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An Efficient Globally Optimal Algorithm for
Asymmetric Point Matching

Wei Lian, Lei Zhang, and Ming-Hsuan Yang

Abstract—Although the robust point matching algorithm has been demonstrated to be effective for non-rigid registration, there are
several issues with the adopted deterministic annealing optimization technique. First, it is not globally optimal, and regularization
on the spatial transformation is needed for good matching results. Second, it tends to align the mass centers of two point sets. To
address these issues, we propose a globally optimal algorithm for the robust point matching problem where each model point has
a counterpart in scene set. By eliminating the transformation variables, we show that the original matching problem is reduced to a
concave quadratic assignment problem where the objective function has a low rank Hessian matrix. This facilitates the use of large
scale global optimization techniques. We propose a branch-and-bound algorithm based on rectangular subdivision where in each
iteration, multiple rectangles are used to increase the chances of subdividing the one containing the global optimal solution. In addition,
we present an efficient lower bounding scheme, which has a linear assignment formulation and can be solved efficiently. Extensive
experiments on synthetic and real datasets demonstrate the proposed algorithm performs favorably against state-of-the-art methods in
terms of robustness to outliers, matching accuracy, and run-time.

Index Terms—branch and bound, concave optimization, linear assignment, point correspondence, robust point matching
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1 INTRODUCTION

THE goal of point matching is to find correspondence
between two point sets and recover the underly-

ing transformation. It plays an indispensable role for
numerous applications in computer vision and pattern
recognition. Accurate point matching is challenging, as
matching algorithms need to account for non-rigid de-
formation, positional noise and outliers from images.
Numerous methods have been proposed to address the
point matching problem [5], [45], among which the
robust point matching (RPM) method [9], [10] is widely
used for non-rigid registration, and several variants [34],
[39], [19] have subsequently been developed.

The RPM method jointly estimates correspondence
and transformation by formulating point matching as
a mixed linear assignment least squares optimization
problem. Based on this formulation, it relaxes the point
correspondence variables to be continuously valued sub-
ject to the one-to-one correspondence constraint (i.e., soft
assignment) and employs a deterministic annealing tech-
nique [42] to gradually estimate point correspondence.
However, a deterministic annealing method involves
heuristics and there is no global optimality guarantee.
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Consequently, the spatial transformation variable needs
to be regularized to avoid undesirable matching results.
Furthermore, the deterministic annealing technique ini-
tially matches points in two sets with equal chance,
which causes the mass centers of the sets to be aligned.
This trend may persist and result in aligning the centers
of two point sets.

To address the issues with the use of determinis-
tic annealing for non-rigid registration, we propose an
asymmetric point matching (APM) algorithm for the
RPM problem, where each model point has a counterpart
in scene set. The APM algorithm operates by eliminating
the transformation variables of the RPM objective func-
tion to reduce it to a function of point correspondence
with the following properties.

First, the function is concave. Taking into account the
total unimodularity of the constraints on point corre-
spondence [33], [18], we show that the optimal solution
by the proposed algorithm is directly binary valued.
Thus, there is no need for discretizing solutions, which
can cause errors and inaccurate estimates [20], [22], [27].

Second, the function is quadratic with a Hessian ma-
trix, whose rank equals the number of transformation
parameters. For the case in which transformation has
few parameters (e.g., 2D similarity or 2D/3D affine
transformation), the rank is low, and thus large scale
global optimization techniques can be applied [18]. Con-
sequently, the proposed algorithm is globally optimal
and scalable.

To optimize the proposed objective function, we pro-
pose a branch-and-bound (BnB) algorithm based on
rectangular subdivision [18], where in each iteration,
instead of only subdividing the rectangle yielding the
lower bound for the feasible region, more rectangles



2

are used to increase the chances of subdividing the one
containing the global optimal solution, thereby improv-
ing convergence speed. Experimental results show the
proposed algorithm achieves 10-fold speed-up for large
size problems.

In order to further improve the efficiency of the pro-
posed BnB algorithm where computation of the lower
bound is the bottleneck, we propose a lower bounding
scheme, which has a linear assignment formulation and
can be solved efficiently. Experimental results show that
500-fold speed-up can be obtained by the proposed
scheme. In addition, the proposed formulation yields
tight lower bounds.

The contributions of this work are summarized as
follows. First, the proposed algorithm can match point
sets when transformations are not regularized. In these
cases, the proposed algorithm is invariant to the corre-
sponding transformations and matches two point sets
with unknown poses. In contrast, it is necessary to use
regularization techniques for existing RPM methods to
avoid undesirable matching results. Second, as the pro-
posed algorithm computes globally optimal solutions,
it is more robust to outliers or extraneous structures
than existing methods that find local solutions. Validated
by the experiments, the proposed algorithm is more
robust than state-of-the-art RPM methods. Third, the
proposed algorithm performs robustly against the RPM
method for non-rigid registration. Experimental results
show that the RPM method needs to use the thin plate
spline transformation to perform as well as the proposed
algorithm with affine transformation.

2 RELATED WORK AND PROBLEM CONTEXT

Thorough reviews on point matching and registration
can be found in [5], [45]. In this section, we discuss the
most relevant algorithms on non-rigid point matching
and put this work in proper context.

Point Matching: Numerous methods on modeling both
point correspondence and spatial transformation have
been proposed. The iterative closest point (ICP) meth-
ods [3], [43] determine the nearest neighbors for point
correspondence and from the spatial transformation.
Due to the discrete nature of point correspondence, it
is well known that ICP is prone to be trapped into local
minimum. The RPM methods [9], [10] pose the task as a
mixed linear assignment least square problem, in which
soft assignment and deterministic annealing techniques
are used for optimization. However, the RPM methods
tend to align the mass centers of two point sets. As such,
the covariance matrix of the alignment error is used for
point matching in the presence of missing or extraneous
structures [39]. Since the size of the covariance matrix is
square times the number of transformation parameters,
this method is efficient only when the transformation
has few parameters. In addition, the robust L2E es-
timator [32] is proposed for point matching based on
assumptions that the noise on the inliers is a Gaussian

with zero mean and uniform standard deviation. As
the above methods are developed based on stronger
assumptions (e.g., number of transformation parameters
and noise model), they may not perform well for large
datasets with a significant number of outliers.

