

(2007) 5286–5298
27. Nikolova, M., Ng, M.K.: Analysis of half-quadratic minimization methods for signal

and image recovery. SIAM Journal on Scientific computing 27 (2005) 937–966
28. He, R., Tan, T., Wang, L., Zheng, W.S.: l2,1-regularized correntropy for robust

feature selection. In: Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, IEEE (2012) 2504–2511

29. He, R., Zheng, W.S., Tan, T., Sun, Z.: Half-quadratic-based iterative minimiza-
tion for robust sparse representation. IEEE Transactions on Pattern Analysis and
Machine Intelligence 36 (2014) 261–275

30. Cover, T., Hart, P.: Nearest neighbor pattern classification. Information Theory,
IEEE Transactions on 13 (1967) 21–27

31. Cortes, C., Vapnik, V.: Support vector machine. Machine learning 20 (1995)
273–297

32. Su, Y., Shan, S., Chen, X., Gao, W.: Adaptive generic learning for face recognition
from a single sample per person. In: Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, IEEE (2010) 2699–2706

33. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST) 2 (2011) 27

34. Wolf, L., Hassner, T., Taigman, Y.: Similarity scores based on background samples.
In: Computer Vision–ACCV 2009. Springer (2010) 88–97


