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Abstract—In wireless sensor networks, filters, which suppress  In sensor networks, energy is a severely limited resource,
data update reports within predefined error bounds, effectvely and communication dominates energy consumption. To obtain
reduce the traffic volume for continuous data collection. Al prior the distribution information aforementioned. the basé¢isia

filter designs, however, arestationaryin the sense that each filter is ds t ti | lect data f h dis Th
attached to a specific sensor node and remains stationary avigs needs to continuously collect data irom each sensor noge.

lifetime. In this paper, we proposemobile filter, a novel design that IS obviously very energy expensive. Fortunately, appraten
explores migration of filters to maximize overall traffic reduction.  results are usually acceptable as long as the error is bdunde

A mobile filter moves upstream along the data collection path py a certain threshold. Thus, a trade-off between energy
with its residual size being updated according to the collded consumption and data quality can be explored. Data filtering

data. Intuitively, this migration extracts and relays unused filters, by exploring temporal data correlation. is an effective in-
leading to more proactive suppressing of update reports. y exploring P lon, 1S Ve 1

While extra communications are needed to move filters, we Network processing scheme towards this goal. Intuitivetiie
show through probabilistic analysis that the overhead is otrun  difference between the new reading and the previous raporte
by the gain from suppressing more data updates. We present an reading in a sensor node is small, the node should not report
optimal filter migration algorithm for a chain topology. The algo- 6 ey reading. Olstoet al. [2] first generalizes this idea to
rithm is then extended to general multi-chain and tree topobgies. . . . . .

Extensive simulations demonstrate that, for both synthet and gﬂlte_r design for continuous data collection. In their woak_
real data traces, the mobile filtering scheme significantlyeduces filter is allocated to each sensor node such that the totet filt
data traffic and extends network lifetime against a state-cthe- size obeys the user-specified error bound. In each roundaf da
art stationary filtering scheme. Such results are also obseed collection, a node willsuppressts data update report if the
from experiments over a Mica-2 sensor network testbed. difference from the previous report is less than its filteesi

Index Terms—Sensor Network, Data Collection, Mobile Filter. There have been a flourish of follow-ups with more intelligen

filter allocation strategies (e.g., [3][4]).

, All these prior filter designs, however, astationary in
Wireless sensor networks have recently been used for Mgy sense that each filter is attached to a specific node and
applications, such as habitat monitoring, military suf@ece, remains stationary during a round of data collection. Thus,

and terrain discovery, where traditional wired/wireless-n ;s filters in the current round of data collection might b
works are not appropriate or available. The primary task of @, «ieq limiting the filtering capability.

sensor network is to continuously collect the sensed dateein
operational field, so that the field’s properties of intereesh

be monitored. In this paper, we are interested in continiyou
gathering data distribution of the sensor field. For examplt
we are interested in the following queries:

I. INTRODUCTION

In this paper, we proposmobile filter, a novel design that
explores migration of filters to reduce network traffic forcer
ounded data collection. A mobile filter moves upstreamg@lon

e data collection path, with its residual size being updat
according to the collected data. Intuitively, this migoati
Query 1:Get the temperature distribution of the sensor fieldytracts and relays unused filters, leading to more praactiv

every other hour for the next 6 months. _ suppressing of data reports. While extra communicatioas ar
Query 2: Monitor the population of wildlife at difference needed to move filters, we show through probabilistic afglys
places every 4 hours for the next 12 months. that the overhead is outrun by the gain from suppressing more

Such complex queries, though clearly more difficult tdata transmissions. The overhead can be further reduced by
answer, reveal richer information than a simple aggregath s piggy-backing the filter information in data update repbrts

as sum or average. For example, a (consistent) change of than Example. To illustrate the effect of our mobile filtering
population distribution of the wildlife may be an indicatiof ~scheme, we compare it with a basic stationary filtering sehem
the change of the surrounding environment [1]. in a toy example in Figs. 1 and 2. Consider a sensor network
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(a) Previously reported data readings. (b) Data readings of the current round. (c) Stationary filter suppresses one data report feam

Fig. 1. An example of a stationary filtering scheme. Totalrlowed filter size (error bound) is 4. Nodg is the base station.

