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Abstract—Mobile data demand is increasing tremendously, and
thus new pricing models are in urgent need. One promising new
pricing scheme is the “sponsored data plan”, i.e., end users may
enjoy free access to contents from certain content providers,
while these content providers will pay ISPs for corresponding
traffic consumed by end users. Proven a number of advantages,
the sponsored data plan is still in its infancy. In this paper, we
explore some potential of further development of this plan. We
extend the design space and propose the idea of time-dependent
sponsoring, i.e, content providers can decide when to sponsor
how much fractions of traffic. The key intuition is by migrating
some traffic consumption from peak to valley times, bandwidth
resources can be better utilized. We formulate a game model
to study the interactions between the ISP, CPs and users, and
derive the optimal sponsoring fractions over various times under
this new plan. We show that all parties involved can benefit from
this plan, and social welfare increases. We believe our proposal,
i.e., time-dependent sponsoring, provides important insights to
potential development of the sponsored data plan.

I. INTRODUCTION

In the past years we have witnessed a tremendous growth

of wireless data traffic. This poses huge burden to the Inter-

net service providers (ISPs) since supporting such demand-

supply gap requires large investments. The ISPs are only one

stakeholder in the Internet. The two-sided Internet market can

be captured in Fig. 1, where ISPs are in the middle, end

users (EUs) are on one side and content providers (CPs) are

on the other side. Facing the surging demands, usage-based

plans start prevailing in wireless data markets over flat-rate

unlimited plans. For example, Verizon Wireless charges users

for $20 per month for 2 GB amount of data [1]. Such usage-

based plans are backed by FCC [2], yet they raise concerns

from the CPs because they may intrinsically limit users’

willingness to consume data content from the CPs, whose

revenue heavily depends on user views. One core problem

is the one-sided charge for end users, i.e., ISPs, in particular,

the last-mile access ISPs, charge the users as their primary

revenue resources. This leads to an unbalanced finance model

as neither users want to increase their data consumption thus

paying more, nor ISPs want to reduce their price. New pricing

models have been proposed to vitalize the Internet market,

among which the sponsored data plan (SDP) [3], [4] attracts

special interests from both industry and academia.

SDP, or also called tool-free service, means that an ISP and

CPs sign some form of contract, such that when end users

Fig. 1: Two-sided Internet market

access contents from CPs joining SDP, their traffic from/to

these CPs will not be charged by the ISP. Instead, CPs will

pay for that volume of traffic for end users to the ISP. Since

its birth, SDP shows great potential to becoming a major

charging pattern over the wireless data network. Intrinsically,

SDP balances the finance model of CPs towards ISPs and

users as it creates a positive cycle among the three parties:

end users are willing to consume more traffic sponsored by

CPs; CPs can attract more users and thus more advertisement

income; ISPs can obtain more revenue by charging CPs. Thus,

they may all benefit from this strategy.

SDP has also been in practice. For example, AT&T an-

nounced its sponsored data program in January 2014 [3]. Its

sponsored data partner, Syntonic Wireless, launched a toll-free

content store six months later [5]. Google has also joined with

India’s Bharti Airtel to offer free access to certain Google-

based services such as Gmail, Google+ and first page of web-

sites via Google search without ringing up data charges [6].

There are emerging studies [7], [8], [9] on SDP, and

the research foci are the competition, benefit, equilibrium,

fairness, the possible regulations needed, etc., of the Internet

market under SDP. These studies have confirmed that SDP

can lead to a more balanced finance model for the Internet

market. None of the aforementioned works, however, study

how to sponsor data. We argue that studies on appropriate

sponsoring methods are also important, and even affect the

overall success of SDP. In this paper, we propose and study

time-dependent sponsoring (TDS). In TDS, CPs can decide

the fraction of traffic to sponsor to end users for a given time,

and that the fraction may vary over time. The main novelty of

TDS is its potential to improve resource utilization.

It is non-trivial to analyze TDS. The key challenges include:

1) It is difficult to model users’ behavior as they may differ un-

der TDS; 2) Demands under different times can be correlated



due to traffic migration under different subsidizations; and 3)

The interactions among users, CPs and ISPs are complex, and

we need appropriate models, comprehensive discussions and

interpretations to capture them.

We provide a rigid study on TDS. We consider strategic

users [10], [11] who may delay data consumption in exchange

of a lower price. We establish a Stackelberg game model

to capture the interactions among a monopoly ISP, a set of

CPs and an arbitrary number of strategic users. We formulate

the ISP’s and CPs’ decision problems as optimizations. We

show that a CP’s sponsoring decision problem is a non-convex

optimization, and we propose a dynamic programming based

algorithm in polynomial time. Our main findings include:

• TDS improves CPs’ bandwidth utilization and profit, and

users’ welfare for slightly patient strategic users, but may

result in controversial effects for highly patient ones;

• When CPs provide different subsidizations to different

groups of users, CPs’ bandwidth utilization and profit, as

well as users’ welfare, can be significantly improved;

• TDS can improve the ISP’s capacity utilization, thus

increasing the ISP’s profit and the social welfare.

This is the outline of this paper. Sec. II states our related

work. In Sec. III, we set up a Stackelberg game model

to capture the interactions between users, CPs and the ISP.

Sec. IV and V analyze CPs’ and the ISP’s optimal decisions

respectively, as well as their impacts to the market. Sec. VI

concludes this paper.

