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ABSTRACT
Traffic prediction, particularly in urban regions, is an im-
portant application of tremendous practical value. In this
paper, we report a novel and interesting case study of urban
traffic prediction in Central, Hong Kong, one of the dens-
est urban areas in the world. The novelty of our study is
that we make good second use of inexpensive big data col-
lected from the Hong Kong International Commerce Centre
(ICC), a 118-story building in Hong Kong where more than
10,000 people work. As building environment data are much
cheaper to obtain than traffic data, we demonstrate that it is
highly effective to estimate building occupancy information
using building environment data, and then to further use
the information on occupancy to provide traffic predictions
in the proximate area. Scientifically, we investigate how and
to what extent building data can complement traffic data
in predicting traffic. In general, this study sheds new light
on the development of accurate data mining applications
through the second use of inexpensive big data.
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1. INTRODUCTION
Traffic prediction, particularly in urban regions, is well

recognized as an important application with tremendous
practical value. The ability to predict traffic levels is a start-
ing point for dealing with traffic congestion, which can be a
costly problem that continues to grow in magnitude. “If, in
2013 traffic congestion cost Americans $124 billion in direct
and indirect losses, this number will rise to $186 billion in
2030.” [7]

The objective of traffic prediction is to predict the traf-
fic status of a road or region. It has long been a focus of
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research in the field of transport engineering, mathematic-
s, and computer science. Many existing traffic prediction
methods heavily rely on accurate and rich current or past
traffic data. Such traffic data are often obtained from traf-
fic sensing, that is, from a traffic monitoring system that
is permanently deployed on a road to monitor its current
traffic status. However, such traffic monitoring systems are
often expensive. For example, high-accuracy traffic moni-
toring systems use closed-circuit camera detectors [3]. A set
of such devices easily costs USD$2500, plus a 10% top-up
service fee for maintenance and installation [35]. In the tun-
nel crossing Victoria Harbor, Hong Kong, which we focus on
in this paper, there are over 30 such devices and 20 other
supplementary detectors, with a total cost of USD$71,500
for this one road. In Hong Kong, the traffic monitoring sys-
tem costs over one hundred million Hong Kong dollars, but
covers only a quarter of the roads in Hong Kong [10].

In this era of big data, as many different kinds of data have
been collected, it is natural to ask whether we can take ad-
vantage of some other data to facilitate effective traffic pre-
diction. This is the motivation behind our project on using
big data collected from buildings to make traffic predictions.
The intuition is that changes in occupancy of buildings may
contribute to changes in traffic in the surrounding areas.

In this paper, through a case study, we try to answer two
important questions: 1) whether we can improve the accu-
racy of traffic predictions using building occupancy informa-
tion and 2) whether we can use such building occupancy to
replace traffic data in traffic predictions: this endeavor has
significant practical value, making it possible to reduce the
cost of setting up a thorough traffic sensing system.

In this paper, we show that the answers to both questions
are positive. We overcome a set of technical challenges.

First, building occupancy information is not directly avail-
able. We have to estimate occupancy information using
building environment data, such as electricity usage, CO2

concentration, elevator status, and so on. We make good
second use of such data to estimate occupancy information.

Second, to make occupancy data useful for traffic pre-
dictions, and in particular, to replace traffic data in traffic
predictions, we need to conduct domain transformation, so
that traffic predictions can be conducted by occupancy data
only. We develop an occupancy-traffic (OccTra) model for
the relationship between occupancy data and traffic data.
As a result, we can deploy a temporary traffic monitoring



Figure 1: The ICC and its neighborhood.

system, which is far less costly than setting up a permanent
one, and train a model that uses both traffic data and oc-
cupancy data. After that, the traffic monitoring system can
be removed and traffic predictions can be conducted using
only occupancy data. From a practical point of view, this
technique has the potential to save millions of dollars on the
costs of the permanent traffic monitoring systems.

Third, we need a unified traffic prediction framework that
can naturally adapt to the situations with or without traffic
data when predicting. We carefully design the training and
prediction phases. Our traffic prediction framework con-
sists of a set of algorithms to extract features from space
and time, through Lasso [30], Recursive Feature Elimination
(RFE) [8], and Locally Weighted Regression (LWR) [25].

We report a comprehensive evaluation of our traffic pre-
diction framework using a real world case. With support
from the Hong Kong Transport Department and the Hong
Kong International Commerce Centre (ICC), we collected
four months of building data on the ICC (Fig. 1 (a)), and
traffic data on the neighboring roads of the ICC (Fig. 1 (b));
such neighboring roads include the West Tunnel, one of the
busiest roads in Hong Kong, and Lin Cheung Road. ICC is
a 118-story building where more than 10,000 people work,
hosting companies such as Morgan Stanley, Credit Suisse,
and Deutsche Bank, to name just a few. The West Tunnel
connects the emerging business area in Kowloon, where the
ICC is located, to the business center in Hong Kong Island
across the Victoria Harbor (Fig. 1 (b) shows the location-
s of the International Finance Center, the Bank of China
Tower, and the headquarter of HSBC). The building data
and traffic data were recorded every two minutes and every
six minutes, respectively. The ICC is divided into individual
zones and our building data consist of 124 zones. We show
that, given occupancy data on individual zones, we can fur-
ther improve the traffic prediction results. The intuition is
that people in some zones may be more likely to drive and
people in some other zones may be more likely to take public
transportation. People in different zones may have different
effects on traffic status when leaving the building.