(3
(a) Mobile filtering scheme at the start of the current round.(b) Mobile filter moves and suppresses data reports. (c) In total, all four data reports are suppressed.

Fig. 2. An example of a mobile filtering scheme. Total useovedld filter size (error bound) is 4. Nodg is the base station.

[5],% and the total user-allowed filter size (error bound) is Mica-2 sensor testbed.
The previously reported reading of each sensor is shown inThe rest of the paper is organized as follows. We review
Fig. 1(a). In the current round, each sensor acquires a neated work in Sec. Il. The system model is described in Sec.
reading, as shown in Fig. 1(b). Using the stationary filgrinlll. Sec. IV is devoted to our mobile filter design. We show
scheme, filters are allocated to each node and one possthie simulation results in Sec. V, followed by our prelimipar
(uniform) allocation is shown below each sensor in Fig. 1(c@xperimental results using Mica-2 sensors in Sec. VI. Binal
We can see that the stationary filters can suppress only dae dgec. VIl concludes the paper and discusses future work.
update report frons;. All other updates need to be reported,
and overall it incurs 2+3+4 = 9 link messages. As a contrast, Il. RELATED WORK
we now employ the mobile filtering scheme for the same Wireless sensor networks have been extensively studied in
scenario. The entire filter is assignedstpat the beginning of recent years; a survey can be found in [6]. Many sensor net-
the current round, as shown in Fig. 2(a). The filter suppeessgorks are designed for continuous data collection apptinat
s4's data update report and the residual filter moves upstreawer a long period of time. Real-world examples include the
as shown in Fig. 2(b), which further suppressgs update sensor network deployed on Great Duck Island [7] to monitor
report. In general, the filter suppresses update reporte\thi the habitat of birds, ZebraNet in Africa [8] to monitor the
moves along the path. Eventually, all four update repomts asehavior of wildlife, and the volcano monitoring system.[9]
suppressed, as shown in Fig. 2(c). The total number of linkAs sensor nodes are usually constrained by a limited power
messages incurred is 3 (for the mobile filter transmission). supply, energy efficiency is a key consideration in sensor
Intrinsically, one may consider the filter (i.e., the erronetwork designs. A pioneer work [10] has suggested various
bound allowed by the user) a valuable resource that can ihenetwork processing techniques to reduce the netwoffictra
exploited for conserving energy. In the stationary filtgrinOne effective in-network processing scheme is in-network
scheme, each filter has to make an independent decision akiggregation. By exploring the query’s characteristicsinger-
data suppressing. The filters have no knowledge of how othfediate sensor node can compute a partial aggregate ofrits ow
filters are used by other sensor nodes. Therefore, theatiiliz value and the values of the downstream nodes before regortin
of the filter resource is not optimized; for example, the filte to its upstream nodes. A number of aggregate functions, such
on s, throughs, are wasted in the above example. The mobilkes MAX, MIN, SUM, AVG, and MEDIAN, have been studied
filtering scheme, on the other hand, is able to adapt to t{i1][12][13]. Another effective in-network processinghstme
current data readings and allocates filters on the fly to dptimis to make use of spatial data correlation, and the studies
the utilization. This intuition will be formalized in our alysis. include clustering [14], sampling [15] and overhearing][16
There are, however, many design issues left to be address®di work falls into an orthogonal category where temporal
for example, a formal error bound model is needed for the datata correlation is explored [17], and we are interested in
collection and filtering scheme, filter migration and datefil non-aggregatedata. Non-aggregate data can provide a fine-
ing algorithms should be developed to maximize the overgjtained analysis of the phenomena in the sensor field, which
traffic reduction. We shall address these issues in detdlilén is requested by many applications [18][19][20]. For exasmpl
rest of this paper. Our contributions are summarized as\fsll in the Sonoma Redwoods project [18], the biologists would
First, we propose a novel mobile filtering scheme. Second, \Wee to receive detailed data for model analysis and hysebe
develop an optimal filter migration and data filtering algjfom testing. These in-network processing techniques can aso b
for a chain topology. We extend our algorithm to general multcombined to achieve higher energy efficiency; see [3][21].
chain and tree topologies for sensor data collection. Toiud ~ To explore temporal data correlation, data filtering is a
scheme is validated through extensive simulations usiny beommonly used technique that trades data quality for energy
synthetic and real-world traces, as well as experiments orefficiency. In [2], a filter is allocated to each sensor nodengh
- . . . _ the total filter size is constrained by the user error bour T
L; distance is the sum of the absolute difference over all gaiedues in