II. RELATED WORK

The tremendous growth of wireless data traffic motivates

research on better financing models. One category is sponsored

data pricing (SDP). Authors in [9], [12] have suggested that

SDP benefits all three parties via analyzing the interplay of the

CPs, ISPs and end-users. For instance, our previous work [9]

built a two-class service model and concluded that ISPs and

end users can achieve a win-win trade under SDP if properly

regulated. Other works [8], [13] studied the strategy on which

content to subsidize, the competition of subsidization, etc. All

these studies, in particular [8], have shown that SDP may

vitalize the Internet growth. Intrinsically, SDP can establish

a more balanced finance model. Nevertheless, interpretations

from studies [7], [12] also indicate that SDP may lead to

heavier data traffic; since it is the CPs’ incentive to deliver

more content to end users and it is the users’ incentive to

consume more when others are paying for them.

Another category is time-dependent pricing (TDP). In TDP,

ISPs will set different prices of traffic to charge users at

different times. The objective of TDP is to migrate traffic loads

from peak times to off-peak times. Studies [14], [15] have

shown the potential of TDP in reducing the peak time load,

and studies [16], [17] have further discussed various schemes

within TDP, e.g., flat-rate, metering, etc. Economists [10],

[11] have also studied strategic users in TDP, who can delay

their purchase for future prices. Simple TDP schemes have

been adopted in practice. For instance, BSNL in India offers

unlimited night time (2-8 am) downloads on a monthly data

plan of RS 500 (or USD $10) [18]; in US, some ISPs have

begun experimenting time dependent pricing plans [15]. Our

proposal, i.e., TDS, is also partially inspired by TDP. It marries

the advantages of SDP and TDP and further increases the

benefits of ISPs and CPs. However, it significantly differs

from TDP. TDP is a one-sided charge for end users and thus

limits data consumption, while our proposal TDS is a two-

sided market model and encourage data consumption. It may

also be easier for end users to adopt TDS as compared to TDP,

since CPs interact with users directly.

In this paper, we migrate the ideas of SDP and TDP, and

propose a new charging scheme TDS. This might help the

further exploration of design space in wireless network pricing.

III. GENERAL MODEL

In this section, we analyze the market with three parties:

a set of CPs N , a monopolistic ISP and a set of end users

M. The CPs provide services to end users. We assume that

one CP supplies only one service. If a CP provides multiple

services, we treat it as multiple virtual CPs. Later, we call a

service s and a CP s interchangeably. We consider only one

ISP which provides Internet access services to CPs and end

users1. We define the capacity of the ISP, denoted as μ, as

the bottleneck bandwidth of the connection. We use a triple

(N , μ,M) to represent the whole system.

A. Users’ Traffic Demand

We consider a finite time horizon [0, T ] with slots

{1, · · · , T}, each time length being unified as 1. The spon-

sored price for each slot can be different, so end users can

arrive at any slot and consume the traffic at that particular

slot, or they can delay the usage to a later slot so as to

save money. We denote the maximal waiting time as K ∈
{0, · · · , L−1}, and the corresponding waiting period of users

arriving at t as SK
t �

{
t, · · · ,min{t +K,L}

}
. We say that

the users are impatient if K = 0, or patient otherwise. We

consider heterogeneous users and denote the fraction of those

having the maximal waiting time K as g(K), and we have∑L−1
K=0 g(K) = 1. Given service s, we denote the number

of users that arrive at t as ms
t . Let δs be the average per-

user traffic volume during one slot for service s. The total

(max-possible) traffic at slot t is θst � ms
tδ

s if all users are

impatient.

The prices charged to CPs and end users by the ISP are

time-independent. CPs are charged according to the maximal

bandwidth they require. For instance, Netflix pays CDNs on

a per-megabit-per-second-sustained model so as to guarantee

the quality of service [19]. In contrast, end users are charged

according to the total traffic volume they consume. Due to net

neutrality consideration, we consider a unified price p for per

unit traffic for all users, and another unified price q for per unit

bandwidth for all CPs. The price charged to end users can be

subsided by CPs. Each CP can provide different subsidizations

1In reality there might be access ISPs and transit ISPs to connect users
and CPs, as illustrated in Fig. 1. However, in this paper we treat them as one
entity. Profit sharing among them is out of the scope of this paper.



at different slots. For any CP s, we denote its subsidization of

per unit traffic at time t as hs
t .

If a user arrives at t and targets at service s, she can

consume the traffic anytime during the waiting period SK
t .

If the user receives the service, we assume she obtains a

valuation v for per-unit traffic. Users may have different

valuations, and we assume the valuation v for service s follows

a probability density function fs(·), and the corresponding

cumulative function is Fs(v) �
∫ v

0
fs(x)dx. Then a particular

user’s utility for service s at slot k, denoted as us
t (k), is:

us
t (k) = v − (p− hs

k). (1)

A user consumes service s iff she can obtain a non-negative

utility, i.e., maxk∈SK
t
{us

t (k)} ≥ 0. It indicates that only if a

user has v ≥ p−maxk∈SK
t
{hs

k}, then she will consume service

s; further, she will choose the optimal slot that maximizes her

utility. Denote this optimal time slot as �s
t , we have:

�s
t = arg max

k∈SK
t

{hs
k}. (2)

It indicates that users always choose the slot with the maximal

subsidization. When two slots have the same utility, we assume

a user prefers the earlier slot to break the tie. Then, given the

subsidization of service s, i.e., hs = (hs
1, · · · , h

s
L), and the

price charged by the ISP to end users, i.e., p, the maximal

possible demand for service s during time slot t, denoted as

ρst , can be expressed as:

ρst (h
s) =

L−1∑
K=0

∑
l:t∈SK

l

g(K)θsl I{t = �s
l }, (3)

where I is an indicator function. Then, the actual demand,

denoted as Ds
t , becomes:

Ds
t (h

s, p) =
(
1− Fs(p− hs

t )
)
ρst (h

s). (4)

B. Utility of CPs

We use rs to denote the per unit revenue of CP s. CPs

may have very different per unit revenues. The revenue can

be generated by advertisements (e.g., YouTube), value-added

services (e.g., Tencent), e-commerce (e.g., Amazon), etc. The

cost of CP s consists of two parts: 1) the cost of sponsored

data, i.e., hs for per unit traffic, and 2) the price charged by the

ISP for bandwidth, i.e., q for per unit bandwidth. We denote

the required bandwidth for CP s as λs.2 Thus, the utility of

CP s, denoted by Φs, is:

Φs(hs, λs) =
L∑

t=1

(rs − hs
t )D

s
t (h

s, p)− qλs, (5)

2When the demand of one CP is higher than the required bandwidth, the
traffic of this CP will be throttled by the ISP without extra payment.

where p and q are the prices charged by the ISP to end users

and CPs, respectively. Thus, the optimal subsidization and

required bandwidth for CP s can be determined by:

OPT-1: max
{hs,λs}

Φs(hs, λs)

s.t. Ds
t (h

s, p) ≤ λs, ∀t ∈ {1, · · · , L}, (6)

01×L � hs � rs11×L. (7)

Let us consider an extreme case where q = 0. Any

CP s ∈ N sets a large enough required bandwidth and

a single subsidization hs to all slots that satisfy hs =
argmaxhs≥0(r

s−hs)
(
1−Fs(p−hs)

)
, making CP s achieve

its maximum possible revenue, i.e., maxhs≥0(r
s − hs)

(
1 −

Fs(p−hs)
)∑L

k=1 θ
s
k. We define the monopoly revenue func-

tion as Hs(h
s) = (rs − hs)

(
1−Fs(p− hs)

)
. To simplify our

analysis, we make the following assumption.

Assumption 1 (Unimodal Property). There exist some

monopoly price, denoted as hs
M that Hs(·) is increasing for

all hs < hs
M and decreasing for all hs > hs

M .

Assumption 1 can be satisfied under a wide range of dis-

tributions, e.g., uniform and exponential distributions. Under

assumption 1 and negligible q, the subsidization for any slot

is just the monopoly price if hs
M ≥ 0, or 0 otherwise. We

also assume that the monopoly price is non-decreasing with

respect to p. When the ISP charges a higher price for per unit

traffic, CPs will not reduce their subsidization. In practice,

ISPs always charge CPs a non-negligible price q. In our

technical report [20], we use one example to demonstrate that

OPT-1 is a non-convex optimization problem under such case.

C. Utility of the ISP

We use the ISP’s revenue to represent its utility, which is

from two sources: 1) the unit price charged to CPs for the

connection services, i.e., q, and 2) the unit price charged to

end users, i.e., p. Under TDS, the price charged to end users

can be partially subsidized by CPs but the total revenue per

unit traffic keeps the same. Thus, the utility3 (or revenue) of

the ISP, denoted by Π, is:

Π(p, q) = p

N∑
s=1

L∑
t=1

Ds
t (h

s, p) + q

N∑
s=1

λs. (8)

The ISP decides its optimal prices by solving:

OPT-2: max
{p,q}

Π(p, q)

s.t.

N∑
s=1

Ds
t (h

s, p) ≤ μ, ∀t ∈ {1, · · · , L},

p ≥ 0, q ≥ 0.

3We only consider fixed cost for the ISP and ignore the marginal cost. We
further let the fixed cost be zero because it is a constant and will not impact
the result of the optimization.



D. A Two-stage Stackelberg Game

We model the interactions of the ISP and CPs N as a two-

stage Stackelberg game. In particular, we consider:

• Players: The ISP and the set of CPs N .

• Strategies: The ISP decides the unit prices charged to

end users for traffic, and to CPs for bandwidth, i.e., its

strategy profile is SI ∈ {(p, q)}. Each CP s decides the

price subsidization and the required bandwidth, i.e., its

strategy profile is Ss ∈ {(hs, λs)}.

• Rules: The ISP is the first mover and decides SI . CPs

are the second movers and decide Ss, ∀s ∈ N . Each CP

makes its own decision independently.

• Outcome: The outcome is determined by backward induc-

tion. In particular, for any given SI , each CP s decides

Ss, ∀s ∈ N by solving OPT-1. Based on this knowledge,

the ISP decides SI by solving OPT-2.

Note that by using the Stackelberg game model, we assume

the ISP is the first mover and the CPs are the second movers.

This is the reality in many countries or regions. ISPs usually

know ex ante that CPs would observe their actions, e.g.,

new pricing strategy, and make optimal decisions based on

their actions. When the ISP fixes its prices charged to CPs

and end users, CPs decide their optimal price subsidization

independently. The decision of one particular CP would not

be affected by other CPs’ decisions. Thus, we can analyze

each CP’s price subsidization separately. Based on these, we

first analyze one particular CP’s subsidization in Section IV

and then the ISP’s optimal choice in section V.

IV. CPS’ SUBSIDIZATION STRATEGY

In this section, we analyze the CPs’ optimal strategy, i.e.,

the second stage of the Stackelberg game. We consider the

optimal subsidization and required bandwidth of one particular

CP, i.e., CP s, under impatient users, i.e., K = 0, and patient

users, i.e., K ≥ 1. In both cases, we first analyze the optimal

subsidization given the required bandwidth. After that, we

study the optimal required bandwidth. Before the analysis

of CPs for the two cases, we first consider some general

characteristics for OPT-1.