The total data is more than 1TB. Cleaning such a massive
amount of data is not a small task. We configure a private
cloud for our experiments. We show that our traffic predic-
tion approach outperforms the state-of-the-art traffic predic-
tion algorithms in transport engineering by up to 10 times
during off-duty times, which are when the predictions are
needed most and which are the most challenging periods for
predicting traffic. We also compare our approach with the
traffic prediction service from Google. Google’s approach
takes data from Google Map users only, a much sparser set

of data; this results in a generally lower prediction accura-
cy. In one example, Google’s traffic prediction can have an
error rate of more than 13 times to that of our approach.
We further show that we can take one month of occupancy
data and traffic data as inputs in the training phase, and
conduct traffic predictions for the next three months using
occupancy data only. The implication of the cost saving can
be remarkable. For example, the traffic sensing system on a
road can be reused on three other roads during this period
[10]. Using West Tunnel as an example, this has a potential
to save USD$201,500 to avoid setting up three additional
sets of traffic sensing systems.

The rest of the paper is organized as follows. In Sec-
tion 2, we review related work. We present feasibility analy-
sis, problem definitions and our traffic prediction framework
in Section 3. In Section 4, we present our model of using
the CO2 data to predict the occupancy dynamics. Section-
s 5 is devoted to the detail models of our framework. We
conduct a comprehensive set of evaluations in Section 6. We
discuss the business value of our approach in Section 7 and
we conclude our paper in Section 8.

2. RELATED WORK
Traffic Prediction: Traffic prediction (or traffic fore-

casting) has long been a topic of research in the fields of
transport engineering, mathematics, and computer science
(see a research tree in Fig. 2). Traffic prediction has two
broad directions: the long-term and the short-term traffic
prediction. In long term traffic predictions, attempts are
made to model the physical process that governs the evolu-
tion of traffic [11][12]. Such traffic predictions can be used
for city blueprints, road system planning, and so on. These
studies start from baseline mathematical models, and their
success relies heavily on the effort to calibrate the parame-
ters from city to city, which is often a labor-intensive task.

Our work falls into the category of short-term traffic pre-
diction, the aim of which is to predict the day-to-day, hour-
to-hour status of traffic. Two directions are common in
short-term traffic prediction: predicting the traffic at a lo-
cation where the computation involves multiple locations,
i.e., considering the road network as a graph and jointly
considering the traffic at multi-locations; and predicting the
traffic at a location by using the (historical) data for this
location only. The modeling complexity of multi-location
graph-based research [26] is usually high. In this paper, we
take the direction of considering only single location data.

Predicting traffic using single location data is the most im-
portant direction in traffic prediction, and one of the most
intensively studied areas of research on the subject. There
are two further directions of research under this area: one
in which only traffic data are considered (e.g., history traffic
sensing data) and the other in which additional informa-
tion is taken into consideration. For traffic prediction using
traffic sensing data, a great many learning and inference
algorithms have been tried, including linear regression [2],
univariate and multivariate state-space methods (ARIMA)
[33], neural networks [18], k-nearest neighbors [22], locally-
weighted regression (LWR) [25], Kalman filtering [17], ar-
tificial neural networks and knowledge-based methods [34],
and others. Of all these, LWR has been shown to have the
best results [4].

For traffic prediction assisted by additional information,
two commonly considered classes of information are weather



Figure 2: The research line of traffic prediction.

information [28], and weekday-weekend/holiday information
[32]. In [39], online information, such as on the weather, s-
porting events, and holidays, is used to assist in making
traffic predictions. Another recent work reports using multi-
source data related to traffic (such as taxicabs, buses, trucks,
subway and cellular data) to predict traffic status [37]. Such
additional information can be seen as assistance informa-
tion, the objective of which is to assist traffic prediction or
avoid major errors of prediction; in other words, if there
are changes to such additional information (e.g., changes in
weather, a weekday changing into a holiday), the traffic pre-
diction results will change. Building occupancy information
has more direct correlation with the traffic status of nearby
roads. It not only directly improves the accuracy of predic-
tion, but more importantly, the occupancy data can replace
traffic data. This kind of substitution is difficult or even not
possible using the aforementioned data.

Traffic Sensing: In traffic sensing, the traffic speed at
the current time is estimated through traffic monitoring sys-
tems. There are many studies on traffic sensing; see a good
comparison of different methods in [19]. The key trade-off
is between the cost and accuracy.

Various types of sensors have been investigated such as
infrared sensors, acoustic sensors, probe sensors, cell phones
and participatory sensing in academia [19][20][21][36]. These
approaches try to study low cost sensors. They usually have
low accuracy, data sparsity or cannot scale in practice [14].
Waze [6] is a traffic sensing application currently in use. It
takes advantage of the users’ participatory uploads of the
traffic status of their nearby roads. Such approach is low
cost, yet has an unstable coverage and accuracy.

High-accuracy traffic sensing systems in practice include
loop and closed-circuit camera detectors [3]. However, such
solutions for traffic sensing suffer from high costs. A set of
loop detectors costs USD$9000. A set of camera detectors,
with associated RFID sensors, cost USD$2500 and a 10%
top up service fee for installation and maintenance [35].

Building Occupancy Sensing: Building systems have
recently attracted interest from sensor networking and sys-
tem researchers. One direction of research is occupancy
sensing, i.e., detecting the presence and the number of occu-
pants, so as to turn off unnecessary equipment, adjust HVAC
intensity and so on. There are studies on the use of differ-
ent types of sensors, such as passive infrared (PIR) sensors,
reed switches, and motion sensors [1]. There are also stud-
ies using camera sensors [5] or electricity consumption [13]
to estimate building occupancy. These studies either suffer
from scalability problems, or require additional sensors to
be deployed that may not be widely adopted in buildings.