Another category of point matching methods model
only spatial transformation. These methods are devel-
oped mainly based on distribution models of point sets.
The coherent point drift (CPD) method [34] formulates
point matching as fitting a Gaussian Mixture Model
(GMM) representing one point set to the other one.
Without directly finding point correspondence, Glaunes
et al. [14] formulate point matching as aligning two
weighted sums of Dirac measures representing two point
sets. Instead of using Dirac measures, GMMs are used
to represent point sets [19], and the L2 distance between
them is minimized for matching. The kernel correlation
point matching method [40] can be seen as a special
case of the Gaussian mixture based approach [19] and
its variant based on the log-exponential function [4].
Instead of directly aligning two distributions represent-
ing two point sets, Ho et al. [17] propose to match the
moments of distributions. This results in a system of
polynomial equations, which can be solved by algebraic
geometric techniques. However, this method is sensitive
to occlusions and outliers due to the use of moments. The
Schrödinger distance transformation is used to represent
point sets [11] and the point set registration problem
is converted into the task of computing the geodesic
distance between two points on a unit Hilbert sphere.
A common problem with the above methods is that the
one-to-one correspondence constraint is not enforced.
Hence, these methods tend to generate inaccurate match-
ing results for complex point sets.

Numerous methods have been developed for mod-
eling only point correspondence as a graph matching
problem. Both integer programming [25] and random
walk [7] methods have been developed for graph match-
ing. In addition, max pooling [8] is used to deal with
outliers. As only pairwise affinities between correspon-
dences, these method are less effective in coping with
large non-rigid deformations, such as scaling and shear.
To address this problem, tensor is used to encode affini-
ties between tuples of correspondences for invariance to
transformations such as similarity transformation [12].
However, the tensor power method does not handle
outliers well. Consequently, the tensor block coordinate
ascend method [35] is extended to deal with outliers
at the expense of large memory load. On the other
hand, Zheng et al. use relaxation labeling techniques to
preserve local neighborhood structures of graphs [44],
[24]. Nevertheless, these methods need to be initialized
by using the shape context features [2].

Methods have been developed to model point corre-
spondence as a Markov random field (MRF) problem.
Graphs with special topology suitable for optimiza-
tion by dynamic programming are designed to achieve
invariance to various types of transformations in [6].
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In [20], local lengths and orientations of shapes are
preserved via linear programming. This method is ex-
tended to be invariant to similarity transformation [22],
[21] by explicitly modeling rotation and scaling between
two point sets, and affine invariant [27] based on the
local linear embedding algorithm [38]. To address the
problem of rotation invariance for shape matching in
cluttered scenes, fan-shaped graphs are introduced [28],
[31] where the elongated edges are used to determine
the orientations of point sets.

Concave Optimization: For feature matching, Maciel
and Costeira [33] convert a correspondence problem to
an equivalent concave optimization task. However, it is
difficult to solve the concave problem due to lack of good
structures for optimization. In contrast, the proposed
formulation enforces low rank properties, thereby ac-
commodating large scale global optimization techniques.

Branch-and-bound: BnB methods have been widely
used in vision and learning problems for global opti-
mization. While it has been used to recover 3D rigid
transformation [36], the point-to-point, point-to-line or
point-to-plane correspondence needs to be known a pri-
ori, which limits the application domain of this method.
In [37], BnB technique is used to optimize the RPM
objective function, where branching over the correspon-
dence variables and branching over the transformation
variables are both considered. However, this method is
developed for small 2D datasets, and the extension to 3D
or higher dimensional problems is not trivial due to the
higher dimensionality of the search space. Recently, BnB
techniques have been used to optimize the ICP objective
function [41] by exploiting the special structure of the
geometry of 3D rigid motions. However, this method can
only be used to recover rotation as well as translation
from point sets (rather than scale).

For robust geometry estimation, a BnB algorithm [26]
for consensus set maximization is developed to deter-
mine the best transformation by maximizing the number
of inliers. In addition, this method has been applied to
correspondence and grouping problems [1]. However,
it is computationally expensive to solve the resulting
bounding problems, due to lack of efficient optimiza-
tion techniques. In contrast, the proposed algorithm is
efficient partly due to the linear assignment formulation
of the lower bounding problem, which can be solved
efficiently.

Problem Context: Early results of this work are reported
in [29] where a concave quadratic objective function for
point correspondence is proposed and solved with a BnB
method. In this work, we propose a branch-and-bound
algorithm and a fast lower bounding scheme, which
together significantly increase the efficiency of the previ-
ous work, analyze the developed BnB algorithm, discuss
the impact of the regularization term on convergence,
and present extensive experimental results as well as
discussions. An extension of [29] to deal with outliers

in both point sets is proposed in [30]. However, the
objective function of [30] is not separable and thus the
search space is larger than that of the proposed algorithm
in this work. In addition, the lower bounding function
of [30] can only be constructed for simplexes instead
of rectangles, which results in looser bound and slower
convergence than those of this work.

3 ENERGY FUNCTION OF RPM
Since our energy function originates from the en-
ergy function of RPM [10], in this section we briefly
review the formulation of RPM. Suppose there are
two point sets in Rd to be matched, the model
set X ={xi, i=1, . . . , nx} with point xi=

[
x1
i , . . . , x

d
i

]>,
and the scene set Y ={yj , j = 1, . . . , ny} with point
yj=

[
y1
j , . . . , y

d
j

]>
. To solve this problem, the RPM

method jointly estimates transformation parameters and
point correspondence by formulating point matching as
a mixed linear assignment least square problem [10]:

min E(P,θ) =
∑
i,j

pij‖yj − T (xi|θ)‖22 + g(θ) (1)

s.t. P1ny ≤ 1nx , 1>nxP ≤ 1>ny , P ≥ 0 (2)

Here ‖ · ‖2 denotes the l2-norm of a vector. P = {pij}
denotes a correspondence matrix with pij = 1 if there
is a match between xi and yj and 0 otherwise. In
addition, 1nx denotes an nx-dimensional vector of all
ones, T (·|θ) describes a spatial transformation with a
parameter vector θ, and g(θ) is a regularizer on θ. To
solve problem (1), (2), the RPM method relaxes P to
be fuzzily valued and uses deterministic annealing for
optimization. However, the RPM method is less robust
to outliers due to the adopted heuristic minimization
scheme. Based on (1), in the next section we present a
new energy function that is more amenable to global
optimization.

4 PROPOSED ENERGY FUNCTION
In this section, we derive a new energy function based
on the energy function of RPM. To make this problem
tractable, we assume that the spatial transformation
T (xi|θ) is linear with respect to its parameters θ, i.e.,
T (xi|θ) = J(xi)θ, where J(xi) is the Jacobian matrix.
Examples of the Jacobian matrix include (19), (21) and
(23) for 2D and 3D point matching described in Section
6. We consider the following regularization form on θ:
g(θ) = (θ− θ0)>H(θ− θ0)− θ>0 Hθ0 = θ>Hθ− 2θ>0 Hθ,
i.e., θ is required to be close to a constant vector θ0.
Here H is a positive semidefinite matrix, whose entries
represent the weights assigned to the elements of θ.