Lemma 1. Given the required bandwidth λs, the optimal price

subsidization h∗
t in slot t can only be one of the following

cases: 1) h∗
t = 0; 2) h∗

t = hs
M ; and 3) h∗

t = hs
t̂

such that

Ds
t̂
(h∗, p) = λs and hs

t̂
∈ (0, hs

M ).

Proof. Please refer to our technical report [20].

Lemma 1 shows three possibilities for the optimal price

subsidization. Heavy traffic demand leads to no subsidization,

i.e., h∗
t = 0, while light traffic demand leads to the highest

subsidization, i.e., h∗
t = hs

M . Besides these two cases, partial

subsidization is adopted such that the required bandwidth can

be fully utilized, i.e., Ds
t̂
(h∗, p) = λs. However, it is difficult

even to know which case the traffic demand belongs to since

it is determined by the relative subsidizations under different

times. To simplify the analysis, let us introduce the concept

of preference ranking.

Definition 1 (Preference Ranking). Given any price subsi-

dization h, the preference ranking R = {R1, · · · , RL} is a

permutation of {1, · · · , L} that satisfies:

Ri

{
< Rj if hi < hj ,
> Rj if hi ≥ hj ,

(9)

for any i ∈ {1, · · · , L− 1} and j ∈ {i+ 1, · · · , L}.

Definition 1 states that users prefer higher subsidization and

early time slot. When R is given, the traffic demand can also

be determined, i.e., Ds
t (h, p;R) =

(
1 − Fs(p − ht)

)
ρst (R).

Using this concept, we can analyze the optimal subsidization

further by proposition 1.

Proposition 1. Given the required bandwidth λs and prefer-

ence ranking R, the optimal price subsidization is:

h∗

t =

{
hs
M if ρst < λs

1−Fs(p−hs
M

)
,

max
{
0, p− F−1

s (1− λs/ρst )
}

otherwise,
(10)

where F−1
s (·) is the inverse function of Fs(·).

Proof. Please refer to our technical report [20].

Now we will go further into details of the optimal subsi-

dization. Let us discuss when users are patient or impatient.

A. Impatient Users (K = 0)

When K = 0, all users are impatient, i.e., ρst = θst . This

usually happens for real time services like live telecast videos.

Given the required bandwidth λs, the optimal subsidization

becomes:

h∗

t =

{
hs
M if θst < λs

1−Fs(p−hs
M

)
,

max
{
0, p− F−1

s (1− λs/θst )
}

if θst ≥ λs

1−Fs(p−hs
M

)
.

(11)

Given the optimal subsidization, we then analyze the opti-

mal required bandwidth. We define θ̃i =
(
1−Fs(p−hs

M )
)
θsi

and rearrange the time slots such that θ̃i < θ̃j if i < j. We

also add one dummy slot t = 0 with traffic demand θ̃0 =(
1−Fs(p)

)
θs1. Note that when λs < θ̃0, h = 0; when λs > θ̃L,

h = hM1. Then, the optimal required bandwidth, denoted

as λ∗, should appear within interval [θ̃0, θ̃L]. We divide this

interval into several subintervals [θ̃l−1, θ̃l](l ∈ {1, · · · , L}). If

λs ∈ [θ̃l−1, θ̃l], then the bandwidth is under-utilized for any

t ∈ {1, · · · , l − 1} and fully-utilized for any t ∈ {l, · · · , L}.

Let us define the concept traffic revenue as all CPs’ total

revenue minus the fees paid to the ISP for traffic subsidization,

and denote its value during relabeled slots {i, · · · , j} as φi,j .

Then, we can divide the traffic revenue of CP s into two parts:

1) the traffic revenue from all under utilized slots, i.e.,

φ1,l−1 = (rs − hs
M )

l−1∑
i=1

θ̃i, (12)

and 2) the traffic revenue from all fully utilized slots, i.e.,

φl,L(λ
s) = λs

L∑
i=l

[
rs−max{0, p−F−1

s (1−λs/θsi )}
]
. (13)



Thus, we can simplify OPT-1 as:

OPT-3: max
{λs,l}

φ1,l−1 + φl,L(λ
s)− qλs

s.t. θ̃l−1 ≤ λs ≤ θ̃l, l ∈ {1, · · · , L}. (14)

To determine the optimal required bandwidth, we introduce

a new variable l and separate the domain region [θ̃0, θ̃L]
into several ones, i.e., [θ̃l−1, θ̃l](l ∈ {1, · · · , L}). The above

optimization can be solved by first fixing l and obtaining local

optimal required bandwidth λ∗
l and then choosing the global

optimal λ∗ from {λ∗
1, · · · , λ

∗
L}. Note that even when we fix l,

the above optimization may still be non-convex. The following

lemma gives the conditions to have a convex problem.

Lemma 2. If the monopoly function Hs(·) is concave in

[0, hs
M ] and Fs(·) is a concave function, then the above

optimization is convex given a fixed value of l.

Proof. Please refer to our technical report [20].

The conditions in Lemma 2 guarantee that the revenue

φl,L(λ) from fully-utilized slots is concave. This makes OPT-3

convex for any fixed l. Besides, the conditions also guarantee

the CP’s utility Φs(λ) is concave in [θ̃0, θ̃L]. Under these

conditions, we can obtain the optimal required bandwidth by

the following theorem.

