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Abstract—With the advances of bandwidth-intensive mobile
devices, we see severe congestion problems in wireless data
networks. Recently, research emerges to solve this problem
from a pricing point of view. Time dependent pricing has been
introduced, and initial investigations have shown its advantages
over the conventional time independent pricing. Nevertheless,
much is unknown in how a practical and effective time dependent
pricing scheme can be designed. In this paper, we explore the
design space of time dependent pricing. In particular, we focus on
a number of schemes, e.g., the usage-based scheme, the flat-rate
scheme, and a mixture of them which we called a cap scheme.
Our findings include: 1) the ISP obtains a higher profit with
usage-based (or flat-rate) scheme if the capacity is insufficient (or
sufficient); 2) the usage-based scheme usually achieves a higher
consumer surplus and more efficient traffic utilization than the
flat-rate scheme; and 3) the cap scheme is strongly preferred by
the ISP to further increase its revenue. We believe our findings
provide important insights for ISPs to design effective pricing
schemes.

I. INTRODUCTION

With the advances of bandwidth-intensive mobile device
such as smart phones, tablet computers, etc., the data traffic for
wireless data networks has grown tremendously in the past few
years. It is reported a further increase by more than ten times
of the current volume is expected in the next five years [1].
This poses challenges for the network operators to consistently
provide good quality services. There are studies addressing
this problem from technical points of view, including data
measurement [2], caching designs [3], smart spectrum utiliza-
tion [4], and architectural redevelopment [5]. Nevertheless,
researchers also debate that whether such demand increases
can be fulfilled by technical solutions only [6].

In this paper, we consider this problem from a pricing point
of view. To see our motivation, on one hand, the traffic demand
is highly volatile over time, e.g., the demand in peak hours can
be more than ten times than that in valley hours [7]. It is neither
physically easy nor economically profitable to purely rely on
technical solutions to meet the extreme peak demand. On the
other hand, users’ behaviors lead to volatile traffic demands;
and pricing has been proven as an effective way to shape users’
behaviors [8], [9]. For example, by charging a higher price,
users may choose to use low-bandwidth applications or reduce
unnecessary consumption during the peak times.
†Weijie Wu is the corresponding author.

The dominant pricing scheme in today’s Internet is time-
independent flat-rate pricing, i.e., Internet service providers
(ISPs) charge a fixed service fee for unlimited data usage
during a time period (e.g., one month), and within this period,
users can consume the data traffic anytime they want. This
is successful in broadband (i.e., wired) networks as these
networks own adequate bandwidth resources. However, this
type of pricing strategy usually encourages data usage from
customers, which is not always suitable for wireless services
where bandwidth is inadequate. For example, WeChat, a
very popular mobile social application in China, consumes
data traffic to send text, voice and photos. Under the time-
independent flat-rate pricing model, people may relentlessly
upload photos and “short talk” of trivial errands whenever
they want. This causes increasing congestion problems since
people consume traffic during peak hours, and important data
transmissions may be delayed or even rejected.

To handle this problem, time dependent pricing [7], [10]
have been recently introduced for wireless data networks. It
considers the time variance feature of users’ demands, and
charges the users dynamically over time. Such pricing has
been emerging recently in practice. For instance, BSNL in
India offers unlimited night time (2-8 am) downloads on a
monthly data plan of RS 500 (or USD $10); in US, some
ISPs have begun experimenting time dependent pricing plans.
Authors in [7], [10] declared that time dependent pricing can
migrate demand from peak to off-peak times, and Ha et al. [7]
designed a mechanism to do it via rewarding users. We argue
that besides the migration effect, a high or low price can
significantly change users’ usage pattern in peak and valley
times. For instance, in WeChat, one may use video chat when
the price is low, and switch to text chat when the price is high.

Although time dependent pricing has been proposed, much
is unknown in its design space, in particular, what is the most
effective and profitable time dependent pricing scheme, and
how to incentivize the users to use the wireless bandwidth in
an efficient manner. These problems are challenging because
users’ demands are highly dynamic and heterogenous, and
there are complicated interactions between the users and
ISPs. In this paper, we explore the design space of time
dependent pricing in a monopoly ISP market, and provide
important insights on how to design practical and effective
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pricing schemes. In particular, we consider three types of
schemes: 1) flat-rate scheme, where a single price is proposed
for unlimited usage (but this price can change from peak to
valley times); 2) usage based (or metering) scheme, where
the total price equals to the unit price times the amount of
usage (again, the unit price can also be time-varying); and
3) the “cap then metered” scheme (or cap scheme for short),
i.e., setting a limit below which flat-rate scheme is applied and
beyond which usage-based scheme is applied [11]. There have
been extensive studies on comparison between the flat-rate
scheme and the usage-based scheme [11], [12], but they are
restricted in broadband networks. Up till now, very few works
have been focusing on time dependent pricing in wireless
networks. In this paper, we analyze the design principles of
time dependent pricing under wireless environment. We use a
Stackelberg game model to capture the interactions between a
set of heterogeneous users and the monopoly ISP, and explore
the optimal pricing schemes for the ISP. We evaluate the
schemes in terms of the ISP’s profit, users’ surplus, bandwidth
utilization and the effectiveness of bandwidth usage. Our main
findings are:
• The ISP obtains a higher profit with usage-based (or flat-

rate) scheme if its capacity is insufficient (or sufficient);
• Comparing with the flat-rate scheme, the usage-based

scheme usually achieves a higher consumer surplus and
a more efficient utilization of the traffic.

• The cap scheme is preferred by the ISP to further increase
its revenue, but consumers may not benefit from it.

This is the outline of the paper. Section II states related
work. Section III discusses the users’ service valuation model.
We compare the flat-rate and usage-based schemes in Section
IV, and discuss the cap scheme in Section V. Section VI states
numerical results and Section VII concludes the paper.