With the above assumptions, the energy function (1)
takes the following form:

E(P,θ) =
∑
i,j

pij‖yj − J(xi)θ‖22 + θ>Hθ − 2θ>0 Hθ

=θ>[J>(diag(P1ny )⊗ Id)J +H]θ + 1>nxPz

− 2θ>[J>(P ⊗ Id)y +Hθ0] (3)
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where J ,
[
J>(x1), . . . , J>(xnx)

]>, y ,
[
y>1 , . . . ,y

>
ny

]>
and z ,

[
‖y1‖22, . . . , ‖yny‖22

]>. In addition, the function
diag(·) converts a vector into a diagonal matrix, Id
denotes the d-dimensional identity matrix, and ⊗ is the
Kronecker product.

It is difficult to optimize (3) as the first term is a cubic
polynomial in P and θ. However, adding the constraint
P1ny = 1nx simplifies it to a quadratic polynomial in P
and θ, which is easier to optimize.

Therefore, we add the assumption P1ny = 1nx to
our formulation. This constraint has a natural physical
meaning: each model point should have a counterpart
in the scene set, namely, the model shape should not be
occluded. This constraint is also widely adopted in the
literature, especially by methods for detecting objects in
a scene [20], [31].

By enforcing the constraint P1ny = 1nx in (2), we
have:

P1ny = 1nx , 1>nxP ≤ 1>ny , P ≥ 0 (4)

The constraints in (4) satisfy the total unimodularity
property [33], which means that the vertices of the
polytope (i.e., bounded polyhedron) determined by (4)
have integer valued coordinates. By taking into account
0 ≤ pij ≤ 1, the coordinates of the vertices are actually
binary valued as 0 or 1.

With the constraint P1ny = 1nx , the energy function
E becomes quadratic:

E(P,θ) =θ>(J>J +H)θ − 2θ>[J>(P ⊗ Id)y +Hθ0]

+ 1>nxPz (5)

Given the correspondence matrix P , E is a convex
quadratic function of θ. Therefore, the minimum solution
θ̂ of E can be obtained in closed form by letting ∂E

∂θ = 0,
i.e.,

θ̂ = (J>J +H)−1
[
J>(P ⊗ Id)y +Hθ0

]
(6)

By substituting θ̂ back into (5), the variable θ is elimi-
nated and we arrive at an energy function with only one
variable P ,

E(P ) =− y>(P ⊗ Id)>J(J>J +H)−1J>(P ⊗ Id)y
− 2θ>0 H(J>J +H)−1J>(P ⊗ Id)y + 1>nxPz (7)

The form of E is cluttered. To change it into a neat
form, we compute the Cholesky factorization [15] of the
positive definite matrix (J>J +H)−1 as

U>U = (J>J +H)−1 (8)

where U is an upper triangular matrix. By substituting
(8) into (7), we obtain

E(P ) =− ‖UJ>(P ⊗ Id)y‖22
− 2θ>0 H(J>J +H)−1J>(P ⊗ Id)y + 1>nxPz (9)

Clearly E is a concave quadratic function of P and we
have the following proposition.

Proposition 1: There exists a binary solution for any
local minimum (including the global minimum) of func-
tion E(P ) under the constraints in (4).

Proof: We already show that E is concave. It is well
known that any local minimum (including the global
minimum) of a concave function over a polytope can be
attained at one of its vertices. The proposition follows
by combining this result with the total unimodularity of
constraints in (4) as stated previously.

This proposition implies that minimization of our
objective function by simplex-like algorithms results in
a binary valued solution. This is of great importance, as
it avoids the need for discretizing solutions, which can
cause errors and lead to inaccurate estimates [20], [22],
[27].

For convenience of discussion in the following, the
matrix P needs first to be vectorized. Contrary to con-
vention, we define the vectorization of a matrix as the
concatenation of its rows instead of its columns:

vec(P ) = [p11, . . . , p1ny , . . . , pnx1, . . . , pnxny ]>

Let p = vec(P ). Based on the formula vec(B1B2B3) =
(B1⊗B>3 )vec(B2) for any matrices B1, B2 and B3, E can
be expressed in terms of vector p as:

E(p) = −‖
[
(UJ>)⊗ y>

]
Wp‖22

+
{
1>nx ⊗ z> − 2

[(
θ>0 H(J>J +H)−1J>

)
⊗ y>

]
W
}
p

(10)

Here the nxnyd2 × nxny matrix

W , Inx ⊗
[
Iny ⊗ (e1

d)
>, . . . , Iny ⊗ (edd)

>]>
satisfies vec(P ⊗ Id) = Wvec(P ), where the d-
dimensional vector eid has a single unity element at
coordinate i. In addition, W is a large but sparse matrix
and can be implemented using the function speye in
Matlab.

Define the nθ×nxny matrix A=
[
(UJ>)⊗ y>

]
W where

nθ denotes the dimension of θ, and the nxny-vector b ={
1>nx ⊗ z> − 2

[(
θ>0 H(J>J +H)−1J>

)
⊗ y>

]
W
}>

,
then the above energy function can be written in a
concise form as:

E(p) = −‖Ap‖22 + b>p (11)

A key feature with this function is that its Hessian matrix
−2A>A has the same rank as that of A, which in turn
has a rank equal to nθ. For transformations such as 2D
similarity and 2D/3D affine transformations, the rank is
low. This is the key feature for the proposed algorithm
to be applicable to large scale problems. In the next
section, we present an efficient and large scale global
optimization algorithm to minimize this function.

5 OPTIMIZATION

It is well known that a quadratic function can be re-
duced to a separable form by a linear transformation
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of its variables. In this work, the normal rectangular
algorithm [18], a BnB procedure specifically tailored to
separable functions, is used to minimize the energy
function (11).

We first reduce (11) to a separable form via eigen
decomposition, and derive the convex envelope (i.e., the
tightest convex underestimator) of the resulting function
taken over a rectangle (i.e., a set of type {ti|ri ≤ ti ≤
si, i = 1 . . . , l}). We next present the bisection scheme to
divide a rectangle and propose a variant of the normal
rectangle algorithm [18] for minimizing our energy func-
tion. To address the complexity issue associated with the
above algorithm, where computation of the lower bound
is the bottleneck, we formulate a new lower bounding
problem that can be solved more efficiently. In addition,
we discuss the choice of tolerance error and analyze the
effect of the regularization term on convergence.