the two datasets. Note however that the general framewonkatile filtering  T1Iters shrink periodically and the server will re-allocatee
does not depend on specific data error models. left-over error bound to the sensor nodes basedbwmen



. Level 0

scores The burden score of a node is calculated based on a
set of parameters involving the number of update packets gen tovel1 .
erated by the sensor node since the last filter reallocattien, e
current filter size, and the data reporting cost. The work3in [ tevel2 ..

further incorporates in-network aggregation into filtesides, S -
where an intermediate node computes partial aggregates fro AT A
its descendants. A more intelligent filter adjustment sahém
proposed in [4]. In contrast to the previous studies wheee th
filters are reallocated mainly based on data changing patter_ ] o .
the optimization in [4] explicitly takes the residual engraf Fig. 3. Underlying communication/routing structure.

the sensor nodes into consideration. should not exceed the bounBi. During a round of data

Note that filter re-allocation is a costly operation and ia&lo C%IIection, a sensor node reports its data to the base mstatio

infrequently so that the cost can be amortized. Thus, thou : - .
these prior studies [3][2][4] have different filter (re)adhtion ge”'%;Ietg?e‘;%‘l’fg";T(Cbee;g’sefr?etgﬁecrusrfze;t reading and the las

mechanisms, they share a common assumption: the f|I{e e would like to remark that there are applications that

attached to a specific sensor node will be used for suppgessin " .~ .
. : explicitly specify an error bound for each sensor node (e.g.
data reports for this node only. In other words, filters aré . .
i L tolerating the error of the readings of each node to be balinde
stationary and only data traverse inside the network. The . .
) ) ; within 1), instead of an aggregate error bound. For these
novelty of our work is that we allow the filters to move ineach .~ ° . . .
) ) applications, the filter size of each node can be just set as
round of data collection, and we show that given the same err : ; S
S ) S requested and no filter allocation/re-allocation is nemgss
bounds, the migration of filters suppresses significantlyemo "' . o :
. . .. Notice that the stationary filtering scheme also aims to work
data transmissions, making the system more energy efficien o
with aggregate error bounds and periodically (re)-allesat

I1l. SYSTEM MODEL filter sizes based on system workload. We emphasize that both

In our system, the readings from individual sensors atge stationary and mobile filtering schemes do not control
periodically collected by the base station to evaluate dempthe user error model and the error bound. Given the error
distribution queries; we call each data collectiomoand In Model and the error bound, they both try to optimize the
the first round, all the sensor nodes report their readimgthd ~ System performance and we will show that mobile filtering
subsequent rounds, the sensor nodes report readings ¢éhatgiperforms the stationary filtering scheme.
not suppressed. If the base station does not receive a report i
from a sensor node, its previously reported reading will J& Data Collection Model
treated as collected data and used for current query ei@uat For each round, we use a data collection model similar

to TAG [11]. The underlying network is structured as a tree
A. The Error Bound Model and the data is propagated from the leaf nodes to the root.