II. RELATED WORK

Time dependent pricing has been extensively studied to
address congestion problems in various fields. Borenstein [13]
studied retail real-time pricing (RTP) in electricity indus-
try, and Paschalidis and Tsitsiklis [14] proposed congest-
dependent pricing in communication networks. Recently, re-
searchers from academia and industry began to migrate the
similar methodology into pricing the wired or wireless network
access services. Jiang et al. [15] proposed a model with
the time dependent pricing based on users’ preference and
congestion level. It analyzed the revenue and social welfare
loss due to the insufficient information on users. Loiseau et
al. [16] compared the benefits of using the raffle-based scheme
and time dependent pricing for congestion management. It
showed that the provider knows in advance the total reward to
users with the raffle-based scheme, but requires an estimation
of the users’ responsiveness with time dependent pricing.
Wong et al. [10] studied the cost minimizing problem in time-
dependent pricing. The main idea is to defer the time of using
application sessions by rewarding users. It designed efficient
algorithms to determine the optimal time-dependent prices
which is basically a time dependent usage-based scheme. Ha et

al. [7] extended the work of [10] by presenting the architecture,
implementation, and a user trial of the system.

The above works have been making it a reality to charge
the Internet access in a time dependent manner; however, there
are very limited understandings on the theoretical rationales
of the mechanism design. In particular, much is unknown
on how to design a practical and effective time dependent
pricing and how to compare various schemes. We find only
one recent work from Hande et al. [17] which considers both
usage-based and flat-rate schemes. This paper considered time-
varying consumer utilities and capacity constraint and studied
the strategy of dropping packets. It considered a combination
of usage-based and flat-rate schemes where a fixed access fee
is charged, irrespective of the data rate and a linear flat rate
is charged for extra usage. However, the authors considered
homogeneous utility function of customers which does not
capture the real market. They modeled the problem from
an ISP’s point of view, but they did not consider the user
surplus or social welfare. Our work differs from [17] in that
1) we borrow the idea of bundling from Nabipay et al. [18],
and consider the user heterogeneity; 2) we rigorously show
what factors/conditions make flat-rate or usage-based scheme
more profitable; 3) we show how traffic cap strategy combines
the advantages of flat-rate and usage-based schemes; and 4)
we compare the schemes from a comprehensive viewpoint,
including the profit of ISPs and the surplus of customers.

III. USERS’ SERVICE VALUATION MODEL

In this section, we formulate a model on how users evaluate
the valuation of any particular service, and based on that, we
capture how users decide the amount of traffic to use for any
given price. This sets up the basis for analyzing various pricing
schemes in later sections.

We let a time slot [t−1, t](t = 1, · · · , T ) be the unit within
which the flat-rate or the usage-based unit price charged by
the ISP remains unchanged. We assume that each user has a
valuation on a particular wireless service. In each time slot, a
user decides whether and how much to use a service based on
his valuation and the service price. Only when his valuation of
the service is larger than or equal to the service price, the user
will subscribe to such service. For example, if a user thinks
that the traffic usage of watching a video brings him a huge
cost which is larger than his valuation of the video, he may
not watch this video, but he may opt to consume other forms
of services (e.g., reading emails).

We assume there are totally I independent services i =
1, 2, . . . , I , and we consider how users decide their valuation
on any service i. Let θti be the maximal possible demand for
service i during the time slot [t − 1, t]1. A user can decide
to consume any amount of traffic xti ≤ θti . If xti < θti ,
it means the user does not consume the maximal demand.
This represents that the user consumes partial service (e.g.,
he discusses with his friend on the most important issues

1The amount of the traffic demand may change over time. For instance,
users’ demand on the video may be higher at 11 pm than at 6 am [19].



via WeChat but he avoids telling jokes, or he watches the
video with screen freezing from time to time). We define
ωti = xti/θ

t
i , which is the ratio between the actual usage

and the maximal possible demand. Let ci denote the users’
per unit valuation of service i. If xti = θti , then the user’s
valuation on this service is ciθti during [t − 1, t]. If xti < θti ,
then his valuation decreases by a certain factor, and we use
a satisfaction function: fi : [0, 1] → [0, 1] to represent it.
This satisfaction function satisfies fi(0) = 0 and fi(1) = 1.
We assume that fi(·) is a non-decreasing, twice differentiable
function and it is concave or convex in the interval [0, 1]. Thus,
the users’ valuation for service i during time slot [t − 1, t],
denoted as Y ti , is

Y ti = ciθ
t
ifi(ω

t
i). (1)

We assume ci is independent of time, but users can have
different maximal demands during different slots. For instance,
the per unit valuation for WeChat is the same at any time
during a day, while the usage demand may be volatile over
time. In addition, the per unit valuations for different services
can also be much different. For example, the per unit value
for SMS can be much greater than that of voice [20]. We also
assume θti are non-negative random variables that reflect the
heterogeneity of consumers’ maximal traffic demand. Given
the time slot [t− 1, t], the maximal traffic usage for different
service i, i.e., θti , is assumed to be independent of each other.
Thus, Y ti is a non-negative independent random variable.

We also assume that the valuations of different services are
additive. Therefore, given the values of θti , the value of using
all services in [t− 1, t] is

Y t =

I∑
i=1

ciθ
t
ifi(ω

t
i). (2)

We denote that θti has the cumulative distribution function
Θθti

(sti) = Pr{θti ≤ sti} with finite mean uti and finite standard
variance σti . In particular, uti represents the average traffic
usage for service i in slot [t − 1, t], which is important in
our later analysis. We define the joint cumulative distribution
function of (θt1, θ

t
2, ..., θ

t
I ) as Θt(st) = Pr{θt1 ≤ st1, θ

t
2 ≤

st2, ..., θ
t
I ≤ stI}, where st = (st1, s

t
2, ..., s

t
I).

