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Abstract—The great content diversity of real-world digital
images poses a grand challenge to image quality assessment
(IQA) models, which are traditionally designed and validated
on a handful of commonly used IQA databases with very
limited content variation. To test the generalization capability
and to facilitate the wide usage of IQA techniques in real-
world applications, we establish a large-scale database named
the Waterloo Exploration Database, which in its current state
contains 4, 744 pristine natural images and 94, 880 distorted
images created from them. Instead of collecting the mean opinion
score for each image via subjective testing, which is extremely
difficult if not impossible, we present three alternative test
criteria to evaluate the performance of IQA models, namely the
pristine/distorted image discriminability test (D-test), the listwise
ranking consistency test (L-test), and the pairwise preference
consistency test (P-test). We compare 20 well-known IQA models
using the proposed criteria, which not only provide a stronger
test in a more challenging testing environment for existing
models, but also demonstrate the additional benefits of using
the proposed database. For example, in the P-test, even for the
best performing no-reference IQA model, more than 6 million
failure cases against the model are “discovered” automatically
out of over 1 billion test pairs. Furthermore, we discuss how
the new database may be exploited using innovative approaches
in the future, to reveal the weaknesses of existing IQA models,
to provide insights on how to improve the models, and to
shed light on how the next-generation IQA models may be
developed. The database and codes are made publicly available
at: https://ece.uwaterloo.ca/∼k29ma/exploration/.

Index Terms—Image quality assessment, image database, dis-
criminable image pair, listwise ranking consistency, pairwise
preference consistency, mean opinion score.

I. INTRODUCTION

IMAGE quality assessment (IQA) aims to quantify human
perception of image quality, which may be degraded during

acquisition, compression, storage, transmission and reproduc-
tion [1], [2]. Subjective testing is the most straightforward
and reliable IQA method and has been conducted in the
construction of the most widely used IQA databases (e.g.,
LIVE [3] and TID2013 [4]). Despite its merits, subjective
testing is cumbersome, expensive and time-consuming [5].

Kede Ma, Zhengfang Duanmu and Zhou Wang are with the Department of
Electrical and Computer Engineering, University of Waterloo, Waterloo, ON,
N2L 3G1, Canada (e-mail: {k29ma, zduanmu, zhou.wang}@uwaterloo.ca).

Qingbo Wu and Hongliang Li are with the School of Electronic Engineer-
ing, University of Electronic Science and Technology of China, Chengdu,
611731, China (e-mail: wqb.uestc@gmail.com; hlli@uestc.edu.cn).

Hongwei Yong and Lei Zhang are with the Department of Computing, the
Hong Kong Polytechnic University, Kowloon, Hong Kong (e-mail: {cshyong,
cslzhang}@comp.polyu.edu.hk).

Developing objective IQA models that can automate this
process has been attracting considerable interest in both a-
cademia and industry. Objective measures can be broadly
classified into full-reference (FR), reduced-reference (RR) and
no-reference (NR) approaches based on their accessibility to
the pristine reference image, which is also termed as the
“source image” that is assumed to have pristine quality. FR-
IQA methods assume full access to the reference image [6].
RR-IQA methods utilize features extracted from the reference
to help evaluate the quality of a distorted image [7]. NR-IQA
methods predict image quality without accessing the reference
image, making them the most challenging among the three
types of approaches.

With a variety of IQA models available [8]–[16], how to
fairly evaluate their relative performance becomes pivotal. The
conventional approach in the literature is to compute correla-
tions between model predictions and the “ground truth” labels,
typically the mean opinion scores (MOSs) given by human
subjects, of the images on a handful of commonly used IQA
databases. However, collecting MOS via subjective testing is
a costly process. In practice, the largest IQA database that is
publicly available contains a maximum of 3, 000 subject-rated
images, many of which are generated from the same source
images with different distortion types and levels. As a result,
only less than 30 source images are included. By contrast,
the space of digital images is of very high dimension, which
is equal to the number of pixels in the images, making it
extremely difficult to collect sufficient subjective opinions to
adequately cover the space. Perhaps more importantly, using
only a few dozens of source images is very unlikely to provide
a sufficient representation of the variations of real-world image
content. Moreover, most objective IQA methods are developed
after the commonly used IQA databases became publicly avail-
able and often involve machine learning or manual parameter
tuning steps to boost their performance. All these issues cast
challenges on the generalization capability of existing IQA
models in real-world applications.