5.1 Separable Form of the Energy Function

A quadratic function can be converted into a separable
form by a linear transformation of its variables, and
the choice of the transformation is based on the eigen
decomposition of the quadratic part of the function.
The quadratic part of (11) is −p>A>Ap. Since the di-
mensionality of A>A is nxny × nxny , which is high in
reality, directly applying eigen decomposition to A>A
is impractical. Instead, we present an efficient way of
finding the nonzero eigenvalues and eigenvectors of
A>A. Let the QR decomposition of A> be:

QR = A>

where R is an nθ × nθ upper triangular matrix and the
columns of the nxny ×nθ matrix Q are orthogonal unity
vectors, i.e., Q>Q = Inθ . Thus, we have

A>A = QRR>Q>

Denote the eigenvalues and eigenvectors of RR> as λi
and uRi , i = 1, . . . , nθ, respectively. The nonzero eigen-
values and eigenvectors of A>A are λi and ui = QuRi ,
i = 1, · · · , nθ, respectively. Thus, we have the separable
form of the quadratic part of (11) as:

− p>A>Ap = −
nθ∑
i=1

λi(u
>
i p)2 (12)

5.2 Convex Envelope of the Energy Function

With (12), the energy function E has the following
separable form:

E(p) = −
nθ∑
i=1

λi(u
>
i p)2 + b>p (13)

For a separable function over a rectangle, its convex
envelope can be readily obtained based on the following
proposition [18].

−t2

−(r + s)t+ rs

sr

Fig. 1. The convex envelope −(r+s)t+rs of the function
−t2 taken over an interval [r, s].

Proposition 2: The convex envelope of a separable
function

∑l
i=1 fi(ti) taken over a rectangle M = {ti|ri ≤

ti ≤ si, i = 1 . . . , l} is equal to the sum of the convex
envelopes of its components fi(ti) taken over the corre-
sponding intervals [ri, si], i = 1, . . . , l.

The convex envelope of f(t) = −t2 taken over an
interval [r, s] is an affine function that agrees with f at
the endpoints of this interval: fM (t) = −(r + s)t + rs,
as illustrated in Fig. 1. Based on this fact and the above
proposition, we have the convex envelope of function
(13) taken over a rectangle M = {p|ri ≤ u>i p ≤ si, i =
1, . . . , nθ} as

EM (p) =−
nθ∑
i=1

λi(ri + si)u
>
i p +

nθ∑
i=1

λirisi + b>p (14)

This function is used for computing the lower bounds
in the proposed BnB algorithm.

5.3 Bisection of a Rectangle
In the branching phase of our BnB algorithm, a rectangle
M = {p|ri ≤ u>i p ≤ si, i = 1, . . . , nθ} is divided
into two subrectangles. Toward that, we need to decide
the dimension along which to divide the rectangle, and
along a chosen dimension where to divide the rectangle.
In this work, we use the bisection scheme [18] to address
these issues, due to its simplicity and effectiveness. For
bisection, the second issue is addressed by choosing the
midpoint as the dividing location, and the first issue is
addressed based on the following proposition [18].

Proposition 3: For r ≤ t ≤ s, the difference between
f(t) = −t2 and its convex envelope fM (t) = −(r+s)t+rs
satisfies:

max{f(t)− fM (t), r ≤ t ≤ s} =
1

4
(s− r)2

Proof: It follows that

f(t)− fM (t) = −t2 + (r + s)t− rs = (t− r)(s− t)

Since the sum of t− r and s− t is a constant, their prod-
uct is maximum when they equal, and the maximum
product is 1

4 (s− r)2.
Based on this result, the dimension along which to

subdivide a rectangle is chosen as j ∈ arg maxi
1
4λi(si −

ri)
2 in order to guarantee the convergence of our BnB

algorithm [18]. Given the optimal splitting dimension
j, two subrectangles are generated from this bisection
scheme: M1 = {p ∈ M |u>j p ≤ 1

2 (rj + sj)} and M2 =
{p ∈M |u>j p ≥ 1

2 (rj + sj)}.



6

5.4 Normal Rectangular Subdivision

We propose a branch-and-bound algorithm based on
normal rectangular subdivision [18] to find the global
ε-minimum solution of E (i.e., a solution with function
value no larger than ε from the global minimum of E).
During initialization, the bounding rectangle (i.e., the
smallest rectangle containing the feasible region Ω) is
computed (step 3 in Algorithm 1). In each iteration of
the algorithm, multiple rectangles yielding the lowest
lower bounds among all the rectangles are subdivided
to improve the lower bound of E for Ω (steps 9 to 10 in
Algorithm 1). Meanwhile, the upper bound is updated
by evaluating E with solutions of the linear programs
used to compute the lower bounds (step 6 in Algorithm
1). The main steps of the algorithm are summarized in
Algorithm 1.

Different from the standard normal rectangular algo-
rithm, where in each iteration only the rectangle yielding
the lower bound for Ω is subdivided, in this work more
rectangles are subdivided (step 9 in Algorithm 1 where
we choose n2 = 2n1 in this paper), since the globally
optimal solution may not lie in the rectangle yielding
the lower bound for Ω; and using more rectangles can
increase the chances of subdividing the rectangle con-
taining the globally optimal solution, thereby improving
convergence speed. Step 4 of Algorithm 1 ensures there
is a sufficient number of rectangles for subdivision in
step 9. Note that problem (16) can be solved indepen-
dently for rectangles in Nk, and thus it can be imple-
mented to run in parallel. This can further speed up
the proposed algorithm. However, for fair comparisons
with other methods, we do not pursue this route in the
present paper. Also note that the problems in (15) are
linear assignment problems that can be efficiently solved
by the Jonker-Volgenant algorithm [23].

We show that the lower bound of our algorithm
is always improved in the iterations in the following
proposition.

Proposition 4: The lower bound of E for the feasible
region Ω is monotonically non-decreasing with the in-
crease of iterations.

Proof: The lower bound of E for Ω at iteration k
is chosen as the lowest of all the lower bounds corre-
sponding to the rectangles in Mk. Assume Mk is the
rectangle yielding this bound. At iteration k + 1, there
are three cases for the rectangle yielding the lower bound
for Ω: 1) one of the two rectangles Mki, i ∈ {1, 2} from
the subdivision of Mk; 2) one of the two rectangles Mli,
i ∈ {1, 2} from the subdivision of Ml, which does not
yield the lower bound for Ω but is divided at iteration
k; and 3) rectangle M ′l , which is not divided at iteration
k.

If the first case holds, since Mki ⊂ Mk, we have
EMki

(p) ≥ EMk
(p) for p ∈Mki because of the concavity

Algorithm 1: Normal rectangular algorithm for min-
imizing E

1 Initialization
2 Select tolerance error ε > 0.
3 Solve the 2nθ linear programs

min
p∈Ω

u>i p, max
p∈Ω

u>i p (15)

to obtain the basic optimal solutions p0i, p̄0i and
the optimal values ηi, η̄i. Clearly,
Ω ⊂M0 = {p|ηi ≤ u>i p ≤ η̄i, i = 1, . . . , nθ}. Let
p0 = arg min{E(p0i), E(p̄0i), i = 1, . . . , nθ}.