A. Discussion on the satisfaction function

The satisfaction functions have different features for various
services. For instance, in an online video service like Netflix,
users’ satisfaction drops rapidly when ωti decreases (i.e., a
large gap between the maximal demand and the actual traffic
consumption). This is because receiving the data less than the
required playback rate leads to frequent screen freeze, which
significantly reduces the quality of experience. In contrast, in
an online chat service like WeChat, users’ satisfaction may
still be high even if ωti is low. This is because people can
usually use only a few sentences to express the core message,
and they can use text chat instead of video chat. In this paper,
we define a user’s satisfaction function as follows:

fi(ωi) = ωβii , (3)
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Fig. 1: Satisfaction function

where βi is called the traffic sensitivity of service i. Large
βi(> 1) represents services with high requirement on integrity,
e.g., video service like Netflix; while small βi(< 1) represents
low sensitivity services like WeChat. There are also medium-
sensitivity services, e.g., web service like Google. Fig. 1
illustrates the satisfaction functions of these three types, with
parameters (c1, θ1, β1) = [0.2, 50, 5], (c2, θ2, β2) = [5, 1, 1]
and (c3, θ3, β3) = [1, 10, 0.2], respectively. They represent
Netflix-type (high maximal demand, high traffic sensitivity),
Google-type (low maximal demand, medium traffic sensitiv-
ity) and WeChat-type (medium maximal demand, low traffic
sensitivity) services. Fig. 1 shows that to achieve half of the
maximal valuation, Netflix-type services need at least 75%
of maximal demand; while Google-type and WeChat-type
services only need 50% or 5%. In our later analysis, many
results are based on the form of satisfaction function defined
in this subsection, and we are interested to observe the impact
of traffic sensitivity on the pricing schemes.

IV. FLAT-RATE VS. USAGE-BASED SCHEMES

In this section, we formulate a two-stage Stackelberg game
model [21] to capture the interactions between the monopoly
ISP and the heterogeneous users. The first stage of this game
is that the ISP determines the pricing scheme, and the second
stage is that the consumers decide whether to join in the
network and how much traffic to consume. It is natural to
assume that the ISP is the first mover and the consumers are
followers that make their decision according the prices. To
obtain the Stackelberg equilibrium of the game, we can use
the backward induction [21]. In particular, we first consider the
traffic consumption determined by users for any given pricing
scheme by the ISP. By knowing the consumers’ best responses,
the ISP decides its optimal pricing scheme, based on which
the traffic consumption of users can be also determined.

Based on this game framework, we will analyze the Stackel-
berg equilibrium under both flat-rate and usage-based schemes,
and we will compare them via a number of performance
measures. Since the major cost of an ISP is on infrastructure
constructions, we ignore its marginal cost for delivering the
data. Therefore, the ISP’s profit (or utility) equals the total
service fee charged from all users. Let µ be the capacity
constraint of the ISP during any time slot, i.e., the maximal
amount of traffic that can be provided by the ISP.



A. Usage-based Scheme

Due to network neutrality rules, we assume that the ISP
charges the same price ht per unit traffic for any kind of
services during [t − 1, t]. We normalize the the total number
of users to be one.

In order to analylize the Stackelberg equilibrium, we use
backward induction and first consider the second stage of the
game, i.e., given ht, users maximize their utility function by
choosing the traffic consumption xti for any service i:

max
xt

Uu(xt) =

I∑
i=1

ciθ
t
ifi(x

t
i/θ

t
i)− ht

I∑
i=1

xti

s.t. 0 ≤ xti ≤ θti , 1 ≤ i ≤ I. (4)

The optimal solution always exists and is:

xt∗i =

{
0 or θti if f

′′
i (·) ≥ 0,

θti min
{

1, f
′−1
i (ht/ci)

}
if f

′′
i (·) < 0,

(5)

where f
′−1
i (·) is the inverse function of first order derivative of

the satisfaction function fi(·), f
′′

i (·) ≥ 0 means f(·) is a con-
vex function and f

′′

i (·) < 0 means concavity. When f
′′

i (·) ≥ 0,
the users’ utility for service i is max{0, (ci − ht)θti}. Thus,
xt∗i = 0 if ht < ci or xt∗i = θti otherwise. When f

′′

i (·) < 0,
f
′−1
i (·) is a decreasing function and xt∗i is non-increasing in
ht. The total data consumption for service i from all users is:

Dt
i(h

t) =
∫
xt∗i dΘt

=

{
0 or uti if f

′′
i (·) ≥ 0,

uti min
{

1, f
′−1
i (ht/ci)

}
if f

′′
i (·) < 0,

(6)

where uti means the average data consumption for service i in
[t−1, t]. The total data consumption cannot exceed the traffic
capacity of the ISP, i.e.,

I∑
i=1

Dt
i(h

t) ≤ µ. (7)

We next analyze the first stage of the Stackelberg game.
Knowing the best responses of users, the ISP maximizes its
profit by charging prices that solve the following optimization:

max
{ht}t

Πu =

T∑
t=1

I∑
i=1

htDt
i(h

t)

s.t.
I∑
i=1

Dt
i(h

t) ≤ µ ∀t. (8)

Define ltu = min{l ≥ 0 :
∑I
i=1D

t
i(l) ≤ µ}. Since Dt

i(·) is
a non-increasing and continuous function, ltu means the lowest
price such that the total consumption does not exceed the ISP’s
capacity. Denote the ISP’s utility in [t−1, t] as πtu(·), we have
πtu(0) = 0 and πtu(∞) = 0. Since πtu(·) is a continuous func-
tion, the optimal solution of above optimization exists, which
we denote as ht∗. The optimal solution (xt∗, ht∗), obtained by
backward induction, is a Stackelberg equilibrium of the game,
where xt∗ = (xt∗1 , ..., x

t∗
I ). We denote the optimal profit during

time slot [t−1, t] as πt∗u , so Π∗u =
∑
t π

t∗
u . In particular, when

ht∗ = ltu, it means the optimal price is to make the traffic
consumption equal to the ISP’s capacity. We can imagine that
if there is no capacity constraint, the Stackelberg equilibrium
will induce a larger amount of traffic consumption. So in
this sense, we say the capacity is insufficient for usage-based
scheme because with a larger µ the ISP can achieve a higher
utility. When ht∗ > ltu, the capacity is not fully utilized in
the Stackelberg equilibrium. In other words, the capacity is
sufficient for the usage-based scheme.