To facilitate our presentation, in this paper we emplogpecifically, each sensor node is associated witvelin the
L, distance as the error bound model. Specifically, let theee, which indicates the number of hops the node is away
true readings of the sensor nodesdbexs,...,zy and let from the base station (i.e., the root) (see Fig. 3). To avoid
the readings collected by the base statiorebers, ..., 2; transmission collisions, the time is divided into slotsdam
the L, distance is thenl; = Zf\il |x; — «f|. If the user- sensor node is kept in sleepingstate for most of the time
specified precision requirement Is, the error-bounded datain a round. In each time slot, starting from the leaf level,
collection must guaranteé; = .~ |z, — 2/| < E. L, the sensor nodes at one level are activated to enter into a
distance is commonly used to measure the distance betwpercessingstate, and the sensor nodes at the level with one
complex distributions [5]. The smaller is thie; distance of hop closer to the sink enter intoligtening state. Upon being
two distributions, the closer are the two distributions. rblo in the processing state, a sensor node acquires a new reading
formally, if the L, distance is small, any event will happerprocesses it together with the data received from its cildr
with similar probability in the two distributions. and possibly transmits some data to its parent node. A sensor

It is worthwhile to note that our mobile filtering scheme isode in the listening state monitors the wireless channél an
not limited to theL; model. It is straightforward to show thatbuffers all incoming packets for further processing. Vasio
it can work with L, distance wherd., = { Zil\il |z — | synchronization techniques can facil_itate this statesitemm
foranyk = 0,1,2,-- - In general, the mobile filtering scheme[zzl[ll]-_ A round of data collection is completed Wh_en the
is workable for any aggregate error bound model where tREPCESSING state propagates to the root. In our data doifect
overall error bound is a function of the error introducediro W& assume that reliable transmission protocol [23] is used f
individual sensor node. Additional examples are weightgd Underlying routing and no packet is lost.
distance, KL-divergence, etc.

To bound the error of data collection, data filters are
installed (either statically or dynamically) on sensor eséh The objective of our mobile filtering scheme is to minimize
the network. Each filter is associated with a deviation bourde total data transmission cost while maintaining the user
(hereafter referred to afilter siz and the total filter size specified error bound. In this section, we first outline a

IV. MOBILE FILTERING: DESIGN AND OPTIMIZATION



Can process By the end of each round of data collection, each node resets
the filter size. It is easy to see that under this operational
model, the sum of the data changes suppressed does not
exceed the total error bound in each round of data collection

‘ fo=rn ‘ ‘ Suppress ‘

Message arrives 1 Thus, the user-specified precision requirement is guagdnte
e The remaining task is to design data filtering and migration
Has filter? for m in buffer strategies so as to minimize the overall data transmisgiet ¢

B. Filter Migration in Chain Topology

e repo? Piggy-back Generate | No We start our discussion with a simple chain topology. We
Ve QH e first show that the mobile filter should initially be placed at
T L . the leaf node.
ut update . .
report n buffer Ne Send all reports in Theorem 1:For a chain topology, the filter should be allo-
buffer to parent . . . .
] cated as a whole to the leaf sensor node in order to minimize
. . the total communication coét.
(a) Listening state (b) Processing state

Proof: Denote the sensor nodes on a chainspysi, .. .,
SN—1, SN, Wheresq is the base station angly is the leaf

practical mobile filter design. We then analyze this schent&NSor nOdi' We prove the”theorem b);.;nduct|on.f h
for a chain routing topology. We show that it outperforms Assumer: at W? do nr?t allocate any filterdg_;. | ;[ ere
stationary filtering and derive an optimal offline migratior® a data change fory, the update must be reported fram

strategy, together with an efficient online heuristic. WeHar t© So- The cost of this update i¥'. The overall communication
extend the algorithm to multi-chain and tree topologies. cost should also include the cost with a filter installed om th

sub-chain froms_1 to sg.

A. Operations of Mobile Filters If we allocate any fraction of filter sizé" to the leaf node

sy, there are two cases: 1) migrate the filterstp_; without
ppressing the update af;. Since this filter migration can

piggy-backed by the update report, it does not incur extra

t. The overall cost is also the sumsgf’'s update cost (i.e.,

and the cost with a filter of sizé" installed on the sub-

Fig. 4. Operations of a sensor node in each round.