We believe that a large-scale database with greater content
diversity is critical to fairly compare IQA models, to test their
generalization capability, and to develop the next-generation
IQA algorithms. This motivates us to build the Waterloo Ex-
ploration Database, or in short the Exploration database, which
in its current state contains 4, 744 pristine natural images that
span a variety of real-world scenarios. We extend it by adding
four distortion types, namely JPEG compression, JPEG2000
compression, white Gaussian noise contamination and Gaus-
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TABLE I
COMPARISON OF IQA DATABASES

Database # of Pristine Images # of Distorted Images Subjective Testing Methodology
LIVE [3] 29 779 single-stimulus continuous scale

TID2008 [17] 25 1, 700 paired comparison
TID2013 [4] 25 3, 000 paired comparison
CSIQ [18] 30 866 multi-stimulus absolute category

LIVE MD [19] 15 405 single-stimulus continuous scale
LIVE Challenge [20] — 1, 162 single-stimulus continuous scale with crowdsourcing
Waterloo Exploration 4, 744 94, 880 need-based

sian blur with five distortion levels each, resulting in 99, 624
images in total. Given the large number of sample images, it is
extremely difficult (if not impossible) to collect MOSs for all
images in a well controlled laboratory environment. Therefore,
innovative approaches are necessary to evaluate the relative
performance of IQA models. Here we propose three evaluation
criteria, termed as the pristine/distorted image discriminability
test (D-test), the listwise ranking consistency test (L-test) and
the pairwise preference consistency test (P-test), respectively.
Each of them tests the robustness and generalization capability
of an IQA model from a different aspect. Specifically, the D-
test exams whether an IQA model well separates the pristine
from distorted images. The L-test checks whether an IQA
model gives consistent ranking of images with the same
distortion type and content but different distortion levels.
The P-test evaluates the preference concordance of an IQA
measure on quality-discriminable image pairs (DIPs), which
are carefully selected image pairs whose quality is clearly
discriminable. By applying the three evaluation criteria to the
Exploration database, we perform a systematic comparison of
20 well-known IQA models. Furthermore, we demonstrate that
innovative approaches may be developed to leverage the large-
scale Exploration database in order to reveal the weaknesses
of even top performing IQA models, a task that is not easily
achieved using existing IQA databases. Careful investigations
of the failure cases of these models also provide valuable
insights on potential ways to improve them.

II. RELATED WORK

Several well-known IQA databases have been widely used
in the literature. In 2005, Sheikh et al. conducted a “large-
scale” subjective image quality study and created the LIVE [3]
database that consists of 29 reference and 779 distorted
images with five distortion types—JPEG2000 compression,
JPEG compression, white Gaussian noise, Gaussian blur and
fast fading transmission error. A single-stimulus continuous-
scale method [21] is adopted for testing, where the refer-
ence images are also evaluated under the same experimental
configuration [22]. MOS scaling and realignment (based on
an additional double-stimulus subjective experiment) are per-
formed to align the scores across different distortion sessions.
In particular, the scaling compensates different scales used by
different subjects during rating, while the realignment avoids
significant bias of MOS values towards any specific distortion
type and/or level.

The TID2008 [17] database contains 24 pristine natural and
1 computer generated images. 18 of them are originated from

LIVE [3], differing only in size via cropping. Seventeen types
of distortions with four distortion levels are added, resulting in
a total of 1, 700 distorted images. The testing methodology is
a paired comparison method [23], where the reference image
is also shown to the subjects. A Swiss competition principle is
used to reduce the number of pairs for subjective testing such
that each image appears in at most nine pairs. No explicit MOS
scaling and realignment are reported to refine the raw MOSs
collected from multiple sessions in three countries. TID2008
was later extended to TID2013 [4] by adding seven new
distortion types and one additional distortion level, making
it the largest public database so far.

The CSIQ [18] database contains 30 reference images and
866 distorted images by adding six distortion types with
four to five distortion levels. CSIQ uses a multi-stimulus
absolute category method based on a linear displacement of
the images of the same content across four calibrated LCD
monitors placed side by side with equal viewing distance to
the observer. MOSs of images with different content are re-
aligned according to a separate, but identical, experiment in
which observers place subsets of all the images linearly in
space.