4 Recursively divide M0 into 2n1 subrectangles M0i,
i = 1, . . . , 2n1 based on the bisection rule stated in
Section 5.3. Let M1 = N1 = {M0i, i = 1, . . . , 2n1},
where Mk and Nk denote the collection of all
rectangles and the collection of active rectangles at
iteration k, respectively.

5 for k = 1, 2, . . . do
6 For each rectangle M ∈ Nk, construct the convex

envelope EM (p) according to (14), and solve
the linear program

minEM (p) (16)
s.t. p ∈ Ω ∩M

to obtain a basic optimal solution ω(M) and
the optimal value β(M). β(M) is the lower
bound for region Ω ∩M .

7 Let pk equal the best among all feasible
solutions encountered so far: pk−1 and all
ω(M),M ∈ Nk. Delete all rectangles M ∈Mk

such that β(M) ≥ E(pk)− ε. Let Rk be the
remaining collection of rectangles.

8 If Rk = ∅, terminate: pk is the global ε-minimum
solution.

9 Select n3 , min(|Rk|, n2) rectangles Mki ∈ Rk,
i = 1, . . . , n3 yielding the lowest lower bounds
and divide Mki into two subrectangles Mki1,
Mki2 based on the bisection rule stated in
Section 5.3. Here | · | denotes the cardinality of
a set.

10 Let Nk+1 = {Mki1,Mki2, i = 1, . . . , n3} and
Mk+1 = (Rk\{Mki, i = 1, . . . , n3}) ∪Nk+1.

11 end

of E, as illustrated in Fig. 2. Consequently,

min
p∈Ω∩Mki

EMki
(p) ≥ min

p∈Ω∩Mki

EMk
(p) ≥ min

p∈Ω∩Mk

EMk
(p)

where the second inequality holds since Mki ⊂ Mk.
Thus, we have β(Mki) ≥ β(Mk).

If the second case is true, we have β(Mli) ≥ β(Ml) ≥
β(Mk), where the first inequality holds as β(Mki) ≥
β(Mk) in case 1, and the second inequality holds since
Mk is the lower bound for Ω at iteration k according to
the assumption.
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E(p)

EMk
(p)

EMki
(p)

Mki

Mk

Fig. 2. If Mki ⊂ Mk, we have EMki
(p) ≥ EMk

(p) for
p ∈Mki because of the concavity of E.

If the third case holds, we have β(M ′l ) ≥ β(Mk) as
β(Ml) ≥ β(Mk) in case 2.

Thus, in each case, the lower bound for Ω at iteration
k + 1 is not smaller than that at iteration k.

As an instance of the BnB approaches, the worst case
time complexity of the proposed algorithm is exponen-
tial. Nevertheless, it is well known that the convergence
speed of a BnB algorithm mainly depends on the di-
mension of the search space. That is, a BnB algorithm
converges faster when the search space is smaller. For
the problems considered in this work, the search space
has the dimension of nθ, which is low and independent
of the sizes of two point sets. Thus, our algorithm
converges quickly and scales well with problem size, as
opposed to existing methods [37].

5.5 Fast Lower Bounding Scheme

The proposed BnB algorithm contains three basic sub-
routines: branching, and finding upper and lower
bounds. It is clear that the lower bounding subroutine
(16) is computationally more expensive than the other
two subroutines, since it is a generic linear program for
which there are no efficient algorithms. To address this
issue, we propose a novel lower bounding scheme that
is computationally efficient and retains the tightness of
the original bounding scheme.

A natural idea to find lower bounds efficiently is to
relax the constraint p ∈ Ω ∩M to p ∈ Ω, such that we
have the following problem:

minEM (p) (17)
s.t. p ∈ Ω

This is a linear assignment problem that can be efficiently
solved by the Jonker-Volgenant algorithm [23]. The
following proposition shows the validity of (17) for
computing the lower bound of E for Ω.

Proposition 5: The optimal function value of (17) is a
lower bound of E for region Ω ∩M .

Proof: Problem (17) is a relaxed problem of (16)
by removing the constraint p ∈ M . Thus, the optimal
function value of (17) is not greater than that of (16),
whereas solving (16) yields a lower bound of E for the
region Ω ∩M .

In the following, we refer to the methods based on
(17) or (16) as the fast bounding or original schemes,
respectively.

{p|EMk
(p) = E(p)}

Mk

EMk
(p)

E(p)

Fig. 3. Ellipse {p|EMk
(p) = E(p)} is the circumscribed

ellipse of rectangle Mk and their centers also coincides.

What remains is to show whether the lower bound
by the fast bounding scheme is as tight as the original
scheme. At iteration k of our algorithm, let’s suppose
that Mk = {p|rki ≤ u>i p ≤ ski , i = 1, . . . , nθ} ∈ Mk

is the rectangle yielding the lower bound for Ω when
using the fast bounding scheme. Clearly, there are two
possibilities for the location of the optimal solution
p̂ = arg minp∈ΩEMk

(p): either p̂ ∈ {p|EMk
(p) ≤ E(p)}

or p̂ ∈ {p|EMk
(p) > E(p)}, as illustrated in Fig. 3. We

note that the latter case does not occur, since it means
EMk

(p̂) is strictly larger than the minimum of E over
Ω, contradicting the assumption that EMk

(p̂) is a lower
bound of E for Ω.

Thus, the only possible case is p̂ ∈ {p|EMk
(p) ≤

E(p)}. By substituting the formulas of EMk
and E into

this inequality, we have:
nθ∑
i=1

λi(u
>
i p−

rki + ski
2

)2 ≤ 1

4

nθ∑
i=1

λi(s
k
i − rki )2

Since λi > 0 for all i, we conclude that this region is
an ellipsoid with a center coinciding with that of Mk.
In addition, the vertices of Mk satisfy this formula with
equality. Therefore, the ellipse {p|EMk

(p) = E(p)} is
the circumscribed ellipse of rectangle Mk, as illustrated
in Fig. 3. The length of the j-th axis of the ellipsoid is
1
2

√∑
i λi(s

k
i−rki )2

λj
, which is determined by lengths |ski−rki |

of all edges of rectangle Mk. If the length of the longest
edge of Mk decreases to 0, the lengths of all axes of the
ellipsoid also decrease to 0, and the lower bound for
Ω by the fast bounding scheme and minp∈Ω∩Mk

EMk
(p)

will be close to each other. This is the case with our
algorithm since the rectangle yielding the lower bound
for Ω is chosen to be further subdivided in each iteration
and thus shrinks with the increase of iterations.

Regarding the difference between the lower bounds
for Ω by the two bounding schemes, we have the
following proposition.

Proposition 6: At iteration k, assume the same set Mk

of rectangles is used by the two bounding schemes, then
the lower bound for Ω by the original scheme is not
smaller than that by the fast scheme, and not larger than
minp∈Ω∩Mk

EMk
(p).