In stationary filtering schemes, each filter only needs
suppress the newly sensed data if it can. In mobile filteri
schemes, a mobile filter may not suppress a newly sensc%%
data in the sensor node it travels. The intuition here |

that suppressing the data consumes its filter size and Ma%in fromsy_; 10 so. 2) suppress the update a. Thus
restrict the mobile filter’s ability to suppress more datdates the cost of allocating a filter size df to sy is the minimurr,]

upstream. In addition, a mobile filter needs to decide whethgf the costs of 1) and 2). Notice that 1) has the same cost
to travel to the next sensor node. The intuition here is that '

th dual filt L " bile filt i With allocating the buffer tay_1. Therefore, allocating” to
€ residual iter size Is small, & mobrie ilter may ot tave, =il result in no worse performance than allocating it to
further to reduce the overhead it incurs.

. i _1. Itis easy to see that we can do induction both in terms
Formally, in each round of data collection, each sensor noég ! y

first di dih : ol | F andsy_1. As such, this completes the proof. ]
s Irst senses a new reading and then operates as Toflows. In Following this theorem, given a total error bound©f the
the listening states receives message(s) sent from its childre

. . i - A€o size allocated to the leaf node 15 and the filter sizes
Let e be its current filter size (we will show later how this SIZ€ 1 ocated to all other nodes are zero. The filter then follows
is initialized). If the incoming message contains an unus?ld ;

filter e;,, s updates the filter as = e + e;,. If the message

(E)or:tz;llnj an upt(jate ;ep?hr.t, It tIS buffere(:] for erV\II:"’.‘rd'Z@"at nodes reset the filter sizes to zero. Note that resettinglthe fi
ev\</’:1r|1e ?ﬁera lons for d 'S stage f':\rte S’t own In Fg. (at).t sizes does not incur any communication cost.
en e SEensor node enters nio 1S processing state, 1) Mobile versus Stationary FilteringWe now give a

?Itdat_a Illtermg strategzﬂ:st dlf m?he N Iwr;ethe;_ the Currtergformal cost analysis of the mobile filtering scheme, assgmin
nter 1S 1o suppress.,,. Letr, be Ine last reading reportety, , a1y changes follow a standard normal distribution.l&Vhi

tg the‘ b?:io?]tsaljlr%r; d Iz; d Ifhesurgzir;j;egl,te? Sfi'lzfri::fe de(l)tg is analysis is necessarily simplified, it provides a @eaiew
70 = 7n] e TSR PUAIE] the benefit of mobile filtering. That is, in stationary fiiteg
to e = e — |r, — r,|. Otherwise ifr, is not suppressed, an

. ) .scheme, the total error bounds have to be divided among all
update report is composed and buffered, and the residual flriensor nodes; and each node may have small filters, making
size remaing. The second decision is whether to migrate th ' :

residual filter upstream. If there are update reports (gitise fhe probability of filter size violation high. The mobile &ling

. scheme, on the other hand, fully exploits the filter size.
own or the reports forwarded for its descendants) to be sentt Let E be the total filter size, and,(i = 1,2,---,N) be

the parent, the residual filter can be piggy-backed. Ottserwi the random variable for the sensor value change of node

a f|[ter m|grat|on _strategy\Nlll decide whether tp migrate theAssume that the change for each sensor node is i.i.d. and that
residual filter using a separate message. Finally, the senso

nOde_ forwards _a” Update_ reports in the bUffe_r to_itS parentayere, we assume that the sensor readings always changeebetwe
Detailed operations for this stage are summarized in Flgj. 4(consecutive rounds of data collection.

e operations described in Section IV.A. By the end of each
round, the leaf node resets the filter sizeBoand all other