The LIVE multiply distorted (MD) database [19] and the
LIVE in the wild image quality challenge database [20] (LIVE
Challenge) focus on images with mixture of distortions. LIVE
MD simulates two multiple distortion scenarios, one for image
storage (Gaussian blur followed by JPEG compression) and the
other for digital image acquisition (Gaussian blur followed by
white Gaussian noise). It contains 15 pristine images and 405
distorted ones. The test methodology is the same as is used in
LIVE [3]. LIVE Challenge database takes a step further and
directly works with authentically distorted images captured
from mobile devices. A total of 1, 162 images are included,
whose MOSs are crowdsourced using the Amazon Mechanical
Turk platform. Substantial efforts have been put to process the
noisy raw data and to verify the reliability of the obtained
human opinions from the uncontrolled test environment. A
summary of the aforementioned databases are given in Table I.

Other widely known but smaller databases include IVC [24],
Toyama-MICT [25], Cornell A57 [26] and WIQ [27], etc. A
useful collection of IQA databases can be found at [28], [29].

A major common issue of all the existing IQA databases
is the limited numbers of source images being used (as a
matter of fact, none of the databases includes more than
30 source images), which creates a large gap between the
diversity of real-world images and the variation of the image
content that can be tested using the databases. As a result,
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Fig. 1. Sample source images in the Waterloo Exploration Database.

IQA models developed and validated using such databases
are inevitably questioned on their generalization capability
to real-world applications. This is evidenced by the recent
test results on the LIVE Challenge database, a collection of
images from the real-world, where the performance of the
most advanced NR-IQA models drops significantly [20]. The
limitation on the number of source images is largely due
to the limited capacity of the affordable subjective testing
experiments. For example, testing and comparing the 1, 700
distorted images in TID2008 [17] is an expensive and highly
time-consuming “large-scale” subjective testing task, but given
the combinations of the distortion types and levels that are
applied to each source image, eventually, only 25 source
images can be included.

The above issue motivates us to build a new database
for IQA research, which aims to significantly expand the
diversity of image content. Meanwhile, testing all images in
the database using conventional subjective testing methodolo-
gies becomes extremely difficult, if not impossible. Therefore,
innovative approaches on how to use the database to test and
compare IQA models have to be developed in order to meet
the challenge. These are the key questions we would like to
answer in this work.

III. CONSTRUCTING THE WATERLOO EXPLORATION
DATABASE

We construct a new image database, namely the Waterloo
Exploration Database, which currently contains 4, 744 pristine
natural images that span a great diversity of image content.
An important consideration in selecting the images is that
they need to be representative of the images we see in our

daily life. Therefore, we resort to the Internet and elaborately
select 196 keywords to search for images. The keywords can
be broadly classified into 7 categories: human, animal, plant,
landscape, cityscape, still-life and transportation. We initially
obtain more than 200, 000 images. Many of these images
contain significant distortions or inappropriate content, and
thus a sophisticated manual process is applied to refine the
selection. In particular, we first remove those images that have
obvious distortions, including heavy compression artifacts,
strong motion blur or out of focus blur, low contrast, under-
exposure or over-exposure, substantial sensor noise, visible
watermarks, artificial image borders, and other distortions due
to improper operations during acquisition. Next, images of
too small or too large sizes, cartoon and computer generated
content, and inappropriate content are excluded. After this
step, about 7, 000 images remain. To make sure that the images
are of pristine quality, we further carefully inspect each of the
remaining images multiple times by zooming in and remove
those images with visible compression distortions. Eventually,
we end up with 4, 744 high quality natural images. Sample
images grouped into different categories are shown in Fig. 1.

Four distortion types with five levels each are chosen to alter
the source images. All distorted images are generated using
MATLAB functions as follows:

• JPEG compression: The quality factor that parameterizes
the DCT quantization matrix is set to be [43, 12, 7, 4, 0]
for five levels, respectively.

• JPEG2000 compression: The compression ratio is set to
be [52, 150, 343, 600, 1200] for five levels, respectively.

• Gaussian blur: 2D circularly symmetric Gaussian
blur kernels with standard deviations (std) of
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[1.2, 2.5, 6.5, 15.2, 33.2] for five levels are used to
blur the source images.

• White Gaussian noise: white Gaussian noise is added
to the source images, where variances are set to be
[0.001, 0.006, 0.022, 0.088, 1.000] for five levels, respec-
tively.