Theorem 1. Assume the conditions in Lemma 2 satisfy. If there

exists an l such that
∂φl+1,L

∂λs |λs=θ̃l+ε ≤ q ≤
∂φl,L

∂λs |λs=θ̃l−ε for

any small ε, then λ∗ = θ̃l; otherwise, there exists an l and

λ∗ ∈ [θ̃l−1, θ̃l] such that
∂φl,L

∂λs |λs=λ∗ = q.

Proof. Please refer to our technical report [20].

Theorem 1 shows the optimal required bandwidth is ei-

ther the end point of some subinterval, e.g., θ̃l, that makes
∂Φs

∂λs |λs=θ̃l−ε ≥ 0 and ∂Φs

∂λs |λs=θ̃l+ε ≤ 0 for any small ε,

or the point within some subinterval [θ̃l−1, θ̃l] that makes
∂Φs

∂λs |λs=λ∗ = 0, i.e.,
∂φl,L

∂λs |λs=λ∗ = q.

B. Patient Users (K ≥ 1)

When users are patient, i.e., K ≥ 1, the price subsidization

may not be determined easily even if the required bandwidth

is given. This problem is non-convex and we will prove it

in our technical report [20]. In this section, we design a

dynamic algorithm to obtain the optimal price subsidization

with polynomial time complexity. Let us first introduce the

definition of peak slot.

Definition 2 (Peak slot). A slot t is a peak slot in the period

{i, · · · , j} if Rt > Rs for any s ∈ {i, · · · , j} \ {t}.

A user prefers consuming the content in a peak slot,

compared to other slots in period {i, · · · , j}. The concept of

peak slot helps us design dynamic algorithms that separate the

original problem into subproblems.

Consider the optimal subsidization h∗ with preference rank-

ing R∗. Suppose slot t is the peak slot in period {1, · · · , L}
under R∗. Thus, we have R∗

t = L. Therefore, users with

the maximal waiting time K arriving at any slot during

{
max{t − K, 1}, · · · , t − 1

}
will delay their consumption

to slot t; thus, the potential demand for slot t is ρst (R
∗) =∑L−1

K=0

∑
l:t∈SK

l
g(K)θsl . If we know the peak slot t and h∗

t ,

then we can separate OPT-1 into two subproblems: maximiz-

ing the traffic revenue during {1, · · · , t − 1} and that during

{t+1, · · · , T}. Note that the population of users in the former

subproblem with the maximal waiting time K arriving at any

slot l ∈
{
max{t − K, 1}, · · · , t − 1

}
is not g(K)θsl any

more. Since all such users delay their traffic to the peak slot

t, the population becomes zero instead. Therefore, we need to

redefine the subproblems.

In our algorithm, we consider the subproblem as maximiz-

ing the traffic revenue during {i, · · · , j}, with traffic from

users with the maximal waiting time K arriving at slot l being:

θ̄Kl =

{
0 if j �= T,max{i, j −K + 1} ≤ l ≤ j,
g(K)θsl otherwise.

(15)

We denote the optimal traffic revenue during {i, · · · , j} as

W (i, j, h̄), where h̄ is the subdiziation during peak slot for its

original problem. Note that h̄ is also the upper bound for all

subsidizations during {i, · · · , j}. We extend the definition of

waiting period to sub-period {i, · · · , j} denoted as SK
t (i, j) �{

t, · · · ,min{t+K, j}
}

. Then, we have:

W (i, j, h̄) � max
{h}

j∑
t=i

(rs − ht)D̄
s
t (h, p)

s.t. D̄s
t (h, p) ≤ λs, ∀t ∈ {1, · · · , L}, (16)

01×L � h � vs11×L, (17)

ht ≤ h̄, ∀t ∈ {i, · · · , j}, (18)

where D̄s
t =

(
1 − Fs(p − ht)

)∑L−1
K=0

∑
l:t∈SK

l
(i,j) θ̄

K
l I{t =

�s
l }. Note that given the required bandwidth λs, the optimal

subsidization of OPT-1 is equivalent to that of W (1, T, hs
M ).

In addition, W (i, i, h̄) = g(0)θsi maxh∈[0,h̄] Hs(h). Then, we

have:

W (i, j, h) = max
k∈{i,··· ,j}

{
max

h∈[0,h̄]

{
W (i, k − 1, h)

+γk
i,j(h) +W (k + 1, j, h)

}}
, (19)

where

γk
i,j(h) =

⎧⎨
⎩

min{
∑L−1

K=0

∑
l:t∈SK

l
(i,k) θ̄

K
l Hs(h), λ

s}

if h ≤ max
{
0, p− F−1(1− λs/ρ̄

(
i, j, k)

)}
,

−∞ otherwise,
(20)

and ρ̄(i, j, k) =
∑L−1

K=0

∑
l:t∈SK

l
(i,k) θ̄

K
l .

To understand why the recursion in Eq. 19 holds, we

consider the optimal subsidization of CP s and assume that

k ∈ {i, · · · , j} is the peak slot with corresponding subsidiza-

tion hk ≤ h̄. Then, the users with the maximal waiting time K
arriving at any slot during

{
max{i, k−K}, · · · , k

}
will delay

their consumption to slot k, and thus the demand in slot k is∑L−1
K=0

∑
l:t∈SK

l
(i,k) θ̄

K
l

(
1 − Fs(p − hk)

)
constrained by the

required bandwidth. Thus we can obtain the traffic revenue at

slot k as γk
i,j(hk). Since users delay consumption to slot k, the
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Fig. 2: Subsidizations under various K

traffic from users with the maximal waiting time K arriving

at any slot during {i, · · · , k − 1} is:

θ̄Kl =

{
0 if max{i, k −K} ≤ l ≤ k − 1,
g(K)θsl otherwise.