In this paper, we choose to use CO2 concentration for oc-
cupancy sensing. CO2 sensors are widely available in build-
ing management systems. CO2 concentration is the most

Figure 3: The correlations between the ICC occu-
pancy data and the traffic data for different roads.

readily available information, the main purpose of which
is to assist ventilation functions of a building. Intrinsical-
ly, higher occupancy levels result in higher concentration of
CO2. The CO2 approach is scalable and it is more accurate
when the number of occupants is large [27][9].

One challenge for using CO2 is that CO2 has a delay fac-
tor, e.g., the CO2 level may only reflect occupancy status 10
- 15 minutes ago. In this paper, we first developed a gener-
al model that extends the conventional steady-state model
in [27] and conduct a real world validation of its effective-
ness. We then carefully develop our occupancy-traffic model
and prove that the delay factor will not affect the prediction
accuracy of our model.

3. FRAMEWORK OVERVIEW

3.1 Analysis on the Feasibility of Using Occu-
pancy Data to assist Traffic Predictions

We first conduct a study of the correlation between the
ICC occupancy data and the traffic data for the roads of
different distances from the ICC. This can be seen as a proof
of concept to show the feasibility of our study.

Note that the further a location is from the ICC, the more
time is needed for the impact of the ICC to reach this lo-
cation. As such, we shift the time series of the traffic data
accordingly, using the average traffic speeds [31].

We compute the correlation and show the results in Fig. 3.
We see that the closer the roads are to the ICC, the higher
the correlation. This is strong evidence of the overall feasi-
bility of using occupancy data to help predict traffic. 1

3.2 The Problems
We now formally present our traffic prediction problems.

Let S, T be the data series on occupancy and traffic speed,
in which Sm ∈ R, Tn ∈ R denote the number of occupants
at time m and traffic speed at time n.2 Let the current time
be c. Let the time to be predicted be c+h, where h denotes
the prediction length.

Problem Traffic Prediction with Occupancy (T-
PO): Given a training set of S and T with time interval
[0, c], develop a traffic prediction scheme G(·) which outputs
Tc+h, i.e., Tc+h = G(S, T ).

We study two versions of TPO in our paper. First, we
study a scheme where we always have traffic data. We call

1We also find that the average correlation drops to below 50%
over four km away, which means the occupancy dynamics of ICC
has little effect on the traffic status of roads over four km away.
2We may abuse the notations and use Sij , Tij to denote the
occupancy and traffic speed at time j on day i.
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Figure 4: The Traffic Prediction Framework.

this problem Traffic Prediction with Occupancy under
Permanent Traffic Sensing (TPO-P). Second, we study
a scheme where we use occupancy data to replace traffic data
in the prediction phase; thus we only need temporary traffic
sensing for the training phase. This problem is called Traffic
Prediction with Occupancy under Temporary Traffic
Sensing (TPO-T). We assume that occupancy data are
always available since the building system is deployed for
building functions; and we make a second use of such data.3

We divide TPO into a training phase and a prediction
phase. Let St, Tt be the set of occupancy data and traffic
data in the training phase. Let F (·) be the function devel-
oped for the training phase; it takes St, Tt as inputs. For
simplicity, we denote the trained model outputted by F (·)
as RF = F (St, Tt). Let Sp, Tp be the set of occupancy data
and traffic data in the prediction phase. Let G(·) be the
function developed for the prediction phase, which outputs
Tc+h with the trained model RF and Sp, Tp as inputs.

Problem TPO-P: Given a training set of S and T with
time interval [0, c], develop a function F (·) for the training
phase with output RF = F (St, Tt), and a function G(·) for
the prediction phase such that Tc+h = G(Sp, Tp|RF ).

Problem TPO-T: Given a training set of S and T with
time interval [0, c], develop a function F (·) for the training
phase with output RF = F (St, Tt), and a function G(·) for
the prediction phase such that Tc+h = G(Sp|RF ).

3.3 The Traffic Prediction Framework
In this paper, we develop a unified framework that solves

both TPO-P and TPO-T, i.e., we can naturally adapt
to prediction with or without traffic data in the prediction
phase. Especially in TPO-T, we only have occupancy da-
ta in the prediction phase. The core challenge is that the
relationship between occupancy and traffic status is dynam-
ically changing from time to time. Thus, the occupancy
data cannot become effectively features alone, convention-
ally with a fixed synthetic model between occupancy and
traffic. Consequently, instead of using a fixed model, we
train a dynamic occupancy-traffic (OccTra) model for the
relationship between the occupancy and traffic data when
extracting features. The output of such models is the time-
warped offset, i.e., a non-uniform time difference between the
occupancy data and traffic data. The time-warped offset is
used to extract raw occupancy data into useful features in
the prediction phase. In addition, we do not directly have
raw occupancy data. We develop an occupancy estimation
model (OEM) to transform the CO2 data into raw occupan-
cy data. Besides the OEM and the OccTra model, we also

3We clearly admit that there are business, privacy, and other
issues regarding whether and how the building data should be
shared. In this paper, we do not consider such issues, but instead
focus on technical problems.

develop a prediction model, i.e., a weighting matrix on fea-
tures, to predict the targeted traffic status with our features.

We show our framework in Fig. 4. The framework is di-
vided into a training phase and a prediction phase. In the
training phase, our OEM model takes CO2 data as inputs
and outputs raw occupancy data. The OccTra model takes
the occupancy data and traffic data as inputs. With it, we
develop time-warped offsets and extract useful features from
the occupancy data. We then have feature selection on both
temporal and spacial dimensions. The temporal selection
is based on different time slots and the spacial selection is
based on different zones of the building. Intuitively, differ-
ent time slots and different zones of a building have different
impacts on the prediction. Our prediction model is a learn-
ing algorithm that outputs a matrix of weighting coefficient.
In the prediction phase, the occupancy estimation model
transforms CO2 data into raw occupancy data. By combin-
ing time-warped offsets developed in the training phase, the
raw occupancy data become useful features. After feature
selection, traffic prediction is conducted through the matrix
of weighting coefficient developed in the training phase.