The above four distortion types are the most common ones
in existing IQA databases [22], [30], and many IQA models
are claimed to excel at handling these distortions [12]–[15],
[31]–[39]. Therefore, whether these models perform well on
the new Waterloo Exploration Database becomes a strong
test on the claims of these methods and their generalization
capability in the real-world. The parameters that control the
distortion levels for each distortion type are chosen so as
to cover the full range of subjective quality scale, which is
measured by VIF [9] calibrated on the LIVE database with
a nonlinear mapping. Specifically, we select the distortion
parameters for each distortion type separately so that the
distorted images are roughly evenly distributed in the score
range. As a result, the discriminability between two adjacent
levels can be guaranteed. Once determined, the parameters are
fixed for all images. Overall, the Exploration database contains
a total of 99, 624 images. The numbers of pristine and distorted
images are 150 times and 30 times, respectively, more than
those of the largest existing databases so far.

IV. EVALUATING OBJECTIVE IQA MODELS

To make use of the Exploration database for comparing the
relative performance of IQA models, we present three test
criteria, namely the pristine/distorted image discriminability
test (D-test), the listwise ranking consistency test (L-test), and
the pairwise preference consistency test (P-test).

A. Pristine/Distorted Image Discriminability Test (D-Test)

Considering the pristine and distorted images as two distinct
classes in a meaningful perceptual space, the D-test aims to
test how well an IQA model is able to sperate the two classes.
An illustration using the Exploration database is shown in
Fig. 2, where an IQA model with strong discriminability (e.g.
Wang05 [40]) is able to map pristine and distorted images
onto easily separable intervals with minimal overlaps, whereas
a less competitive model creates two distributions of scores
with large overlaps. Here we introduce a measure to quantify
this discriminability. Let qi represent the predicted quality of
the i-th image by a model, we group indices of pristine and
distorted images into the sets of Sp and Sd, respectively. We
then apply a threshold T on {qi} to classify the images such
that S′p = {i|qi > T} and S′d = {i|qi ≤ T}. The average
correct classification rate is given by

R =
1

2

( |Sp ∩ S′p|
|Sp|

+
|Sd ∩ S′d|
|Sd|

)
. (1)

It is worth noting that most existing IQA databases, includ-
ing the Waterloo Exploration Database are class-imbalanced,
where the collection of samples is overwhelmed by the dis-
torted images. By normalizing the correctly classified samples,
we avoid the trivial solution that all images are classified
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Fig. 2. Distributions of IQA model prediction scores of pristine and distorted
images of the Waterloo Exploration Database. Ideal IQA models are expected
to have strong discriminability of the distributions, and are expected to create
small overlaps between the two distributions. (a) WANG05 [40] model; (b)
DIIVINE [13] model.

as distorted, which could also result in a not bad R. The
value of T should be optimized to yield the maximum correct
classification rate. Thus, we define a discriminability index as

D = max
T

R(T ) . (2)

D lies in [0, 1], with a larger value indicating a better sep-
arability between pristine and distorted images. The single-
variable optimization problem can be solved using a line
search method.

B. Listwise Ranking Consistency Test (L-Test)

The idea behind the L-test has been advocated by Win-
kler [29], [41]. The goal is to evaluate the robustness of
IQA models when rating images with the same content and
the same distortion type but different distortion levels. The
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Fig. 3. L-test of “Hip-hop Girl” images under JPEG2000 compression. The
image quality degrades with the distortion level from left to right and from
top to bottom. A competitive IQA model (e.g., ILNIQE [14]) rank-lists the
images in exactly the same order. By contrast, a less competitive model (e.g.,
QAC [35]) may give different rankings.

underlying assumption is that the quality of an image degrades
monotonically with the increase of the distortion level for any
distortion type. Therefore, a good IQA model should rank
these images in the same order. An example on the Exploration
database is given in Fig. 3, where different models may or
may not produce the same quality rankings in consistency with
the image distortion levels. Given a database with N pristine
images, K distortion types and L distortion levels, we use the
average Spearman’s rank-order correlation coefficient (SRCC)
and Kendall’s rank-order correlation coefficient (KRCC) to
quantify the ranking consistency between the distortion levels
and the model predictions, which are defined as

Ls =
1

NK

N∑
i=1

K∑
j=1

SRCC(l ij , qij) , (3)

and

Lk =
1

NK

N∑
i=1

K∑
j=1

KRCC(lij , qij) , (4)

where lij and qij are both length-L vectors representing
the distortion levels and the corresponding distortion/quality
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Fig. 4. The percentage of generated DIPs in the “ground truth” set on the
LIVE [3] database as a function of T for different combinations of base
FR-IQA models.

scores given by a model to the set of images that are from the
same (i-th) source image and have the same (j-th) distortion
type.