By definition, the traffic revenue obtained during {i, · · · , k−
1} is exactly W (i, k − 1, hk). We then consider the period

{k + 1, · · · , j}. Recall Eq. 15 and that the traffic demand

during {k+1, · · · , j} holds unchanged after separation, so the

traffic revenue obtained during {k+1, · · · , j} is also W (k+
1, j, hk). Thus, we have W (i, j, h̄) = W (i, k, hk)+γk

i,j(hk)+
W (k, j, hk).

Note that W (i, j, h) is non-decreasing in h. This is also true

for γk
i,j(h) if h ≤ max

{
0, p−F−1

(
1−λs/ρ̄(i, j, k)

)}
. Then,

the optimal subsidization during [0, h̄] in Eq. 19 is:

h̄k
i,j = min

{
h,max

{
0, p−F−1

(
1− λs/ρ̄(i, j, k)

)}}
. (21)

Thus, we can simplify Eq. 19 as:

W (i, j, h) = max
k∈{i,··· ,j}

{
W (i, k, h̄k

i,j)+γk
i,j(h̄

k
i,j)+W (k, j, h̄k

i,j)
}
.

Let us state the complexity to solve OPT-1.

Theorem 2. Given λs, the time complexity of solving OPT-1

is O(L6).

Proof. Please refer to our technical report [20].

This shows we can obtain the optimal subsidization for the

non-convex optimization OPT-1 in polynomial time O(L6).
Using this dynamic algorithm, we search the optimal required

bandwidth by a linear search algorithm LSearchAlg() (please

refer to our technical report [20] for details).

C. Numerical Illustrations

To intuitively demonstrate CPs’ subsidization, we provide a

numerical example. We divide users into impatient and patient

groups with a population ratio m1 : m2. We consider three

cases: 1) m1 : m2 = 3 : 1, and 2) m1 : m2 = 1 : 1, and 3)

m1 : m2 = 1 : 3. We consider homogeneous K for patient

users and set K = 4 by default. Users’ per unit valuation of

traffic follows a uniform distribution U([0, 2]). We analyze two

days and define a slot as one hour. The potential traffic pattern

of each day is set as: θt = t+δ if t ≤ 12 and θt = 25−t+δ if

13 ≤ t ≤ 24, where δ follows a Gaussian distribution G(0, 1).
The revenue of per unit traffic is r = 2. The prices charged to
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Fig. 3: Effects of the maximal waiting time K

users and the CP are p = 1.5 and q = 10, respectively. The

required bandwidth is λ = 3 unless otherwise specified.

1) Effects of Strategic Behaviors: Users’ decision of delay-

ing the consumption for higher subsidization is referred to as

strategic behaviors, and we will investigate their effects on

subsidization. In Fig. 2(a), we show the effect of the maximal

waiting time on the average prices of subsidization. When K
increases, the average subsidization prices decreases. When the

ratio of patient users becomes higher, the average subsidization

decreases more rapidly.

Another important measure of subsidization is its variabil-

ity, which we define as the total number of distinct values

that are taken for subsidization prices over the whole period.

In extreme cases, the variability of subsidization is 1 (or T )

when subsidization prices during all slots take the same (or

all different) value(s). The variability, to some extent, reflects

the profit gain of subsidization. Intuitively, if its value is small,

then the CP does not have many choices for subsidization, and

the profit gain is not hopefully high. In Fig. 2(b), we show that

the variability is decreasing in K. The intuition is that when a

CP provides a slightly higher subsidization in some slot, many

patient users will delay their traffic to that slot, resulting in a

huge increase of traffic demand and thus high incentives for

the CP to reduce such subsidization. When K is larger, the

effect becomes more obvious, resulting in lower variability,

and this is what CPs are unwilling to see.

In Fig. 3, we show how strategic behaviors affect the

bandwidth utilization, CP’s profit and users’ welfare. Here,

we define the users’ welfare (aka consumers’ welfare) as the

difference between their valuation towards the service and

their payment. Intuitively, one may guess that when users

are patient, the CP provides high subsidizations in slots with

low potential demands to attract patient users, who should

have otherwise consumed traffic in busy slots, and thus the

bandwidth should be better utilized. Indeed, this conjecture

can be verified to some extend when the maximal waiting time

is not high, e.g., K ≤ 4 for case 1 and K ≤ 2 for case 2 and

3, as shown in Fig. 3(a). However, often times we observe an

opposite effect, i.e., low bandwidth utilization due to strategic

behaviors. This is because when users become more patient

(i.e., larger K and/or smaller m1 : m2), the CP is forced

to provide lower subsidization prices and variability, shown

previously in Fig. 2, thus resulting in inefficient bandwidth

usage. This hurts both the CP and users (Fig. 3(b) and
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Fig. 4: Effects of the required bandwidth λ

Fig. 3(c)). For instance, when m1 : m2 = 1 : 3 and K = 6,

the CP’s profit and users’ welfare reduce by 19% and 47%,

respectively, compared to K = 0. In later simulations, we

demonstrate how the strategy of staggered subsidizations can

avoid such phenomenon.

2) Effects of Required Bandwidth: In Fig. 4 we show the

effects of required bandwidth on bandwidth utilization, CP’s

profit and users’ welfare. Figure 4(a) shows that when the

required bandwidth is very small, e.g., λ = 1, the bandwidth

can be fully utilized. As the required bandwidth increases, the

bandwidth utilization decreases. Note that the traffic demand

always increases with respect to the required bandwidth since

more traffic usage indicates more traffic revenue. Figure 4(b)

shows that the CP’s profit first increases (due to increase of

demand) and then decreases (due to high bandwidth cost)

with respect to the required bandwidth. The optimal required

bandwidth for this CP is around λ = 4.7. Figure 4(c) shows

that the users’ welfare always increases with respect to the

required bandwidth.