Proof: Assume M∗k is the rectangle yielding the lower
bound for Ω when using the original bounding scheme,
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we have minp∈Ω∩M∗
k
EM∗

k
(p) ≤ minp∈Ω∩Mk

EMk
(p).

Thus, the second part of the proposition is proved.
For the first part of the proposition, it is clear that

minp∈ΩEM∗
k
(p) ≤ minp∈Ω∩M∗

k
EM∗

k
(p) since Ω∩M∗k ⊂ Ω.

We also have minp∈ΩEMk
(p) ≤ minp∈ΩEM∗

k
(p) since

Mk is the rectangle yielding the lower bound for Ω
when using the fast bounding scheme. It follows that
minp∈ΩEMk

(p) ≤ minp∈Ω∩M∗
k
EM∗

k
(p). Thus, the first

part of the proposition is proved.
Based on the above analysis, we show that the dif-

ference between the lower bounds by the two schemes
decreases with the increase of iterations. Therefore, the
fast bounding scheme can serve as a good candidate for
computing the lower bound in the proposed algorithm.
Experimental results in Section 6.1.2 also show that
for practical problems, the lower bounds by the two
schemes differ only slightly. We note that Proposition 4
no longer holds for the fast bounding scheme. Neverthe-
less, since the lower bound by the fast bounding scheme
is a close approximation of that by the original scheme,
the properties of the original scheme are all retained.

5.6 Tolerance Error
The tolerance error ε serves to determine when to termi-
nate our algorithm. It is the maximum permitted error
between the upper and lower bounds of the energy func-
tion. Here we analyze the form of the energy function
to determine its value.

When two point sets are matched, the energy function
(3) can be interpreted as the sum of squared distances
between the model points and their matched scene
points as well as the error contributed by regularization
of the spatial transformation. If the latter part can be
ignored (this is the case when there is no regularization
on transformation or when the actual transformation is
close to the expected transformation) and if we require
that the average distance between each model point and
its matched scene point should not exceed εd, then the
tolerance error ε should be set as nxε2d.

5.7 Weight Matrix H and Convergence
The use of the weight matrix H in the energy function
E helps increase the convergence rate of the proposed
algorithm. From the formula of E in (8) and (9), with
the increase of the norm of H , the relative weight of the
quadratic term over the linear terms in E decreases and
E becomes less concave and more linear. Thus, the differ-
ence between E and its lower bounding function (which
is linear) decreases, which leads to better convergence of
the proposed algorithm. Experimental results in Section
6.2.1 show that the run time of the proposed algorithm
decreases nearly logarithmically with the increase of the
norm of H .

6 EXPERIMENTS

We implement the proposed APM algorithm and state-
of-the-art methods in Matlab on a computer with 3.3

GHz CPU and 16 GB RAM. For the evaluated methods
that generate only point correspondence, the affine trans-
formation is used to model non-rigid spatial mapping
between two point sets. The matching error metric is
the average Euclidean distance between the transformed
model points and their ground truth data. We set n1

to be 9 for the proposed algorithm (the reason for this
choice is given in Section 6.1.3). In the following, we
distinguish the cases that θ is not regularized (i.e., we
set the weight matrix H = 0) and regularized. For the
former case, our method is invariant to the correspond-
ing transformation. The source code and datasets used
in the experiments are available at http://www4.comp.
polyu.edu.hk/∼cslzhang/APM.htm.

6.1 Case One: θ is not Regularized

Both 2D similarity and affine transformations are consid-
ered for evaluation. A 2D similarity transformation has
the form:

T (xi|θ) =

[
θ1 −θ2

θ2 θ1

] [
x1
i

x2
i

]
+

[
θ3

θ4

]
= J(xi)θ (18)

where the parameters θ consist of
[
θ1, . . . , θ4

]> and
[θ3, θ4]> describe translation and θ1 = s cos(φ), θ2 =
s sin(φ). Here s denotes scale and φ denotes rotation
angle. Therefore the Jacobian matrix is

J(xi) =

[
x1
i −x2

i 1 0
x2
i x1

i 0 1

]
(19)

A 2D affine transformation has the form:

T (xi|θ) =

[
θ1 θ2

θ3 θ4

] [
x1
i

x2
i

]
+

[
θ5

θ6

]
= J(xi)θ (20)

where the parameter vector θ consists of
[
θ1, . . . , θ6

]>
with [θ1, . . . , θ4]> and [θ5, θ6]> being linear transforma-
tion and translation parts, respectively. Therefore the
Jacobian matrix is

J(xi) =

[
x1
i x2

i 0 0 1 0
0 0 x1

i x2
i 0 1

]
(21)

6.1.1 Experiments on Synthetic Data
We compare APM with state-of-the-art methods in-
cluding minimum spanning tree induced triangulation
(MSTT) [31], integer projected fixed-point (IPFP) [25],
reweighted random walk (RRWM) [7], max pooling
matching (MPM) [8] and tensor matching (TM) [12]
schemes. Note these methods are rotation invariant and
MSTT is globally optimal.

We first use the synthetic data set by Chui and Ran-
garajan [10] to evaluate the robustness of these methods
to non-rigid deformation and positional noise. In each
test, the model shape is subject to random rotation
and one of the disturbances to generate a scene point
set (for the noise test, a moderate degree of non-rigid
deformation is also included). Fig. 4 shows the model
shapes (a tropical fish and a Chinese character) and

http://www4.comp.polyu.edu.hk/~cslzhang/APM.htm
http://www4.comp.polyu.edu.hk/~cslzhang/APM.htm


9

Fig. 4. First 4 columns: model point sets (left column)
and examples of scene point sets in the deformation,
noise and outlier tests, respectively (column 2 to 4). Last 2
columns: examples of model (column 5) and scene (right
column) point sets in the clutter test.

examples of scene point sets in the two categories of
tests.

We then evaluate the robustness of these methods to
outliers. Points drawn from a normal distribution with
unit variance are added to randomly rotated and mod-
erately non-rigidly deformed model shape to generate
the scene point set, as illustrated in the fourth column
of Fig. 4. Here the mean of the normal distribution is
drawn from another standard normal distribution.

We next evaluate the robustness of these methods
to clutter. We clip away a disc region of points from
the prototype shape to generate the model point set
(the clipped points correspond to clutter). The randomly
rotated and moderately non-rigidly deformed prototype
shape is used as the scene point set. The two shapes (the
fish and the Chinese character) are used as the prototype
shape, respectively. Fig. 4 shows examples of model and
scene point sets (last two columns).