C. Pairwise Preference Consistency Test (P-Test)

The P-test compares preference predictions of IQA models
on pairs of images whose quality is clearly discriminable.
We call such pairs of images quality-discriminable image
pairs (DIPs). A good IQA model should consistently predict
preferences concordant with the DIPs. Paired comparison is a
widely used subjective testing methodology in IQA research,
as discussed in Section II. Pairwise preference has also been
exploited previously to learn rank-IQA models [16], [42].
Nevertheless, in all previous work, the DIPs that can be used
for testing or developing objective models are obtained exclu-
sively from subjective quality ratings, which largely limits the
number of available DIPs, and is impractical for large-scale
image databases such as the Exploration database.

Here, we propose a novel automatic DIP generation engine
by leveraging the quality prediction power of several most-
trusted FR-IQA measures in the literature. Specifically, we
consider an image pair to be a valid DIP if the absolute
differences of the predicted scores from the FR models are
all larger than a pre-defined threshold, T .

To explore this idea, we first experiment with the LIVE
database [3], from which we extract all possible image pairs
whose absolute MOS differences are larger than Tl = 20 and
consider them as the “ground truths” DIPs. The legitimacy of
Tl = 20 on LIVE can be validated from two sources. First,
the average std of MOSs on LIVE is around 9 and Tl = 20 is
right outside the ±1 std range, which guarantees the perceptual
quality discriminability of the pair of images. Second, from
the subjective experiment conducted by Gao et al. [16], it is
observed that the consistency between subjects on the relative
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Fig. 5. Sample DIPs from the Exploration database. (a), (b) and (c) show 3 DIPs, where the left images have clearly better quality than the right images. A
good model is able to give concordant opinions, whereas a less competitive model tends to perform randomly or provide discordant opinions.

quality of one pair from LIVE increases with Tl, and when Tl

is larger than 20, the consistency approaches 100%. Using the
available MOS values in LIVE [3], we are able to generate
206, 717 “ground truth” DIPs, termed as the “ground truth”
set. After that, we use our DIP generation engine to generate
DIPs on LIVE and observe whether the generated pairs are
in the “ground truth” set. Fig. 4 shows the percentage p of
generated DIPs in the “ground truth” DIP set as a function of
T for different combinations of FR-IQA measures, where three
base FR-IQA measures, namely MS-SSIM [43], VIF [9] and
GMSD [10] are selected. It can be seen that p increases when
more FR-IQA models are involved, and is maximized when
all the 3 FR-IQA models are used. Using all the three models
together with T = 40, we achieve p = 99.81% accuracy,
which verifies the reliability of the DIP generation engine.
This configuration is used as the default setting. Note that
the model predictions of the three FR-IQA models should be
mapped to the same perceptual scale before DIP generation.
Fig. 5 shows 3 DIPs generated by the proposed engine on the
Exploration database. One can see that the left images of the
3 DIPs have superior perceived quality compared to the right
ones.

Given an image database D, the DIP generation goes
through all possible pairs of images to create the full DIP
set from D. Suppose that the total number of DIPs in the set
is M and the number of concordant pairs of an IQA model
(meaning that the model predicts the correct preference) is
Mc, a pairwise preference consistency ratio is defined as

P =
Mc

M
. (5)

P lies in [0, 1] with a higher value indicating better perfor-
mance of the IQA model being tested.

D. Discussion

The above test criteria are defined independent of any
particular database, regardless of their size or content. Each of
them challenges an IQA model from a different perspective.
One would not be surprised to see that one model is superb
under one criterion but subpar under another (as we will see
in Section V). Meanwhile, all of them benefit from larger
databases, where the weaknesses and failure cases of the test
models have more chances to be detected. These failure cases
may provide insights on how to improve IQA models.
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Fig. 6. D-test results of IQA models on the Exploration database.

V. EXPERIMENTAL RESULTS

We apply the aforementioned test criteria on the Waterloo
Exploration Database and compare the performance of 20
well-known IQA models, which are selected to cover a wide
variety of design methodologies with an emphasis on NR-IQA
methods. The models include FR-IQA measures 1) PSNR,
2) SSIM [8], 3) MS-SSIM [43], 4) FSIM [44], 5)VIF [9],
6) GMSD [10], RR-IQA measures 7) WANG05 [40], 8)
RRED [45], and NR-IQA methods 9) BIQI [31], 10) BLIND-
S II [32], 11) BRISQUE [33], 12) CORNIA [12], 13) DI-
IVINE [13], 14) IL-NIQE [14], 15) LPSI [38], 16) M3 [36],
17) NFERM [39], 18) NIQE [34], 19) QAC [35] and 20)
TCLT [15]. The implementations of all algorithms are obtained
from the original authors or their public websites. For training
based IQA methods, we use the whole LIVE database [3] to
learn the models. Furthermore, we adopt a 4-parameter logistic
nonlinear function as suggested in [21] to map the predicted
scores of candidate models to the MOS scale of LIVE [22].
The nonlinear mapping compensates the nonlinearity of model
predictions on the human perception of image quality and
make the results more interpretable. As a result, the score
range of all algorithms spans between [0, 100], where a higher
value indicates better perceptual quality.
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(e) (f) (g) (h)