If we have permanent traffic data, for both the training
and prediction phase, feature selection will be performed ad-
ditionally on the traffic features for the temporal dimension.
Thus, we have a unified traffic prediction framework.

4. OCCUPANCY ESTIMATION MODEL
We now describe our occupancy estimation model (OEM)

for our traffic prediction framework. OEM is a joint cyber-
physical model based on ASHRAE 62-1989R. 4

ASHRAE 62-1989R proposed a steady-state model to es-
timate the occupancy of a building as follows.

U (tot)E +R(s)(C(out) − C(in)) = 0 (1)

Where U (tot) is the number of occupants in a room (or a
zone); E is the amount of CO2 a person generates per sec-

ond; R(s) is the volume of air flow per second; and C(in) and
C(out) are the CO2 concentration in the room and outdoor
air, respectively. Thus, the first part, U (tot)E, is the total
amount of CO2 generated by all occupants and the second
part, R(s)(C(out)−C(in)), is total amount of CO2 evacuated
from the room by air flow.

The above model is used for steady-state situations. Yet
we focus on dynamic scenarios with finer granularity. Thus,
we discretize the time series and develop our OEM model:

(U
(tot)
i E+R

(s)
i (C

(out)
i −C(in)

i ))(ti+1−ti) = V (C
(in)
i+1 −C

(in)
i )

(2)
Here, (ti+1 − ti) is the time interval between two records.

In the dynamic scenario, one key difference is that in a time
interval, there may be CO2 left over from one time interval

to the next time interval. This is captured by (C
(in)
i+1 −C

(in)
i ),

which is not available in the steady-state equation, i.e., E-
q. 1. We also find that the model needs to be calibrated
for different rooms with different sizes. This is reflected by
V , the volume of the room. In other words, since our E-
quation 2 is not in the steady state, the left hand side of it
computes the CO2 left over in this time interval (not zero),
which is equal to the right hand side of the equation.

4American Society of Heating, Refrigerating and Air Condition-
ing Engineers (ASHRAE) 62-1989R can be seen as a standard;
e.g., RFC 791/793 (TCP/IP) in the context of computer science.
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A comprehensive evaluation of our OEM model is avail-
able in our previous work [27]. To strengthen the confidence
of our OEM model, we further conducted three-day experi-
ments of the OEM model in a zone of the ICC. The maxi-
mum occupancy in this zone is 98. The zone has an area of
570.562m2, with height of 2.85m. Thus, V = 1626.1m3. We
recorded the CO2 data of the model from BAS. To obtain
the ground truth of the occupancy data, we sent one student
on-site to count the occupancy data manually in this zone
for three days. We show the result in Fig. 5. We can see
that our model is fairly accurate. We also found that error
is normally distributed, with the mean of the error is -5.7
and the root mean square error is 9.3.

Our validation confirms that our OEM model is applicable
in general. In practice, building management are zone based.
We thus can estimate building occupancy on a per zone basis
and add together the occupancy for all zones.

There is also a delay factor because time is needed to dis-
tribute the CO2 concentration. In Section 5.1.2, Theorem 1,
we will show that in the OccTra model, such a delay factor
will be absorbed and will not affect the prediction accuracy
of our traffic prediction framework.

5. THE TRAFFIC PREDICTION MODELS
We now describe the details of the OccTra model, the

feature selection and the prediction model in our framework.

5.1 The Occupancy-Traffic (OccTra) Model

5.1.1 Preliminaries
As discussed, we need a domain transformation, so that we

are able to extract useful occupancy features for the traffic
prediction. We thus develop a model for the relationship
between the occupancy data and traffic data.

Intuitively, the changing of occupancy at one moment can
result in the changing of traffic status at another moment.
In other words, there is a time shift between the dynam-
ics of occupancy and traffic status, which may come from
occupants taking elevators, powering up their cars, and so
on. The core challenge here is to clarify such a time shift
between occupancy and traffic, and find out a useful feature
space of occupancy to predict traffic.

Our idea is to introduce time-warped offsets between the
two data series. For example, if the occupancy status at

(a)

(b)
Figure 7: ICC occupancy and traffic speed of West
Tunnel (the data come from a randomly selected
day in the four months): (a) the default distance
function; (b) the new distance function.

4:15pm matches the traffic status at time 5:15pm, then the
value of the offset is one hour. Note that such offsets are
non-uniform, i.e., they differ from time to time. Formally,

Definition 1. (Time-warped offset) Assuming m is the
time index of a targeted value in data series T , and n is the
time index of a feature in data series S by using a matching
function between S and T . The time-warped offset om is the
difference between m and n, i.e., om=n-m.

We show an overview of our model in Fig. 6. In the
training phase, we develop an algorithm based on the well-
known Dynamic Time Warping (DTW) [16], the Occupancy-
Traffic-DTW Algorithm (DTW-OT), to compute the time-
warped offsets. DTW-OT (Section 5.1.2) takes raw occupan-
cy data and traffic data as inputs. It computes the matching
between S and T and outputs the time-warped offsets. We
prove that the DTW-OT algorithm naturally absorbs the de-
lay factor discussed in Section 4 (Section 5.1.3). We develop
an offset-feature shift function to transform occupancy data
into occupancy features with these offsets (Section 5.1.4).
The occupancy features are later used in feature selection.