B. Flat-rate Scheme

In the previous subsection, we have analyzed the interplay
between the monopoly ISP and users under usage-based
scheme for time dependent pricing. Now we analyze the flat-
rate scheme for time dependent pricing. We still use the two-
stage Stackelberg game model and the analysis is quite similar
to the previous case. If flat-rate pricing scheme is applied,
then the ISP charges a uniform price gt for unlimited data
consumption during [t−1, t], but the price may vary depending
on t. We first analyze the second stage game. Given the flat-
rate price ht in slot [t − 1, t], each user maximizes its utility
function by choosing the traffic consumption xti for any service
i:

max
xt

Uf (xt) =

I∑
i=1

ciθ
t
ifi(x

t
i/θ

t
i)− gt,

s.t. 0 ≤ xti ≤ θti 1 ≤ i ≤ I. (9)

Since fi(·) is a non-decreasing function and fi(1) = 1, the
optimal solution is xt∗i = θti and Uf (xt∗) =

∑I
i=1 ciθ

t
i − gt.

This means users always use as much as possible by flat-rate
scheme. A user decides to access the network if and only if
Uf (xt∗) ≥ 0. When gt is high, only those with high valuation
of all services will access the network. Thus, the fraction of
users accessing the network during [t− 1, t] is:

Pr

{
I∑
i=1

ciθ
t
i ≥ gt

}
=

∫
∑I
i=1 ciθ

t
i≥gt

dΘt. (10)

Now we focus on the first stage game. Knowing the best
responses of users’ traffic consumption, the ISP maximizes its
utility by solving

max
{gt}t

Πf =

T∑
t=1

gtPr

{
I∑
i=1

ciθ
t
i ≥ gt

}

s.t.
∫
∑I
i=1 ciθ

t
i≥gt

I∑
i=1

θtidΘt ≤ µ ∀t. (11)

Define Ht(gt) =
∫∑I

i=1 ciθ
t
i≥gt

∑I
i=1 θ

t
idΘt, i.e., users’

traffic consumption given price gt. Since Ht(·) is non-
increasing and continuous, the capacity constraint is equivalent
to gt ≥ ltf , where ltf = min{l ≥ 0 : Ht(l) ≤ µ}. Denote
the profit function during time slot [t − 1, t] for flat-rate
scheme as πtf (·), we have πtf (0) = 0 and πtf (∞) = 0. Since
πtf (·) is a continuous function, the optimal solution of above
optimization exists, denoted as gt∗. Therefore, (xt∗, ht∗) is a



Stackelberg equilibrium of the game, where xt∗ = (θt1, ..., θ
t
I).

We denote the maximal profit during time slot [t−1, t] as πt∗f .
The following lemma shows the bound of this maximal profit.

Lemma 1. Denote εt = I−1/3
(

maxi{ciσti}
mini{ciuti}

)2/3

. The optimal
profit during slot [t− 1, t] satisfies:

πt∗f

{
≥ (1− 2εt)

∑I
i=1 ciu

t
i if gt∗ > ltf ,

≤ maxi{ci}µ if gt∗ = ltf .
(12)

Proof: Please refer to the appendix.

Lemma 1 shows that when I , the number of services, is
large enough, the ISP can almost achieve the maximal possible
profit (which is

∑I
i=1 ciu

t
i) by flat-rate scheme when the

capacity is sufficient, i.e., gt∗ > ltf . The intuition is that the
flat-rate scheme can reduce the variance of users’ valuations
on different services, so that the ISP can easily set up a single
price to attract many users. We can also see that when the
ISP’s capacity is insufficient, i.e., gt∗ = ltf , the ISP’s maximal
profit is constraint by this capacity.

C. Comparison of Usage-based and Flat-rate Schemes

Now we compare usage-based and flat-rate schemes from
various viewpoints. We let the satisfaction function be fi(ω) =
ωβi , βi = β(0 < β < 1) and ci = c. Denote ut =

∑I
i=1 u

t
i.

We start our analysis by comparing the ISP’s profit, and we
have the following theorem.

Theorem 1. If ut ≤ µ, then there exists I0 such that for any
I ≥ I0, πt∗f > πt∗u ; if ut ≥ β1/(β−1)µ, then πt∗f ≤ πt∗u .

Proof: Please refer to the appendix.

The first part of Theorem 1 shows that when the ISP’s
capacity is larger than the maximal possible demand from
users, and I is large enough, then the ISP will have a higher
profit when adopting flat-rate scheme. In fact, flat-rate scheme
can almost achieve a profit of cut but usage-based scheme can
achieve at most βcut. The second part shows that when the
capacity is small, the usage-based scheme can achieve more
profit than usage-based; when the traffic sensitivity β is larger,
the usage-based scheme achieves higher profit.

We also compare the two pricing schemes from users’
viewpoint, and we have the following definition.

Definition 1. Consumers’ surplus is the difference between
consumers’ average valuation of services and the service fee
charged by the ISP.

Denote the consumers’ surplus of usage-based scheme and
flat-rate scheme during time slot [t − 1, t] as ψtu and ψtf
respectively. We have the following theorem.

Theorem 2. If ut ≤ µ, then there exists an I0 such that for
any I ≥ I0, ψtu > ψtf ; if ut ≥ (1−β)1/(β−1)µ, then ψtu > ψtf .

Proof: Please refer to the appendix.

Theorem 2 shows that the consumers’ surplus of usage-
based scheme is higher than that of flat-rate scheme when
the capacity is large enough or small enough. The underlying

reason is that the flat-rate scheme reduces the heterogeneity of
users’ valuation, so the ISP can charge the price closer to the
consumers’ valuation and this reduces the consumers’ surplus.

We also consider the following two other metrics to compare
usage-based and flat-rate schemes.

Definition 2. Capacity utilization is the ratio of the average
per-time-slot data consumption in [0, T ] over the largest data
consumption in any time slot in [0, T ].