Fig. 7. Failure cases of the top four NR-IQA models (TCLT [15], CORNIA [12], QAC [35] and BRISQUE [33]) in the D-test on the Exploration database.
(a)-(d): pristine images misclassified as distorted ones by the four models; (e)-(h): distorted images misclassified as pristine ones by the four models.

A. D-Test

Fig. 6 shows the D-test results on the Exploration database
of 20 IQA measures. It can be observed that FR-IQA and RR-
IQA models perform the best and often give nearly perfect
performance. This is not surprising because they have full
or partial access to the pristine images. Second, TCLT [15],
CORNIA [12], QAC [35] and BRISQUE [33] are among
the top performing NR-IQA models. Despite their superior
performance, by looking into their common failure cases, we
are able to identify their weaknesses. Some examples are
shown in Fig. 7. In general, the pristine images that are
misclassified as distorted ones often exhibit low illumination
or low intensity variations. There are also exceptions. For
example, complex textures as those in Fig. 7(c) resemble noise
structures and may fool NR-IQA models. On the other hand,
the distorted images that are misclassified as pristine ones are
often induced by white Gaussian noise and JPEG compression
at mild distortion levels. Since slightly distorted images may
not be visually differentiable from pristine images, we are not
expecting an ideal NR-IQA model to have a perfect or nearly
perfect D value on the Exploration database.

We also run the D-test on LIVE [3] which has less than
1, 000 test images. The top performing NR-IQA models T-
CLT [15] and CORNIA [12] on the Exploration database
perform perfectly on LIVE (achieving D = 1), which means
that no failure case can be found. This manifests the benefits
of using the Exploration database which contains substantially
more images to better distinguish between IQA models by
more easily identifying their failure cases.

B. L-Test

We perform the L-test on the Exploration database that
includes 4, 744 × 4 = 18, 976 sets of images, each of which
contains a list of images generated from the same source
with the same distortion type but at different distortion levels.

Fig. 8 shows the Ls and Lk results of 20 IQA models,
from which we have several observations. First, it is not
surprising that FR- and RR-IQA models generally perform
better than NR-IQA approaches because they are fidelity
measures that quantify how far a distorted image departs
from the source image, and such fidelity typically decreases
monotonically with the increase of distortion levels. Second,
the NR model NIQE [34] and its feature enriched extension
ILNIQE [14] outperform all other NR-IQA models. It is worth
mentioning that NIQE and ILNIQE are based on perception-
and distortion-relevant natural scene statistics (NSS) features,
without MOS for training. This reveals the power of NSS,
which map images into a perceptually meaningful space for
comparison. Third, although TCLT [15] performs the best in
the D-test, it is not outstanding in the L-test. Fourth, training
based models, such as BIQI [31] and DIIVINE [13] generally
have lower overall consistency values and larger error bars
(stds), implying potential overfitting problems.

Furthermore, to demonstrate the additional benefits of the
L-test, we focus on NIQE [34], one of the best performing
models, observing its main failure cases and discussing how
it can be improved. Fig. 9 shows sample failure cases which
occur when JPEG2000 compression is applied. A common
characteristic of these images is that they are a combination of
strong edges and large smooth regions, which results in abun-
dant ringing artifacts after JPEG2000 compression. The patch
selection mechanism in NIQE [34] may mistakenly group
such distorted structures to build the multi-variant Gaussian
model (MVG), which can be close to the MVG computed
from a number of natural image patches. This results in a
reverse order of quality ranking. Potential ways of improving
NIQE [34] include pre-screening ringing artifacts and training
the MVG using natural image patches of more diverse content.

To investigate the impact of the size of the image databases
on the L-test, we also run it on the LIVE [3] database. The
average Ls value over 20 IQA models is 0.964 with an std
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Fig. 8. L-test results of IQA models on the Exploration database.

of 0.025, which is only half of the std obtained using the
Exploration database. This indicates that running L-test on
larger databases is desirable to better differentiate IQA models.