In the prediction phase, we develop a Kernel Average algo-
rithm (Section 5.1.5) to extract occupancy features. With-
out current traffic data in this phase, we explore the past
days that have similar occupancy patterns with the current
day. The time-warped offsets of these past days are used.
The offset-feature shift function is again used to transform
occupancy data into occupancy features with these offsets.
The occupancy features are later used in feature selection.

5.1.2 Computing Time-warped Offsets
Our objective is to find good point-to-point matching be-

tween S and T , and calculate the time-warped offsets. Note
that we care about matching the shape of S and T . We de-
velop an algorithm based on Dynamic Time Warping (DTW)
[16]. In DTW, the shape of two time series is importan-
t. DTW outputs point-to-point matching of the two data
series (see Fig. 7 (a)), where such matching minimizes the
total distance between the two data series.

DTW is originally developed to connect data series of the
same type, e.g., two audio records. It cannot be directly ap-
plied to connecting two different types of data series, such as



occupancy data and traffic data. We make three important
modifications and develop our DTW-OT algorithm.

First, DTW does not limit the length of the connection
between two nodes in its distance function. For example,
using default matching, we found that DTW may match
occupancy at 10:00am to traffic speed at 7:30pm. This is
called over matching, and it is clearly unreasonable in our
context. We thus modify the distance function as follows:

D(Sm, Tn) =

{ |Sm − Tn| |m− n| ≤ ∆
|Sm−Tn|
α|m−n| |m− n| > ∆

(3)

where α is a constant satisfying 0 < α < 1 and ∆ is a
threshold. We set α = 0.2, the same to the UTCS system
in Washington, D.C. [17]. In this distance function, after
the difference exceeds a threshold ∆, the distance increases
quickly. In other words, the two data points become less
likely to match with each other.

Second, two different types of data commonly have dif-
ferent value ranges, e.g., the value of occupancy is always
greater than 1000 and that of traffic speed is around 60. As
such, all points in the occupancy data series will match with
the point of maximum value in the traffic data series. In our
DTW-based algorithm, both S and T are first normalized.

Third, two different types of data series can have different
types of correlations, e.g., positive or negative; yet the as-
sumption in DTW is that two time series should be positive-
ly correlated. In our scenario, S and T are negatively corre-
lated. We thus define Traffic Status: T−1 = 1

Traffic Speed
,

and use T−1 as the T data series.
Our DTW-OT is DTW considering all of the three prob-

lems. We particularly compare the results of the matching,
using the default and the new distance function in Fig. 7,
both with normalization and positive correlation. We see
that in Fig. 7(b), over matching is avoided.

5.1.3 The CO2 Delay Effect under DTW-OT
We now show that DTW-OT rectifies the CO2 delay effect

discussed in Section 4. Recall that using CO2 concentration,
we cannot estimate the current occupancy, but the occupan-
cy of some time ago. Let δm be the estimation delay of Sm.
In other words, Sm intrinsically is Sm′ , where time point
m′ = m+ δm. In practice, δm is around 10 - 15 minutes.

Theorem 1. Assume that without estimation delay, a point
Sm is connected to Tn by DTW-OT. Sm intrinsically is Sm′
where m′ = m + δm. Then, under DTW-OT, Sm′ is still
connected to Tn, if the computed offset |m′ − n| ≤ ∆.

Proof. Due to page limitations, our formal proof is in
[38]. Intrinsically, both DTW and DTW-OT match the
shape. The CO2 delay effect does not change the shape
of S. It only moves S forward. For example, it moves Sm
forward for δm time slots. If the delay δm will be consumed
by DTW-OT, if it is small or we set a reasonable ∆ so that
|m′ − n| < ∆. We show extensive illustrations in [38].

5.1.4 Extracting Occupancy Features for Training
After we have the time-warped offsets om, we develop an

offset-feature shift function to extract occupancy features.
Intrinsically, the origin data series of occupancy is replaced
by another with the index shifted by om. Then, we take the
∆o = om− om−1 as the occupancy feature, because changes
of traffic status are correlated with changes in occupancy
rather than absolute value of occupancy.

One nuance is that after transfer, occupancy data may not
exist on the shifted time index. For such cases, we use the
average of the occupancy of two neighboring time indices.

5.1.5 Extracting Occupancy Features for Prediction
However, in the prediction phase, traffic data is no longer

available. Then, the above DTW-OT, which takes both oc-
cupancy and traffic data series as input, can not be applied
here. Thus, we need another approach for feature extraction
in this phase. Our approach, as mentioned at the beginning
of this section in Fig. 6, is to combine the current occu-
pancy data in prediction phase and the time-warped offsets
developed in the training phase.

With the knowledge learnt in the training phase, we can
still acquire the time-warped offset in the prediction phase,
even without the current traffic data on the very day. To
find such offsets for the current occupancy, we first find the
days similar to the current day, in terms of the occupancy
data pattern. Intuitively, the more similar two days are, the
more likely their offsets are to be the same, which is verified
with experiments in our technical report [38].

With the similarity of days measured, we apply the K-
ernel Average (KA) algorithm to obtain the offset, so that
the occupancy feature can be extracted for our predictor
using the offset-feature shift function. KA is based on the
weighted average, obtained by imposing different weights on
each day. The more similar the two days are, the higher the
weight given to the time-warped offset of this history day, by
developing the kernel function in KA. Our experience shows
that KA is better than other algorithms such as k-NN, since
k-NN suffers from errors due to its locality.