Definition 3. The traffic efficiency (or per-unit traffic valua-
tion) is the consumers’ average valuation of services divided
by the average traffic consumption.

The usage-based and flat-rate scheme have different perfor-
mances for capacity utilization and traffic efficiency. For flat-
rate scheme, it can even out the varying valuation for different
services, so as to reduce the heterogeneity of users’ valuation.
This characteristic makes flat-rate scheme attract most of the
demand when the capacity is sufficient. When the capacity is
insufficient, the capacity is fully utilized. The flat-rate price
attracts the consumers with high total valuation, but not high
per-unit traffic valuation. This is against improving traffic
efficiency even when the capacity is insufficient. For usage-
based scheme, it always filters out the traffic with valuation
lower than the optimal price per unit even when the capacity is
sufficient. When the capacity is insufficient, the monopoly ISP
makes higher price per unit to obtain higher profit. This also
means higher per-unit traffic valuation. The traffic efficiency is
greatly improved. Thus, the flat-rate scheme is more likely to
have higher capacity utilization while the usage-based scheme
is more likely to have higher traffic efficiency. Theoretically,
it is hard to give religious results, but we will validate our
analysis via numerical results in later sections.
Summary. From the ISP’s point of view, it achieves a higher
profit under the usage-based scheme when the capacity is
insufficient, or under the flat-rate scheme when the capacity
is sufficient. The proper adoption of flat-rate and usage-
based schemes for time-dependent pricing strategy provides
an effective method for the monopoly ISP to improve its
profit. From the consumers’ point of view, the usage-based
scheme usually brings a higher consumers’ surplus than flat-
rate scheme. In addition, the usage-based scheme usually
brings a higher traffic efficiency while the flat-rate scheme
usually leads to a higher capacity utilization.

V. TRAFFIC CAP SCHEME

In Section IV we have compared usage-based and flat-rate
pricing schemes under time dependent pricing. In fact, these
two schemes both have limitations. The usage-based scheme
does not attract most users to access the wireless service, while
the flat-rate scheme does not limit the usage of each user and
this is why “bandwidth hogs” exist. In reality, many companies
apply a “cap then metered” scheme, or “cap scheme” for short,
which is a mixture of the above two schemes. To illustrate,
AT&T charges $20 for 300MB and $30 for 3GB per month in
“AT&T individual plan”. Users enjoy a flat-rate pricing as long



as their traffic consumption is no larger than this threshold, and
a usage-based pricing is applied when the usage is beyond the
threshold2. In this section, we explore the rationale of using
the cap scheme under time dependent pricing, where the prices
and the threshold can change over time.

The interplay between the ISP and consumers is still a
Stackelberg game. Similar to the previous analysis, we start by
analyzing the second stage game. Given the price gt and traffic
cap Ct during time slot [t− 1, t], users decide the amount of
traffic to use by maximizing their utility function:

max
xt

Uc(xt) =

I∑
i=1

ciθ
t
ifi(x

t
i/θ

t
i)− gt

s.t.
I∑
i=1

xti ≤ Ct, 0 ≤ xti ≤ θti , 1 ≤ i ≤ I. (13)

We have the following proposition to quantify its solution:

Proposition 1. Given traffic cap Ct, there exists a λt∗ such
that the optimal solution of the following optimization problem

max
xt

I∑
i=1

ciθ
t
ifi(x

t
i/θ

t
i)− λt∗

I∑
i=1

xti

s.t. 0 ≤ xti ≤ θti , 1 ≤ i ≤ I, (14)

is a global optimum for Problem (13) if f
′′

i (·) < 0 for any i.

Proof: Please refer to the appendix.

According to Proposition 1, the optimal traffic consumption
for Problem (13) can be obtained by solving Problem (14).
Denote this optimal traffic consumption as xt∗. The users’
utility can be expressed as Uc(xt∗) =

∑I
i=1 ciθ

t
ifi(x

t∗
i /θ

t
i)−

gt. The users access the network charged by traffic cap scheme
if and only if Uc(xt∗) ≥ 0, and the fraction of these users is:

Pr{Uc(xt∗) ≥ 0} =

∫
∑I
i=1 ciθ

t
ifi(x

t∗
i /θ

t
i)≥gt

dΘt. (15)

Now we analyze the first stage game. Knowing the best
responses from consumers, the ISP maximizes its profit by
charging a price gt and setting a traffic cap Ct that solve:

max
{gt,Ct}t

Πc =

T∑
t=1

gtPr{Uc(xt∗) ≥ 0}

s.t.
∫
Uc(xt∗)≥0

I∑
i=1

xt∗i dΘt ≤ µ ∀t. (16)

Given any Ct, due to similar reason with flat-rate scheme,
there exists an optimal solution to the above problem and
we denote it as gt∗(Ct). So there exists an optimal solu-
tion for Problem (16), which we denote as (gt∗(Ct∗), Ct∗).
Therefore, by the backward induction, we know that there
exists a Stackelberg equilibrium using cap scheme and it is
(xt∗, gt∗(Ct∗), Ct∗).

2Usually, the users suppress its traffic consumption under the threshold due
to the high per unit price when the usage is beyond the threshold.

In general, it is hard to quantify the properties of the
Stackelberg equilibrium using the cap scheme. In order to
show some interesting insights, we consider a special case
where the traffic sensitivity βi = β(β ∈ [0, 1]) and the per
unit valuation ci = c. Define Φt = maxs sPr{

∑I
i=1 θ

t
i ≥ s}.

In fact, cΦt is the maximal possible profit the ISP can obtain
if µ =∞. We define the cap benefit of the ISP as the ratio of
the ISP’s optimal profit with traffic cap scheme over that with
flat-rate scheme. Denote CBtp as the cap benefit of the ISP
during time interval [t−1, t]. We have the following theorem.

Theorem 3. If Φt > µ, then CBtp satisfies: 1) it is increasing
in Φt and decreasing in β; and 2) CBtp ≥ (Φt

µ )1−β .