Fig. 9. Failure cases of NIQE [34] in the L-test induced by JPEG2000
compression on the Exploration database, where Lk is less than 0.5.

C. P-Test
We apply the proposed DIP generation engine on the

Exploration database, resulting in more than 1 billion DIPs.
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Fig. 10. P-test results of IQA models on the Exploration database.

Fig. 10 shows the pairwise preference consistency ratios of 12
NR-IQA, 2 RR-IQA and 3 FR-IQA measures. MS-SSIM [43],
VIF [9] and GMSD [10] are not tested here because they
are used in the DIP generation process and thus are not
independent of the test. Several useful observations can be
made. First, all algorithms under test achieve P ≥ 90%, which
verifies the success of these algorithms in predicting image
quality to a certain extent. Second, as one of the first attempts
towards RR-IQA, WANG05 [40], a top performer in the D-
test, does not perform very well in the P-test compared to
many NR-IQA methods. This may be because the statistical
features on marginal wavelet coefficients are insufficient to
fully capture the variations in image content and distortion.
The performance may be further compromised due to quanti-
zation of extracted features. Third, ILNIQE [14], NIQE [33]
and CORNIA [12] are among top performing NR models,
which conforms to the results in the L-test.

Note that the size of the Exploration database is fairly large
and therefore a small difference of the P-test may indicate
significant space for improvement. For example, although
CORNIA [12] outperforms all the other NR-IQA methods
and achieve P = 0.995, it still makes 6, 808, 400 wrong
predictions. Representative failure cases are shown in Fig. 11.
Careful investigations show its weaknesses and provide poten-
tial ways to improve it. Specifically, CORNIA tends to favor
artificial structures introduced in smooth regions, for example
blocking structures in the sky in Fig. 11(a1), and ringing
around sharp edges in Fig. 11(c1). This may be a consequence
of its unsupervised feature learning mechanism that may not
be capable of reliably differentiating real structures from
artificially created distortions in smooth areas.

We run the P-test on LIVE [3] for comparison. Only 90, 870
DIPs can be generated, which is less than 0.01% of the DIPs
generated from the Exploration database. All 14 algorithms
perform perfectly on LIVE, achieving P = 1. No failure case
is found of any IQA model. This result manifests the value of
the Exploration database, and meanwhile shows the capability
of the P-test at exploiting large databases.
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(a1) CORNIA = 54 (a2) CORNIA = 24

(b1)  CORNIA = 82 (b2)  CORNIA = 39

(c1) CORNIA = 60

(d1) CORNIA = 49

 (c2) CORNIA = 28

(d2) CORNIA = 19

Fig. 11. Failure cases of CORNIA [12] in the P-test on the Exploration
database. The left images have inferior quality compared with the right ones,
but CORNIA [12] gives incorrect preference predictions.

We also conduct experiments using the P-test on the LIVE
Challenge database [20]. We generate DIPs based on the MOS
provided by the database. Specifically, we consider an image
pair to be a valid DIP if their absolute MOS difference is
larger than one std of the MOS.1 As such, a total number of
330, 752 DIPs are generated. Note that the reference images
are not available in the Challenge database and therefore only
NR-IQA models are tested. Fig. 12 shows the P values of 12
NR-IQA models. It can be observed that the top performing
NR-IQA models CORNIA [12], NIQE [34], ILNIQE [14] on
the Waterloo Exploration Database are also ranked high on
the LIVE Challenge database. However, DIIVINE [13], a less
competitive model on the Exploration database, performs the
second best on the Challenge database. One possible reason
might be the relatively large noise levels of the MOS in
the LIVE Challenge database, whose samples were collected
via crowdsourcing from an uncontrolled environment. The
differences in the ranks of the IQA models may also result
from a combination of the nature of the image distortions in

1Every image in the LIVE Challenge database has a MOS and an std
associated with it, computed from all valid subjective scores. Here we use the
average std of all images.
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Fig. 12. The P-test results of 12 NR-IQA models on the LIVE Challenge
database [20].

different databases and the properties of the features employed
in different models. Further investigations are needed to better
explain the observations.

Reference 
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Worst MSE for

fixed SSIM 

Initial
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Fig. 13. Illustration of the MAD competition method [46] with synthesized
image pairs.

VI. DISCUSSIONS

The D-test, L-test and P-test presented in this paper are by
no means the only ways we could use the Exploration database
to test, compare and improve existing IQA models. The rich
diversity of the database allows for many innovative and
advanced approaches for testing and new model development.