Fig. 5 shows the average matching errors over 100
random trials. The APM algorithm performs well, par-
ticularly for the outlier test where the errors of APM
using affine transformation are close to zero. In contrast,
the second order graph matching methods (i.e., RRWM,
IPFP and MPM) are not robust to deformation, and
the tensor based graph matching method is not robust
to outliers. For different transformation choices of the
APM algorithm, the one using an affine transformation
performs better than when using a similarity transforma-
tion. This is because an affine transformation accounts
for non-rigid deformation well, and the proposed algo-
rithm is globally ε-optimal, guaranteeing to find good
solutions when εd is small.

Fig. 6 shows the results of APM with respect to differ-
ent values of εd for the fish test. The APM algorithm with
a similarity transformation is less sensitive to different
choices of εd than that using affine transformation. This
can be explained by the fact that the proposed globally
ε-optimal algorithm is not guaranteed to find good so-
lutions when εd is large. In such situations, the transfor-
mation function plays a more important role in shaping
the matching results. The transformation function with
fewer parameters (e.g., similarity transformation) can
more effectively constrain matching results to be regular
and desirable.

Table 1 lists the average run time of the evaluated

TABLE 1
Average run time (in seconds).

Deformation Noise Outliers Clutter
APM (simi, 0.1) 0.4 0.3 11.6 0.4
APM (simi, 0.2) 0.4 0.3 3.4 0.2
APM (simi, 0.3) 0.5 0.4 1.6 0.2
APM (aff, 0.1) 0.4 0.4 828.2 13.3
APM (aff, 0.2) 0.5 0.4 114.0 1.2
APM (aff, 0.3) 0.5 0.5 28.1 0.3

MSTT 11.9 12.8 29.3 3.4
RRWM 40.5 37.7 119.9 6.5

IPFP 72.4 54.3 157.0 6.5
MPM 13.0 10.9 52.2 24.7
TM 5.7 5.9 43.5 2.4

methods. The APM algorithm with a similarity trans-
formation is computationally efficient regardless of the
choices of εd in all of the tests. It is worth noticing
that for all but the outlier test, the APM algorithm
with a similarity transformation is at least one order
of magnitude faster than the other methods. Similar
observations can be made for the APM algorithm with
an affine transformation on the deformation and noise
tests. For the outlier test, the APM method with an
affine transformation is considerably slower than when
using a similarity transformation, as more parameters
are involved.

6.1.2 Effectiveness of the Fast Bounding Scheme
To evaluate the effectiveness of the fast bounding scheme
(17) in comparison to the original scheme (16), we use the
outlier test as described in Section 6.1.1 for experiments,
as it has a large number of points. The outlier to data
ratio is set to be 0.5 and a similarity transformation is
used by our algorithm. We set n1 to be 0 to eliminate
the influence of speed-up improvement brought by sub-
dividing multiple rectangles in Algorithm 1.

Fig. 7 shows the results. The lower bounds by the
two schemes are the same initially and become slightly
different with the increase of iterations. This demon-
strates the effectiveness of the fast bounding scheme. The
average run time of the proposed algorithm through 500
iterations using the original and fast bounding schemes
are 5571.5 and 11.61 seconds, respectively. This 480-
fold speed-up improvement demonstrates high compu-
tational efficiency of the fast bounding scheme.

6.1.3 Choice of n1

To analyze the relationship between the choice of n1 and
the speed of APM, we use the outlier test as described
in Section 6.1.1 for experiments. Fig. 8 shows the results
where n1 = 0 corresponds to the case that only one rect-
angle is subdivided in each iteration of our algorithm.
When an affine transformation is used, the speed-up
improvement is significant. With the increase of n1, the
run time of APM decreases quickly, particularly for large
size problems (e.g., 15-fold speed-up improvement can
be achieved when outlier to data ratio is 1.5), until n1

reaches a certain value (e.g., 6 when the outlier to data
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Fig. 5. Average matching errors by APM with εd = 0.1 and other methods in the tests of deformation, noise, outliers
and clutter.
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Fig. 6. Average matching error by APM with respect to
different choices of εd in the tests of deformation, noise,
outlier and clutter for the fish shape.
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Fig. 7. Average upper and lower bounds for the feasible
region by the two bounding schemes (left column) and
average differences of the lower bounds (right column) in
each iteration of our algorithm.

ratio is 1.5). When a similarity transformation is used, the
APM algorithm achieves the fastest speed when n1 = 9.
When n1 > 9, the run time of APM increases with the
increase of n1. This is because the search space of the
proposed algorithm in the case of similarity transforma-
tion is small and hence overly partitioning the search
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Fig. 8. Average run time of APM with respect to different
choices of n1 in the outlier test for the fish shape.

space is not effective. Based on the above analysis, we
choose n1 = 9 for the proposed APM algorithm in this
paper.

6.1.4 Experiments on Images
We evaluate the state-of-the-art methods and the APM
algorithm on point sets manually extracted from four
categories from the Caltech-256 [16] and VOC2007 image
databases [13], as illustrated in the left panel of Fig. 9.
The middle and right panels of Fig. 9 show the match-
ing accuracy (fraction of correct matches) and errors
by the methods. Overall, the APM algorithm performs
favorably against other methods in terms of matching
accuracy. Some matching results by different methods
are shown in Fig. 10.

6.2 Case Two: θ is Regularized
When θ is regularized, the proposed APM algorithm
becomes transformation variant. However, the matching
accuracy and robustness to disturbances can be im-
proved, since the prior of θ can be utilized. Efficiency
can also be further improved, since the weight matrix H
can be utilized for rapid convergence.

6.2.1 2D Point Matching
Both 2D similarity and affine transformations are con-
sidered for evaluation. For similarity transformation,
unless otherwise stated, we set the weight matrix H =
diag([1 1 0 0]), i.e., we only regularize the linear part. In
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Fig. 9. Left panel: images of motorbike, car, Eiffel Tower and revolver overlaid with manually extracted points. The
first image in each category is used to extract model points, and the remaining images are respectively used to extract
scene points. Middle and right panels: matching accuracy and errors by APM with εd = 1 and other methods.

Fig. 10. Examples of matching results by (from left to right column) APM using similarity and affine transformation,
MSTT, RRWM, IPFP, MPM and TM on images (from top to bottom) of motorbike, car, Eiffel Tower and revolver. Here,
blue lines indicate correct matches, and red lines indicate incorrect matches.

addition, we set θ0 = [1 0 0 0]>, i.e., the linear part of
the transformation should be close to the identity matrix.
For affine transformation, unless otherwise stated, we
set H = diag([1 1 1 1 0 0]), i.e., we only regularize
the linear part of the transformation. In addition, we
set θ0 = [1 0 0 1 0 0]>, i.e., the linear part of the
transformation should be close to the identity matrix.