Proof: Please refer to the appendix.

Theorem 3 indicates that the ISP’s cap benefit is always
larger than one when Φt > µ, and it increases with respect
to Φt and decreases with respect to µ. This means when
the capacity is insufficient, the cap benefit becomes more
dominant. This is because the cap scheme reduces high volume
of traffic consumption. We also note that small β means high
cap benefit. This is because low β indicates that consumers
conserve high unit valuation of customers under small cap
threshold, and these customers accept high price charged by
the ISP, increasing the ISP’s profit.

We also analyze the traffic cap scheme from the consumers’
point of view. Similarly, we can define the cap benefit of
consumers’ surplus, and we denote its value in [t − 1, t] as
CBts. We have the following theorem.

Theorem 4. If Φt > µ, then CBts decreases when β increases,
and CBts → 0 when β → 1.

Proof: Please refer to the appendix.

Theorem 4 shows that the traffic cap strategy cannot al-
ways improve the consumers’ surplus. When β is small, the
consumers’ surplus is high using cap scheme, while under
the flat-rate scheme it is independent of β. When β increases,
consumers’ surplus reduces; and when β → 1, the consumers’
surplus approaches zero under the traffic cap scheme.

We can similarly define cap benefit of traffic efficiency and
denote its value in [t− 1, t] as CBte. We have:

Theorem 5. If Φt > µ, then CBte satisfies: 1) it is decreasing
in β and µ; 2) CBte ≥ (Φt

µ )1−β; and 3) CBte → 1 as β → 1.

Proof: Please refer to the appendix.

Theorem 5 shows that the efficiency can increase by adopt-
ing traffic cap strategy when Φt > µ. When β is small,
the benefit is large because the consumers consume the data
in a more efficient way. The traffic efficiency is high when
the capacity is less than Φt (or insufficient). The traffic
cap strategy improves the traffic efficiency by replacing low-
valuation traffic with high-valuation traffic. For example, when
the capacity is insufficient, a user may use it to read emails but
not watching video because the per-unit valuation of reading
email is much higher. This also means that the traffic cap
strategy can improve traffic efficiency while keeping high



capacity utilization. When the capacity is sufficient, the traffic
cap strategy will just work like a flat-rate scheme.
Summary. The cap strategy combines the advantages of
usage-based and flat-rate schemes. When the capacity is suffi-
cient, the cap strategy improves the capacity utilization, which
is similar to the effect of flat-rate scheme. When the capacity is
insufficient, the cap strategy improves traffic efficiency, which
is similar to the effect of usage-based scheme. Therefore, the
ISP has a strong incentive to introduce this cap into its pricing
strategy. However, consumer’s surplus may not always be as
large as that under the flat-rate scheme.

VI. NUMERICAL RESULTS

In this section, we provide numerical examples for quanti-
tative study on the key features of the three schemes discussed
above. We set the satisfaction function in the form of Eq. (3).
The default number of services is set as 10. The per unit
valuation for service i is randomly chosen from [0, 1]. The
distributions of the maximal demand during peak time are
assumed to be uniform distributions U([0, αi]), where αi
is randomly selected from [0, 10]. The traffic sensitivity βi
is randomly selected from [0, 1] if not specified otherwise.
We divide a day into 24 time slots as [7]. The maximal
demands during different slots are obtained by multiplying
a discount function in terms of time from a 24-hours traffic
usage data [19] normalized in [0, 1]. To satisfy the maximal
demand for all time slots, the capacity per service needs to
be around 2.5. In practice, the capacity is always insufficient
during peak time and sufficient during valley time in wireless
data networks, so we set the capacity per service as 1 by
default. We consider three schemes for time dependent pricing:
usage-based scheme, flat-rate scheme and traffic cap scheme.
The performance measures include the ISP’s average profit per
service Π, consumers’ average surplus per service Ψ, capacity
utilization ρ and traffic efficiency φ.

We first compare the usage-based and flat-rate schemes.
Fig. 2(a) shows the ISP’s average profit per service during
different time slots. In valley time, e.g., 5 am, the flat-rate
scheme leads to a higher profit than usage-based scheme. The
main reason is that the flat-rate scheme attracts more traffic
usage (which is verified in Fig. 2(c)). In peak time, e.g., 10
pm, the ISP benefits more from usage-based scheme. This is
because the usage-based scheme improves the traffic efficiency
during peak time (which is verified in Fig. 2(d)). The traffic
efficiency for usage-based scheme is almost twice as that of
flat-rate scheme. We also compare the flat-rate scheme when
the numbers of services changes. As the number increases,
the ISP obtains a higher profit. The reason is a large number
of services means low heterogeneity of the valuation in all
services. More users can be attracted by a single price so that
the capacity utilization is high (which is verified by Fig. 2(b)).
Yet, the consumers’ surplus reduces when the heterogeneity of
the valuation decreases, as is shown in Fig. 2(b).

We then compare the cap and flat-rate schemes with various
capacities. Fig. 3(a) demonstrates that the ISP always benefits
more from traffic cap scheme. A smaller capacity means

a larger profit of the ISP using the traffic cap scheme. In
addition, a lower traffic sensitivity indicates a higher profit
of the ISP. For instance, when the traffic sensitivity is large,
e.g., β = 0.9, and the average capacity per service is small,
e.g., µ = 0.25, the profit of the ISP for traffic cap scheme is
around 1.5 times of that in flat-rate scheme. When the traffic
sensitivity is small, e.g., β = 0.1, the benefit is more than
3 times than that in flat-rate scheme. Fig. 3(c) and Fig. 3(d)
show that the capacity utilizations for cap and flat-rate schemes
are almost the same; while the traffic efficiency for traffic cap
scheme is much higher, especially when the capacity is small.
It shows the traffic cap scheme does not increase capacity
utilization but does improve traffic efficiency. Fig. 3(b) shows
that consumers benefit from traffic cap scheme when the traffic
sensitivity is small. When the traffic sensitivity is large, the
consumers’ surplus may reduce.