A concept that is worth deeper investigation is the MAxi-
mum Differentiation (MAD) competition method, introduced
by Wang and Simoncelli [46]. The fundamental idea behind
MAD, which is substantially different from standard approach-
es of model evaluation, is to disprove a model by visually in-
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A pair of images (A, B) is selected by maximizing/minimizing SSIM but
holding MS-SSIM fixed. Similarly, a pair of images (C, D) is selected by
maximizing/minimizing MS-SSIM but holding SSIM fixed.

(a) MS-SSIM = 30, SSIM = 53 (b) MS-SSIM = 30, SSIM = 13

(c) SSIM = 30, MS-SSIM = 78 (d) SSIM = 30, MS-SSIM = 13

Fig. 15. Image pairs found by MAD competition between SSIM [8] and
MS-SSIM [43] on the Exploration database.

specting automatically generated “counter-examples”, instead
of trying to prove a model using pre-selected and subject-
rated stimuli. This could largely reduce the required number
of samples for subjective testing because conceptually even
one “counter-example” is sufficient to disprove a model. In
the context of IQA, image pairs are automatically synthesized
to optimally distinguish two IQA models in comparison. An
illustration is shown in Fig. 13, where we first synthesize a pair
of images that maximize/minimize SSIM [8] while holding
MSE fixed. We then repeat this procedure, but with the roles
of SSIM [8] and MSE exchanged. An implementation issue
that impedes the wide applicability of MAD competition is that
the image synthesis process relies on gradient computations to
perform an iterative constrained optimization process, which
is not plausible for many IQA models whose gradients are
difficult to compute, if not impossible. The rich diversity of
the Exploration database allows us to bypass this difficult

step by replacing the image synthesis process with a search
step for pairs of images with one model fixed but the other
maximally differentiated. This corresponds to finding image
pairs on the scatter plots of two models that have the longest
distance in a given row or column (where we assume that the
quality predictions of two models are mapped to the same
perceptual scale), as exemplified in Fig. 14, where SSIM
competes with MS-SSIM. The corresponding image pairs are
shown in Fig. 15, from which we can see that images in the
first row exhibits approximately the same perceptual quality
(in agreement with MS-SSIM [8]) and those in the second row
have drastically different perceptual quality (in disagreement
with SSIM [43]). This suggests that MS-SSIM may be a
significant improvement over SSIM.

Inspired by the spirit of MAD, we may explore the idea
even further by looking for image pairs that two models
have exactly opposite opinions. An extreme case is to find
the outmost outlier image pair in the scatter plot of two
models, as exemplified in Fig. 16, where we pick two images
corresponding to maxi(qi−q′i) and minj(qj−q′j), respectively.
Using this strategy, we find the outmost outlier image pair
of NIQE [34] and ILNIQE [14] on the Exploration database,
as shown in Fig. 17. Surprisingly, although ILNIQE [14] is
claimed to improve upon NIQE [34], NIQE [34] is in closer
agreement with human perception in this test. This suggests
that the evolvement from NIQE [34] to ILNIQE [14] may have
lost certain merits originally in NIQE [34].
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Fig. 16. Selection of a pair of images that two models have the strongest
opposite opinions. (A, B) corresponds to the images for which the quality
predictions by NIQE [34] and ILNIQE [14] are maximized/minimized.

VII. CONCLUSION AND FUTURE WORK

We introduced the Waterloo Exploration Database, currently
the largest database for IQA research. We presented three
evaluation criteria, the D-test, L-test and P-test, and applied
them to the Exploration database to assess 20 well-known
IQA models, resulting in many useful findings. In addition,
innovative approaches for comparing IQA models were also
discussed. Both the Exploration database and the proposed
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(a) NIQE = 93, ILNIQE = 45

(b) NIQE = 36, ILNIQE = 81

Fig. 17. The pair of images in the Exploration database for which NIQE [34]
and ILNIQE [14] have the strongest opposite opinions.

testing tools are made publicly available to facilitate future
IQA research.

The current work can be extended in many ways. First,
other existing and future IQA models may be tested and
compared by making use of the database. Second, the database
is readily extended by adding more pristine images, more
distortion types and/or more distortion levels. Third, the failure
cases discovered in the database using the proposed testing
methodologies may be exploited to improve existing IQA
models or to combine the merits of multiple models. Fourth,
new machine learning based approaches may be developed
using the database, aiming for IQA models with stronger
generalization capability.
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