3) Effects of Staggered Subsidizations: As we discuss pre-

viously, homogeneous strategy behavior leads to inefficient

bandwidth utilization when users are patient. To avoid the

inefficiency, we adopt staggered subsidizations, i.e., to differ-

entiate users into multiple groups with different subsidization

strategies. Specifically, we divide users into κ groups and

decide the subsidization sequently. The subsidization of one

group is determined by the algorithm DynamicAlg(), but the

bandwidth limitation (or the required bandwidth as defined

previously) is the remaining amount after being occupied by

previous groups.

In Fig. 5, we show the effects of the number of groups

on bandwidth utilization, CP’s profit and users’ welfare .

Figure 5(a) shows that the bandwidth utilization increases

significantly with the number of groups. In addition, a larger

population ratio of patient users means higher bandwidth uti-

lization. For instance, under the case 3, i.e., m1 : m2 = 1 : 3,

the bandwidth utilization increases from 73% to 92% when

the numbr of groups increases from κ = 1 to κ = 21.

Note that this increase is not obvious when the number of

groups is large, e.g, κ = 5 for case 1. Thus, we only

need to decide subsidizations for small number of groups so

as to avoid the homogeneous strategy behavior for patient

users. Moreover, the efficient usage of bandwidth due to

staggered subsidizations benefits both users and the CP, shown

in Fig. 5(b) and 5(c).
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Fig. 5: Effects of the number of groups κ

Summary: When we analyze the CPs with strategic users,

the maximal waiting time effects CPs’ optimal subsidization

significantly. A higher maximal waiting time indicates a lower

average subsidization price and a lower variability. In addition,

a higher maximal waiting time does not always improve

the bandwidth utilization and increase CPs’ profit. This only

happens when users are slightly patient, e.g., K = 4 and

m1 : m2 = 3 : 1. Highly patient users lead to serious homoge-

neous strategic behavior and thus reduce bandwidth utilization.

This homogeneous strategic behavior can be avoided when

CPs stagger the subsidizations for different groups. A larger

number of groups indicates higher bandwidth utilization and

thus higher profit of CPs and welfare of users.

V. MONOPOLISTIC ISP’S STRATEGY

In the previous section, we have analyzed the second stage

of the Stackelberg game, i.e., CPs’ choice on optimal subsi-

dization and required bandwidth. In this section, we consider

the first stage of the Stackelberg game, i.e., the ISP’s strategy.

We analyze the effects of ISP’s strategy under two cases:

homogeneous and heterogeneous CPs.

A. Homogeneous CPs

Let us start by considering homogeneous CPs, i.e., the per

unit revenue (rs = r) and the traffic pattern (θst = θt) are the

same for all CPs. These CPs provide the same subsidization

and required bandwidth, and thus simplify our analysis. In this

case, we can simplify the ISP’s optimization OPT-2 as:

OPT-4: max
{p,q}

p

L∑
t=1

Dt(h, p) + qλ(p, q)

s.t. λ(p, q) ≤ μ/N, (22)

p ≥ 0, q ≥ 0. (23)

Now we can show the effect of expending the capacity in

the following theorem.

Theorem 3 (Effects of capacity). Denote the ISP’s optimal

strategy in the system (N , μ,M) and (N , μ′,M) as (p, q)
and (p′, q′), respectively. If μ′ ≥ μ, then Π′ ≥ Π. Moreover,

if R′ = R, then at least one of the following conditions hold:

(a) q′ ≤ q, or (b) p′ ≤ p.

Proof. Please refer to our technical report [20].

Theorem 3 indicates that when we increase the capacity, the

ISP reduces the price of per unit bandwidth charged to CPs,
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Fig. 6: Effects of q with homogeneous CPs
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Fig. 7: Effects of p with homogeneous CPs

or the price of per unit traffic charged to users, or both, so as

to obtain a higher profit. In addition, the ISP always benefits

from the capacity extension. Then, we consider the effects of

ISP’s strategy on CPs.

Theorem 4 (Effects of ISP’s strategy). Given any two strate-

gies that satisfy (p′, q′) � (p, q), we have Φ′ ≤ Φ. In addition,

if R′ = R, then λ′ ≤ λ, h′
t ≤ ht, ∀t ∈ {1, · · · , L}.

Proof. Please refer to our technical report [20].

Theorem 4 shows that when the ISP increases its price

charged to CPs and/or users, CPs’ profit reduces. Moreover,

when the rankings of subsidization are the same, CPs reduce

their subsidization and their required bandwidth.

To intuitively understand the effects of ISP’s strategy, let

us consider the following example. Assume the traffic pattern,

users’ valuation and CPs’ revenue are the same as in the Sec.

IV-C. We set m1 : m2 = 1 : 3 and K = 4. The prices charged

to users and CPs are p = 1 and q = 30 respectively unless

otherwise specified.