We also compare the cap and usage-based schemes under
different capacities. Fig. 3(a) and Fig. 3(b) show that the ISP
strongly prefers traffic cap strategy while consumers’ surplus is
usually much higher when using the usage-based scheme. The
main reason is that cap scheme always has the advantage of
reducing the heterogeneity of the consumers’ valuation. This
enables the ISP to earn profit from consumers and reduce
consumers’ surplus. Fig. 3(c) shows that the usage-based
scheme always has a low capacity utilization, and a smaller
traffic sensitivity means lower capacity utilization. Fig. 3(d)
shows that both traffic cap and usage-based schemes have high
traffic efficiency.

VII. CONCLUSION

In this paper, we explore the design space of practical and
effective schemes for time dependent pricing in a monopoly
ISP market. We model the users’ valuation for different
services in a wireless data network. We use game theoretic
analysis to capture the interplay between consumers and the
ISP. Based on this, we compare three schemes, i.e., usage-
based scheme, flat-rate scheme and cap scheme, in terms of
the ISP’s profit, users’ surplus, capacity utilization and traffic
efficiency, respectively. Our important findings includes: 1) the
monopoly ISP obtains a higher profit using usage-based (or
flat-rate) scheme if the capacity is insufficient (or sufficient);
2) the usage-based scheme usually achieves a higher consumer
surplus and better traffic efficiency than flat-rate scheme; and
3) the ISP prefers using the cap scheme to further increase its
revenue, but consumers may not benefit under the cap scheme.
We believe our findings provide important insights for ISPs to
design effective pricing schemes. One interesting extension of
this work is to consider time dependent pricing design in an
oligopoly ISP market with competition.
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APPENDIX

Proof of Lemma 1: We first consider the case of sufficient
capacity, i.e., gt∗ > ltf . The optimization problem can be simplified
as πt∗f = maxgt g

tPr{
∑I
i=1 ciθ

t
i ≥ gt}. Denote u =

∑I
i=1 ciu

t
i

and σ2 =
∑I
i=1 c

2
i (σ

t
i)

2. By letting gt = (1− ε)u, we have

πt∗f ≥ (1− ε)uPr{
∑I
i=1 ciθ

t
i ≥ (1− ε)u}

≥ (1− ε)u(1− Pr{|
∑I
i=1 ciθ

t
i − u |≥ εu}).

(17)

From Chebyshov’s inequality, we can know that Pr{|
∑I
i=1 ciθ

t
i −

u |≥ εu} ≤ σ2

(εu)2
. Combined with Eq. 17, we have πt∗f ≥ (1 −

ε)u[1− σ2

(εu)2
] ≥ u[1− ε− σ2

(εu)2
]. If we take ε = (σ

u
)2/3, it follows

that πt∗f ≥ u(1− 2ε). Since σ
u
≤ I−1/2 maxi{ciσti}

mini{ciuti}
, we have ε ≤ εt.

Thus, we prove that πt∗f ≥ u(1− 2εt1).
We next consider the case of insufficient capacity, i.e., gt∗ = ltf .

It means that
∫∑I

i=1 ciθ
t
i≥g

t∗
∑I
i=1 θ

t
idΘt = µ. Denote c∗ =



maxi{ci}. For any gt, we have:∫∑I
i=1 ciθ

t
i≥g

t

∑I
i=1 θ

t
idΘt = 1/c∗

∫∑I
i=1 ciθ

t
i≥g

t

∑I
i=1 c

∗θtidΘt

≥ 1/c∗
∫∑I

i=1 ciθ
t
i≥g

t g
tdGt

= 1/c∗gtPr{
∑I
i=1 ciθ

t
i ≥ gt}.

(18)
Then, we have πt∗f = gt∗Pr{

∑I
i=1 ciθ

t
i ≥ gt∗} ≤ c∗µ. Therefore,

we proof the lemma.

Proof of Theorem 1: When ut ≤ µ, the capacity is sufficient
for both usage-based and flat-rate scheme. For usage-based scheme,
the optimal solution and profit during [t − 1, t] is ht∗ = βc and
πt∗u = βcut. Note that when the capacity is sufficient, according
to the lemma 1, we have that πt∗f ≥ (1 − 2εt)cut. By letting I ≥
( 2

1−β )3(
maxi σ

t
i

mini u
t
i

)2, we have πt∗f ≥ βcut = πt∗u .

When ut ≥ β1/(β−1)µ, the optimal profit of flat-rate scheme is
upper bounded by cµ according to Lemma 1. The capacity of usage-
based scheme is also insufficient. The optimal solution and profit are
ht∗ = βc(u

t

µ
)1−β and πt∗u = βcu(u

t

µ
)1−β ≥ cµ. Then, we have

πt∗u ≥ πt∗f and this completes the proof.

Proof of Theorem 2: We first consider the case ut ≤ µ. It means
that capacity is sufficient for both usage-based scheme and flat-rate
scheme. For the consumers’ surplus of flat-rate scheme, we have:

ψtf =
∫
c
∑I
i=1 θ

t
i≥g

t(c
∑I
i=1 θ

t
i − gt)dΘt

≤ cut − (1− 2εt)cut = 2εtcut.
(19)

Note that the consumers’ surplus of usage-based scheme is ψtu =

(1 − β)cut. By letting I > ( 2
1−β )3(

maxi σ
t
i

mini u
t
i

)2, we have ψtu > ψtf .

When ut ≥ (1− β)1/(β−1)µ, we have ψtu = (1− β)cuβ(µt)1−β ≥
cµ > ψtf as desired in the theorem.

Proof of Proposition 1: Denote the optimal solution of Prob-
lem (13) as xt∗ = (xt∗1 , x

t∗
2 , ..., x

t∗
I ). The Lagrangian is:

L(xt∗, λ, v,w) = −Utc(xt∗) + ν(
∑I
i=1 x

t∗
i − Ct)

−
∑I
i=1 vix

t∗
i +

∑I
i=1 wi(x

t∗
i − θti).