We compare the APM algorithm with the state-of-
the-art RPM [10], CPD [34], Gaussian mixture model
based registration (GMMREG) [19] and local neighbor-
hood structure (LNS) preserving [44] methods using
the original source codes. Affine transformation is used
for CPD and GMMREG, while both affine and thin
plate spline (TPS) transformations are considered for
RPM. For fair comparison, we adapt the original RPM
algorithm to make it also satisfy the constraints in (4). We
evaluate these methods in terms of robustness to non-
rigid deformation, positional noise, outliers and clutters
using the same experimental setup as in Section 6.1.1
except that there is no rotation between two point sets.
We also evaluate these methods in terms of robustness
to rotation changes between two point sets.

Fig. 11 shows the average matching errors over 100
random trials. The APM algorithm performs well par-
ticularly for the clutter test where the errors are close to
zero. We note that the RPM method using an affine trans-
formation does not perform well for deformation and
noise tests. In addition, the RPM method needs to use a
more complex transformation, TPS, to perform as well as
the APM algorithm using an affine transformation. The

APM algorithm using an affine transformation performs
better than when using a similarity transformation in the
deformation test, since an affine transformation better
accounts for non-rigid deformation.

Table 2 shows the average run time of the evaluated
methods. For all but the outlier test, the APM algorithm
using either similarity or affine transformation is as effi-
cient as the other methods. For the outlier test, the APM
algorithm with εd = 0.1 using an affine transformation is
less efficient than the other methods, as more parameters
are involved. Fig. 12 shows the average run time of the
APM algorithm versus the number of scene points for
the outlier test. The run time of the APM algorithm
increases almost linearly with the problem size. Fig. 13
shows the average run time of the APM algorithm versus
the spectral norm ‖H‖2 of the weight matrix H for the
outlier test (the outlier to data ratio is set to 1.5). We set H
to be diag([ω ω 0 0]) for a similarity transformation and
H to be diag([ω ω ω ω 0 0]) for an affine transformation,
where the parameter ω > 0. The run time of the APM
algorithm decreases nearly logarithmically with the in-
crease of ‖H‖2. The results show the regularization term
helps improve the convergence of the APM algorithm.

6.2.2 3D Point Matching
We consider 3D affine transformation for evaluation. A
3D affine transformation has the form:

T (xi|θ) =

θ1 θ2 θ3

θ4 θ5 θ6

θ7 θ8 θ9

x1
i

x2
i

x3
i

+

θ10

θ11

θ12

 = J(xi)θ (22)
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Fig. 11. Average matching errors by APM with εd = 0.1 and other methods in the tests of deformation, noise, outlier,
clutter and rotation.

TABLE 2
Average run time (in seconds).

Deformation Noise Outlier Clutter Rotation
APM (simi, 0.1) 0.6 0.5 6.8 0.3 0.5
APM (aff, 0.1) 0.5 0.4 119.1 0.6 0.5

RPM (aff) 1.2 0.8 1.4 0.3 0.3
RPM (TPS) 1.8 1.4 1.8 0.3 1.5

LNS 3.9 4.4 19.0 1.4 5.4
CPD 0.1 0.1 0.1 0.1 0.1

GMMREG 0.1 0.2 0.5 0.2 0.2
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Fig. 12. Average run time of APM with εd = 0.1 using
similarity (left) or affine (right) transformation with respect
to different number of scene points for the outlier test.

where the parameter vector θ consists of
[
θ1, . . . , θ12

]>
with [θ1, . . . , θ9]> being the linear part of the transforma-
tion and [θ10, . . . , θ12]> being the translation component.
Therefore the Jacobian matrix is

J(xi)=

x1
i x2

i x3
i 0 0 0 0 0 0 1 0 0

0 0 0 x1
i x2

i x3
i 0 0 0 0 1 0

0 0 0 0 0 0 x1
i x2

i x3
i 0 0 1


(23)

For the APM algorithm, we set the weight matrix H =
10 · diag([1, . . . , 1︸ ︷︷ ︸

9

, 0, 0, 0]), such that only the linear part

of the transformation is regularized. In addition, we set
θ0 = [1 0 0 0 1 0 0 0 1 0 0 0]> such that the linear part
of the transformation is close to the identity matrix.

We compare the APM algorithm with the state-of-the-
art methods, except for LNS, since it employs the shape
context feature descriptor [2], which is only applicable to
the 2D case. Affine transformation is used by the RPM,
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Fig. 13. Average run time of APM with εd = 0.1 using
similarity (left) or affine (right) transformation with respect
to different spectral norm of H for the outlier test.

CPD and GMMREG methods. In addition, we compare
APM with the Go-ICP method [41], which is globally
optimal and applicable to rigid registration problems.

We use the point sets (with cardinality ranging from
353 to 462) subsampled from 10 different shapes from
the Stanford 3D scanning repository (http://graphics.
stanford.edu/data/3Dscanrep/) and the AIM@SHAPE
shape repository (http://shapes.aimatshape.net/) as
shown in Fig. 14 for experiments. The experimental
setup for the deformation, noise and clutter tests is the
same as in Section 6.2.1. Fig. 15 shows examples of model
and scene point sets in these three tests. Fig. 16 shows the
average matching errors over 100 random trials (where
10 random trials are respectively conducted for each of
the 10 different shapes). Overall, the APM algorithm
performs well, particularly for the clutter test, where
the error remains almost unchanged with the increase of
severity of clutter. Fig. 17 shows examples of matching
results by different methods in the clutter test. Table 3
lists the average run time of the evaluated methods. The
APM algorithm is as efficient as the RPM method for
the deformation and noise tests. In contrast, the Go-ICP
scheme is not efficient for the deformation test.

7 CONCLUDING REMARKS

We proposed a novel point matching algorithm in this
paper. The proposed algorithm reduces the objective
function of the RPM method to a separable concave

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
http://shapes.aimatshape.net/
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Fig. 14. 3D shapes used for generating prototype point sets.

Fig. 15. Left 3 columns: an example of model (left col-
umn) and scene point sets (represented by mesh nodes)
in the deformation and noise tests, respectively (column
2 and 3). Right 2 columns: an example of model point
set (represented by red mesh nodes in column 4, green
mesh nodes correspond to clutter) and scene point set
(right column) in the clutter test.

TABLE 3
Average run time (in seconds).

Deformation Noise Clutter
APM (0.2) 17.5 10.9 25.8

RPM 13.8 8.2 3.2
Go-ICP 336.9 6.5 1.9

CPD 0.5 0.3 0.2
GMMREG 2.3 2.4 1.0

quadratic function with a few nonlinear terms, and
the optimal solution is computed by a normal rect-
angular branch-and-bound approach. By recasting the
lower bounding problem, we obtain a linear assignment
formulation that can be efficiently solved. The resulting
algorithm finds global optimal solutions, and scales well
with data size. Experimental results on both synthetic
and real data sets showed that the proposed algorithm
performs favorably in terms of robustness to distur-
bances and matching accuracy against state-of-the-art
methods with comparable computational load.
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