5.2 Feature Selection
We now describe our feature selection, on both temporal

and spacial dimensions. The objectives are:

1. To select those time slots that are more important for
prediction. As an example, to predict the traffic at
21:10pm, training the model with features at 21:00pm,
21:06pm may be much more effective than at 10:00am,
10:06am (both the traffic and the occupancy). The
less-important features may also introduce over-fitting,
which brings even more prediction errors.

2. To remove those building zones that do not contribute
to the prediction. This follows our insight that some
building zones contribute less to the traffic status than
others since they host more people who take public
transportation, while the other zones host more people
who can afford to drive and park.

5.2.1 Selecting Time Slots
For both occupancy and traffic features, some time slots

are consistently much more important than others. If we
keep these features, we can avoid over-fitting and improve
prediction accuracy and computation efficiency.

For time slot features, we use Lasso [30], a well-known fea-
ture selection method. Lasso outputs a subset of features,
by formalizing and optimizing the objective function of fea-
ture selection. One important improvement for Lasso is to
consider Lag Effects. In general, the time points that are
closer to the prediction time k should have higher weights.
We chose the adaptive Lasso in [40], where a lag-weighted
Lasso is used to reflect the lag effects.



Figure 8: The contribution of the zone feature is
measured as its prediction accuracy. Such contribu-
tions are computed on different days.

5.2.2 Selecting Zones
Zone features differs greatly from time slot features since

we found that there are no zones that are consistently im-
portant. Important zones keep changing every day. Never-
theless, we found that there are zones that are consistently
irrelevant and only introduce noise. Intuitively, these zones
are likely to host people who only take public transportation.
We show this using a heat map in Fig. 8.

Thus, instead of selecting important zones, we choose to
remove irrelevant zones. We use Recursive Feature Elimi-
nation (RFE) [8] to remove zones. RFE selects features by
recursively reducing more irrelevant features, given an ex-
ternal predictor that assigns weights to features. As for the
zone features that are important on different days, we will
assign different weights in our final learning model. In each
iteration, we remove the zone inducting greatest error and
obtain the final size of feature space for occupancy.

5.3 The Prediction Model
We adopt the state-of-the-art Locally Weighted linear Re-

gression (LWR) [24] as our learning and prediction algorithm
to train the weighting coefficient matrix. It has been shown
to outperform many existing traffic prediction algorithms
such as k-NN and Neural Network methods [4].

Note that for TPO-T, the weighting coefficient matrix
is a set of weights on the occupancy features and historical
traffic features. For TPO-P, there are occupancy and traffic
features on the predicting day. Therefore our algorithm also
take the traffic features as input. When the contributions
of occupancy features are low, e.g., with a low correlation
between the two data series, occupancy features are assigned
lower weights and traffic features play a more important role.

Last, but not least, our model can be extended to mul-
tiple buildings since our model is zone-based. Each zone
contributes a dimension in the weighting coefficient matrix.
We emulate multiple buildings and show that our model is
general in Fig. 20 of Section 6.

5.4 Computational Complexity of the Models
Now we analyse the computational complexity. Our model

consists of the training phase and the prediction phase. Be-
low shows the computation complexity of the training phase:

Theorem 2. The computational complexity of our model
in the training phase is O(ZQ(P 2)), where Z is the number
of building zones, Q is the number of days, and P is the
number of time slots in each day.

Due to page limitations, our formal proof is in [38]. Note
that there is also a non-trivial time for data loading. The
computational complexity is of O(Q). This is done once.

We emphasize more on the computational complexity of
the prediction phase, because it is necessary for real time

Data Sets Traffic Occupancy
] attributes 53,308,800 64,281,600
] features 13,327,200 8,035,200

Permanent
Sensing

training set 9,995,400 6,026,400
testing set 3,331,800 2,008,800

Temporary
Sensing

training set 3,331,800 2,008,800
testing set 9,995,400 6,026,400

Table 1: Summary of the data sets.

traffic prediction. We evaluate both theoretically, and in
evaluation. The prediction phase consists of multiplying the
coefficient matrix of the regression, which is linear to the
number of training examples ZP :

Theorem 3. The computational complexity of our model
in the prediction phase is O(ZP ), where Z is the number of
zones, and P is the number of time slots in each day.

Due to page limitations, our formal proof and evaluation
are in [38]. In evaluation, the running time for prediction is
0.37s on average, which is suitable for real time usage.

6. EVALUATION

6.1 Evaluation Setup
Data sets: We use real data sets collected from the Hong

Kong Transport Department and the ICC for four months
(May to August). The data sets consist of two parts, which
are shown in Table 1 and elaborated below.

1. Traffic sensing data: The data were collected every
six minutes for 617 roads installed with traffic mon-
itoring systems, which consist more than one fourth
of the roads in Hong Kong. Each traffic sensing da-
ta record contains four important attributes: the road
ID, traffic speed, date and insert time.

2. Occupancy sensing data: The data were collect-
ed from the Building Management System of the IC-
C. The data were collected every two minutes in 124
building zones of the ICC, hosting over 70 companies
on 118 stories. Each BMS record contains five impor-
tant attributes for our occupancy estimation: the zone
ID, time stamp, CO2 concentration, the operation and
parameter of air flow controls.

The full data set is more than 1TB in storage size in an un-
compressed CSV format. After cleaning unnecessary roads
and attributes, the total size of the data we used in this
evaluation section is 132.47G.

Execution environments: To process the big data, we
establish a private cloud to run our experiments. The cloud
has 12 cores, each with 2.6GHz, and a total memory of 64G.