(20)

The optimal solution to Problem (14) satisfies the KKT conditions
if we assign ν = λt∗. We consider the Hessian matrix of the
Lagrangian:

O2L(xt∗) = −diag
(
c1
θt1
f
′′
(
xt∗1
θt1

)
, · · · , cI

θtI
f
′′
(
xt∗I
θtI

))
. (21)

When f
′′
i (·) < 0 holds on for any i, we have that yTL(xt∗)y ≥ 0 for

any y 6= 0. Thus, the optimal solution to Problem (14) is the global
optimum of Problem (13).

Proof of Theorem 3: We substitute the variable gt by c1 = gt

Ct
.

We can divide the original problem into two optimization problems
by considering new conditions c1 ≥ c and c1 < c. We first consider
the case c1 ≥ c. For any consumers with

∑I
i=1 θ

t
i < Ct, λt∗ = 0

and Uf (xt∗) = c
∑I
i=1 θ

t
i − gt ≤ cCt − c1Ct ≤ 0. It means that

these consumers will not access the network. Thus, we only need
to consider the users with

∑I
i=1 θ

t
i ≥ Ct. Under this case, λt∗ =

βc
(

Ct∑I
i=1 θ

t
i

)β−1

and Uc(xt∗) = c(Ct)β(
∑I
i=1 θ

t
i)

1−β − gt. The
optimization problem becomes:

max
{c1,Ct}

πtc = c1C
tPr

{
I∑
i=1

θti ≥
(c1
c

) 1
1−β

Ct
}

s.t. CtPr

{
I∑
i=1

θti ≥ (
c1
c

)
1

1−βCt
}
≤ µ. (22)

Denote Φt = maxs sPr{
∑I
i=1 θ

t
i ≥ s} = maxs s

∫∑
θti≥s

dΘt

and s∗ as one optimal solution, The maximum profit of the above
optimization problem is:

πt∗c = c1( c1
c

)
1

β−1 ( c1
c

)
1

1−βCtPr{
∑I
i=1 θ

t
i ≥ ( c1

c
)

1
1−βCt}

≤ c1( c1
c

)
1

β−1 Φt.
(23)

Let c1 = c( Φt

µ
)1−β and Ct = µ

Φt
s∗. The above upper bound will

be achievable and the constraint can also be satisfied. The maximal
profit for the ISP will be c(Φt)1−βµβ . Then, we need to prove that
c1 = c( Φt

µ
)1−β and Ct = µ

Φt
s∗ are the optimal solutions under both

cases, i.e., c1 ≥ c and c1 < c. If not, the optimal profit under the case
c1 < c will be higher than that under the case c1 ≥ c. Denote the
optimal solution as gt∗ and Ct∗. It means that gt∗ < cCt∗. Under
the case c1 < c, we have the optimization problem

max
{c1,Ct}

πtc = c1C
tPr

{
I∑
i=1

θti ≥
c1
c
Ct
}

(24)

with the capacity constraint∫
c1
c
Ct≤

∑I
i=1 θ

t
i≤C

t

I∑
i=1

θtidΘt + Ct
∫
∑I
i=1 θ

t
i≥C

t

dΘt ≤ µ. (25)

Note that given c∗1 = gt∗

Ct∗ , for any Ct < Ct∗, as Ct decreases, the
total traffic will be non-increasing. We let Ct = gt∗/c < Ct∗ and
have∫

c∗1
c
Ct∗≤

∑I
i=1 θ

t
i≤C

t∗

∑I
i=1 θ

t
idΘt + Ct∗

∫∑I
i=1 θ

t
i≥C

t∗ dΘt

≥ c∗1
c
Ct∗

∫∑I
i=1 θ

t
i≥

c∗1
c
Ct∗

dΘt = 1/cπt∗c .

(26)
Since πt∗c ≥ c(Φt)1−βµβ , we have µ ≥ (Φt)1−βµβ . Then, we have
µ ≥ Φt that contradicts to the condition that µ < Φt. Thus, the
gt∗ = c( µ

Φt
)βs∗ and Ct∗ = µ

Φt
s∗ are the optimal solutions.

For flat-rate scheme, the maximal profit of the ISP will be no
more than cµ. Then, we have CBtp ≥ c(Φt)1−βµβ

πb
≥ c(Φt)1−βµβ

cµ
=

( Φt

µ
)1−β . It is clear that πt∗f is independent with β and Φt. This

completes the proof.

Proof of Theorem 4: The consumers’ surplus for traffic cap
scheme during time interval [t − 1, t], denoted as ψtc, is ψtc =

c
(
µ
Φt

)β
s∗
∫∑I

i=1 θ
t
i≥s
∗

[(∑I
i=1 θ

t
i

s∗

)1−β
− 1

]
dΘt. Since µ

Φt
< 1

and
∑I
i=1 θ

t
i

s∗ ≥ 1, we know that ψtc decreases when β increases.
When β → 1, we get ψtc → 0. It is clear the consumer’s surplus for
flat-rate scheme is independent of β. This completes the proof.

Proof of Theorem 5: The traffic efficiency of the traffic cap
scheme during [t− 1, t], denoted as φtc, is

φtc = c(Φt)−βµβ−1s∗
∫
∑I
i=1 θ

t
i≥s
∗

(∑I
i=1 θ

t
i

s∗

)1−β
 dΘt. (27)

The traffic efficiency of the flat-rate scheme is c. Then, we have

CBte = (Φt)−βµβ−1s∗
∫∑I

i=1 θ
t
i≥s
∗

[(∑I
i=1 θ

t
i

s∗

)1−β
]
dΘt

≥ (Φt)−βµβ−1s∗
∫∑I

i=1 θ
t
i≥s
∗ dΘt = ( Φt

µ
)1−β .

(28)

Since µ
Φt

< 1 and
∑I
i=1 θ

t
i

s∗ ≥ 1, we have CBte is a decreasing
function in β and µ. When β → 1, we have CBte → 1.