In Fig. 6, we investigate the effects of various prices

of per unit bandwidth on the ISP’s and CPs’ profits, and

users’ welfare . Figure 6(a) indicates that the ISP’s profit first

increases and then decreases with respect to q. Given the value

of μ, there exists such a value q (e.g., q = 20 under μ = 7)

that maximises the ISP’s profit. In addition, a larger capacity

indicates a higher profit of the ISP. A small capacity, e.g.,

μ = 3, may limit the decision for the optimal price of per

unit bandwidth. Figure 6(b) shows that CPs’ profit decreases

significantly with respect to q. For instance, when q increases

from 10 to 40, CPs’ profit decreases from 271 to 118, or by

nearly 56%. A larger capacity also indicates a higher profit of

CPs. Moreover, when the capacity is larger, CPs’ profit also

decreases more rapidly with respect to q. Figure 6(c) shows

that users’ welfare is non-increasing with respect to q. When
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Fig. 8: Effects of q with heterogeneous CPs
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Fig. 9: Effects of p with heterogeneous CPs

q is small, e.g., q = 20 under μ = 3, users’ welfare keeps

a constant with respect to q since the demand is constrained

by the capacity. Moreover, a larger capacity indicates a higher

welfare of users.

In Fig. 7, we investigate the effects of various prices of per

unit traffic on the ISP’s and CPs’ profit, and users’ welfare.

Figure 7(a) shows that there exists a price of per unit traffic

(e.g., p = 0.7 under μ = 7) that maximizes the ISP’s profit. A

larger capacity indicates a higher profit of the ISP. Moreover,

the ISP’s profit increases with respect to p when the capacity

becomes the constraint, e.g., μ = 1. Figure 7(b) shows CPs’

profit decreases concavely with respect to p. For instance,

when μ = 1, the CPs’ profit keeps almost unchanged when

p increases from 0.1 to 1.3, but decreases by 55% when p
increases from 1.3 to 1.9. Figure 7(c) shows that users’ welfare

decreases significantly with respect to p. When the capacity is

larger, the decreasing trend becomes more rapidly.

B. Heterogeneous CPs

In this subsection, we analyze the effects of ISP’s strategy

on the capacity utilization4, ISP’s profit, social welfare under

heterogeneous CPs via simulations. We define the social

welfare as the sum of all CPs’ profit, ISP’s profit and users’

welfare. We consider five heterogeneous CPs in the simula-

tions. Each CP s has a random phase displacement ξs from

G(0, 22) and random amplitude of traffic pattern γs from

U [0.5, 1.5], i.e., θst = γs(t+ ξs) + δ. The revenue of per unit

traffic for service s ∈ {1, · · · , 5} is set to be rs = 0.5 × s.

The rest settings are the same as the previous subsection.

In Fig. 8, we show the effects of prices of per unit bandwidth

on the ISP’s profit, social welfare and capacity utilization.

4Capacity utilization here refers to the utliziation of ISP’s total capacity,
different from bandwidth utilization which refers to the utilization of CPs’
required bandwidth.



Figure 8(a) shows that the ISP’s profit first increases and then

decreases with respect to q. In addition, the ISP’s profit under

TDS is always higher than that under SDP. A larger number of

groups indicates a much higher profit for the ISP. For instance,

when q = 40, the ISP’s profit for TDS with κ = 1 is by

7% larger than that for SDP, while the value increases to

48% when κ = 5. Figure 8(b) shows that the social welfare

decreases with respect to q. Figure 8(c) shows that the capacity

utilization is of the similar trend as social welfare: it decreases

with respect to q. The intuition is that a higher q shrinks the

required bandwidth for each CP, resulting lower utilization.

In Fig. 9, we show the effects of prices of per unit traffic

on the ISP’s profit, social welfare and capacity utilization.

Figure 9(a) shows the ISP’s profit is maximized when p is

neither too small nor too large. In general, the ISP’s profit

under TDS is larger than TDP, e.g., by 3% on average when

κ = 1 and by 15% on average when κ = 5. Figure 9(b)

shows that the social welfare decreases with respect to p, and

the decreasing trend becomes more rapidly when p is large.

In addition, the value of social welfare under TDS is always

higher than the value under SDP. Figure 9(c) shows that the

capacity utilization has the similar trends as social welfare: it

decreases with respect to p, and its value under TDS is also

higher than that under SDP.

Summary: The capacity has great impacts on the ISP’s and

CPs’ profit, and users’ welfare. A larger capacity indicates

higher profits for the ISP and CPs as well as users’ welfare. In

addition, the optimal prices charged by the ISP to CPs and end

users all decrease with respect to the capacity. Well designed

TDS always outperforms SDP in terms of ISP’s profit, social

welfare and capacity utilization. A larger number of groups

indicates better performance of TDS. Moreover, the social

welfare and capacity utilization are controversial to the ISP’s

strategy. Higher prices charged to CPs and end users indicate

lower social welfare and capacity utilization.

VI. CONCLUSION

In this paper, we propose time-dependent sponsoring, i.e.,

each CP can subsidize its users depending on the traf-

fic demand at different time slots. We analyze TDS with

strategic users, who can delay their consumption for higher

subsidization in future. We formulate a Stackelberg game to

capture the interactions among strategic users, CPs and an

ISP. Our main conclusions include: 1) highly patient strategic

users may reduce the average subsidization and the number

of subsidizations, thus reducing bandwidth utilization, CPs’

profit and users’ welfare, and 2) when CPs provide different

subsidizations to different groups, the bandwidth utilization

can be improved significantly and so are CPs’ profit and

users’ welfare, and 3) each CP’s optimal subsidization under

TDS increases capacity utilization, users’ welfare and social

welfare, and 4) the ISP obtains a higher profit under TDS than

SDP. We would also like to mention some limitations in our

paper: 1) we consider one monopoly ISP only but does not

consider multiple ISPs’ competitive market; 2) in our model,

users make the decision of consumption time simply according

to the lowest price to pay, while in reality, users may prefer

to consume the content earlier if the price is not too high. We

would like to address these issues in our future work.
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