Comparing scenarios: We evaluate TPO-P and TPO-
T. To compare TPO-P, we use a state-of-the-art traffic pre-
diction algorithm [24]. We denote this algorithm as TP-P,
Traffic Prediction under Permanent traffic sensing. We also
compare our algorithm TPO-P with the traffic service pro-
vided by Google [29]. We crawl data directly from Google
Map traffic service. As discussed, Google traffic prediction
takes data from Google Map users, and is sparse. We found
that it performs worse than the state-of-the-art traffic pre-
diction algorithm and our algorithm (see Fig. 9). Thus, our
evaluation is mainly between TPO-P and TP-P.



Figure 9: MSE as a func-
tion of time, between
16:00 and 24:00.

Figure 10: MSE as a
function of time, be-
tween 20:00 and 22:00.

Figure 11: Weight of Oc-
cupancy against Traffic
as a function of time.

Figure 12: MSE of TPO-
P without and with the
algorithm of RFE.

To the best of our knowledge, there is no specialized algo-
rithm for traffic prediction with temporary traffic sensing.
For comparison, we use historical average [23] since it does
not require features of the days to be predicted. We de-
note this algorithm as TP-T. We also compare TPO-T
with TP-P and TPO-P to show that our traffic prediction
scheme can replace permanent traffic sensing with a very
moderate sacrifice, if any, of prediction accuracy.

Evaluation criteria: We adopt one most commonly used
mean squared error (MSE) [15] to compare the prediction

performance. MSE is defined as 1
P

∑P
j (tj − t′j)2, where t′j is

the predicted traffic at time j ≤ P and tj is the real traffic.
Default evaluation parameters: We split our four-

month data into a training set and a prediction set. For all
permanent scenarios, the default training set is three months
and the prediction set is one month. For all temporary sce-
narios, the default training set is one month and the predic-
tion set is three months. The default period for evaluation
is 16:00 to 24:00. The default prediction length h is one
hour, e.g., for a current time of 16:00, we predict 17:00. The
default road for prediction is the West Tunnel.

6.2 Evaluation Results

6.2.1 Permanent Traffic Sensing
Prediction accuracy: We first compare the accuracy of

TPO-P and TP-P, i.e., traffic prediction algorithms with
and without occupancy data under permanent traffic sens-
ing; as well as Google-traffic. Fig. 9 shows the MSE as a
function of time. Since the prediction is for a whole month
(August), the MSE is an average of all days in this month.
For example, the MSE of TPO-P in 21:00 is 2.57, which
shows the average error of all days at 21:00 in August.

In Fig. 9, we can see that with occupancy, TPO-P almost
always outperforms TP-P. In particular, we see that the
prediction error of TP-P is much higher in the period of
20:00-22:00. For example, the MSE of TP-P in 21:00 are
14.44 and 8.10 respectively, much higher as compared to
other time periods. As a comparison, our algorithm TPO-
P remains stable in terms of prediction error; e.g., in 21:00,
the MSE is only 2.57. That is to say, TP-P has an error
that is 3.14 times to that of TPO-P. This clearly shows the
effectiveness using occupancy data and our algorithm.

Google-traffic performs worse than both TPO-P and
TP-P. For example, at 18:00, Google-traffic has an error
rate of 13.07 times to that of TPO-P. On average, Google-
traffic has an error rate of 5.38 times to that of TPO-P
and 4.43 times to that of TP-P. Thus, in the remaining part
of the paper, we only compare our algorithm with TP-P.

We show a more fine-grained comparison between 20:00
and 22:00 in Fig. 10; with comparison made every six min-
utes, which the minimum period in our data. The results
further confirm that TPO-P outperforms TP-P.

We next show the weights that are automatically assigned
to the occupancy features and traffic features during the
execution of the training phase of our algorithms. Figure 11
shows that the occupancy features have higher weights. This
provides a strong justification from the micro view for the
effectiveness of using occupancy data in traffic predictions.

Figure 12 shows that RFE (selecting zones) can provide an
additional improvement of 7.59%. Note that RFE is a greedy
heuristic in removing zones. We believe that improvement
is possible and designing a more optimized zone selection
algorithm would make an interesting future study.

Impact of training length: In Fig. 13, we show the im-
pact of training length on the prediction accuracy in TPO-
P. We use different training length of 0.5 month, one month,
and up to three months. We can see that the longer we train,
the better the prediction accuracy. We see that when the
training length is greater than one month, in particular, af-
ter 1.5 months, the prediction results start to become stable.

Impact of prediction length: We study the impact of
prediction length h on the prediction accuracy. In Fig. 14,
we take an average of the prediction results of 20:00 - 22:00.
The x-axis shows the prediction length, e.g., predicts the
future 12 minutes, 24 minutes, 36 minutes, and so on. In
general, our algorithm TPO-P remains stable even when
the prediction length increases. The prediction error of TP-
P gradually increases from 4.7 to 5.3 as the prediction length
increases. This demonstrates that the use of occupancy data
can result in earlier forecasts, whereas with traffic data only,
the longer the prediction length, the higher the error.

6.2.2 Temporary Traffic Sensing
We next compare the accuracy of TPO-T and TP-T,

i.e., traffic prediction with and without occupancy data with
temporary traffic sensing. Fig. 15 shows the MSE as a
function of time. We see that with occupancy information,
TPO-T almost always outperforms TP-T.

On many regular days, the traffic can be very stable, and
it is much easier to achieve a good prediction result. The
focus of a traffic prediction algorithm should be more on
predicting situations where there are changes. To evaluate
this aspect, we rank our evaluation cases according to the
amount of change that occurs in traffic. We extract the top
25% of cases of change in traffic. We plot the ratio between
TPO-T MSE and TP-T MSE in Fig. 16. We see that
TPO-T can outperform TP-T by as much as 72.85 times.
On average, TPO-T outperforms TP-T by 12.80 times in
the top 25% of cases of change in traffic.

We next compare TPO-T with TP-P, i.e., traffic predic-
tion with occupancy data under temporary traffic sensing
and traffic prediction under permanent traffic sensing. This
can show the extent to which occupancy data can replace
the expensive permanent traffic sensing. For TPO-T, we
use May for training and predict the traffic in August. For



Figure 13: Mean MSE
as a function of training
length of months.

Figure 14: Mean MSE as
a function of prediction
length, 20:00-22:00.

Figure 15: MSE as a
function of time, be-
tween 16:00 and 24:00.

Figure 16: Mean Ratio
as a function of time, the
most volatile 25% cases.

Figure 17: MSE as a
function of time, be-
tween 16:00 and 24:00.

Figure 18: MSE as a
function of time, be-
tween 16:00 and 24:00.

Figure 19: Mean MSE
as a function of training
length, in one month.

Figure 20: Mean MSE as
a function of the number
of zones, in one month.

TP-P, we use May, June, and July for training and predict
the traffic in August. The results are in Fig. 17. Our al-
gorithm has a performance that is comparable to TP-P. In
particular, we are better in the period of 21:00 - 24:00.

We next compare TPO-T with TPO-P in Fig. 18. On
average, TPO-P has better performance; yet the perfor-
mance of our algorithm TPO-T is close to that of TPO-P.
Again, this illustrates the feasibility of replacing permanent
traffic sensing with temporary traffic sensing.

In Fig. 19 we show the impact of training length on predic-
tion accuracy. We use different training length of one week,
two weeks, four weeks (the default value), and up to eight
weeks. We can see that the longer we train, the better. We
see that when the training length is greater than four weeks,
the performance gain becomes smaller.

We next emulate multiple buildings. This is done by di-
viding the ICC into multiple buildings based on different
numbers of zones (from one zone to 120 zones). Each of
them can be considered as different buildings. For example,
the first building contains the first zone; the second building
contains the first five zones; the third building contains the
first ten zones, and so on. We show the results in Fig. 20.
We can see that, the more building zones one has, the better.

We also evaluate the performance of our traffic prediction
scheme on Lin Cheung Road, the impact of Lasso, the im-
pact of RFE on our traffic prediction framework, and the
running time of our algorithms. Due to page limitations,
these results can be found in [38].

7. DISCUSSIONS
Traffic prediction has been investigated heavily in various

background contexts; and traffic prediction systems exist in
practice. Our approach is suitable for densely populated
urban areas with a large number of buildings, where traffic
prediction is needed most, such as Hong Kong, New York,
Singapore, Tokyo and many cities in Europe and China.

The traffic status may be the ensemble of occupancy dy-
namics from multiple buildings. We have evaluated the cases
with various numbers of building zones. We can see that,
the more building zones one has, the better. Thus, one may
consider taking data from more building zones, if he does
not have data from a population-dense center as ICC but
still want to achieve high prediction accuracy.

We have demonstrated that we can outperform the state-

of-the-art traffic prediction algorithms. Nevertheless, our
traffic prediction scheme is not only an algorithm focusing
on improving the traffic prediction accuracy over past algo-
rithms. The implication of the saving by our traffic predic-
tion approach on the traffic sensing systems is remarkable.
For example, assume there are four roads. Rather than de-
ploying four sets of permanent traffic sensing systems, we
can deploy one set of traffic sensing system as a temporary
traffic sensing system, reuse it on each road for one month.
As a matter of fact, we are confident that the interval of tem-
porary traffic sensing on a road can be extended based on
our evaluation results, making it possible to further reduce
the number of traffic sensing systems.

Take Hong Kong as one example. Our traffic sensing sys-
tems use camera and RFID detectors. The cost of a set of
the camera detector we used is USD$1500 ($1000 for a cam-
era, $200 for a controller and $300 for a modem), and the
cost of a set of RFID detector we used is USD$1000 ($500 for
a reader, $200 for a controller and $300 for a modem). There
is another 10% top up installation and service fee. On West
Tunnel, there are 30 sets of cameras and 20 sets of RFID
detectors. The total cost of four sets of permanent traffic
sensing systems to cover four roads can be USD$286,000. If
we use one set of such system as a temporary sensing sys-
tem, i.e., we reuse these devices, and assume the installation
and service fees increase for three times, the total cost will
be USD$84,500, a more than 70% saving. Given that there
are thousands of roads in Hong Kong, and three quarters of
the roads are not covered primarily due to high costs, the
potential saving can be millions of dollars [10].

To sum up, our study can promote the research and prac-
tice not only of traffic predictions, but also of traffic sensing
systems. Portable traffic-sensing systems can become popu-
lar, as they become serious choices with our techniques.

8. CONCLUSION
In this paper, we studied the second use of building data

for predicting traffic on nearby roads. While traffic pre-
diction algorithms have traditionally relied on only traffic
sensing data, we showed that building data could replace
traffic sensing data and improve traffic prediction accuracy.

We developed a traffic prediction framework with a set
of novel models for the training and prediction phases. We
reported a comprehensive evaluation of our traffic prediction



framework using four months of fine-grained data from the
ICC and neighboring roads in Hong Kong.

We showed that our traffic prediction framework outper-
forms state-of-the-art traffic prediction algorithms. By using
our traffic prediction framework, we can also use building
occupancy data to replace traffic data from the permanent
traffic sensing systems. From a practical point of view, the
implication of the saving by our framework can be over 70%
on traffic sensing systems. This can be translated into mil-
lions of dollars in Hong Kong alone, since the traffic sensing
system costs over one hundred million Hong Kong dollars,
but covers only a quarter of the roads in Hong Kong.
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