X, follows a normal distribution ofV (0, 1). Without loss of all cases tested. Even without piggy-back, only afiee= 50

generality, we consider the case where only the upper boutmes mobile filtering perform worse than stationary filtgrin

of the filter is violated. Note that whenFE = 50, each node obtains a filter size of
For stationary filtering, each node will be assigned a filtéi0/30 = 1.67 for stationary filtering, which implies that the

size of% under uniform allocation. The probability that theprobability of a new reading being suppressed is as high as

filter is violated at nodes; is p; = Pr[X; > %] = 1— 90%. In other words, the error bound is extremely large in
PriX; < Z]=Ll1—erf(-£ )>. Define an indicator random this case, which may not provide meaningful results and is
variabIgYNsuchg that V2N not desirable for most applications.
' ] We state again that data change distributions depend on
1if X > £, i inati i
Y; = N specific applications. One may question the performance for
0 otherwise the distributions where there are a few data changes that are
We haveE[Y;] = p; x 1+ (1 —p;) x 0 = p; = 3(1 - significantly large; and these data changes may consume the

filter size if the mobile filter suppresses the data updatertsp
NJ _ N ' N as long as it can. This is why more advanced data filtering and
transmission cost isE[Y ;L Y; x i] = E[Y]]>;_;9 = filter migration strategies are needed. The algorithm wavsho
WE[YZ-]- in next subsection will advisably omit these few data change
For mobile filtering, the filter migrates upstream and sugo as to suppress significantly more data updates; and thus
presses the data reports as long as it can and the filter imigrafits for all distributions. In our experiments, we also usalre
stops when the residual filter size is not enough to suppreswerld traces that match a wide range of application scesario
data update. The probability that the filter is violated alé0  2) Filter Migration and Data Filtering StrategiesRecall
: N+1 N+1 . . . L
siisp; = PriX; > E -0 Xl = Pr[32, X; > E]  that our objective is to minimize the number of update report
(Define X1 =0). Let Z; = Z?’:i X;. SinceX,’s are i.i.d, transmitted in the network given a total filter sizeof In this
Z; is also a normal distribution oV (0, N —i+ 1). Define an section, we first develop an optimal offline solution (thrbug

erf(%)). Given nodes;’s update cost of, the expected

indicator random variabl&; such that dynamic programming) with all data changes known a priori.
; 4 . Let i be the distance (in terms of hops) betweenithenode
1 if Z; > E,; . .
Y, = 0 otherwise and the base station. Let be the data change (against the

last reported value) at sensor nogle and e be the residual
We have E[Y;] = p; = (1 — erf(#))_ The filter size. LetG;(e) be the gain from placing a filter of
V2N —_it1) sizee at sensor node;, which represents the cost difference

. . . . N .
ex%ected CPSt of m_oblle fllterlng I.S theﬁ[zizl Yi x ] ~ .. between suppressing the data update at npdad migrating
> o1 E[Yili. If the filter migration is not piggy-backed with the residual filter size upstream.

data reports, there is at most an additional cosiof

i (1)
1600 : T —— 250 T T ™ T G (6) piggy-back (2)
_ Stationary —+— . Stationary —+— G — i—1 )
1400 ¥ . " €) = max . .
wol  wmeworemil /1 8 | vemweremdl | Gile) i+ Gii(e—v),  piggy-back  (3)
1000 150 L | i+ Gi_1(e —wv;) —1, no piggy-back (4)

800
600
400

) 1001 \ T There are four possible choices thatan execute, as shown
200 M 50 | 1 in (1)-(4). With the first choice, the data update is suppéss
0 bt O “’g(']wﬁgg - and the residual filter is not sent upstream. With the second

Number of Nodes (N) Total Filter Size choice, the data update is not suppressed and reported to the
Fig. 5. Expected cost as a function Fig. 6. Expected cost as a function base station. In this case, the unused filter size piggy-

N1 e . . _ backed upstream to nodg_;. With the third choice, the data

o E_f e ofthe tOtaI_ fter sizel>. IV = 30. update ispsuppressed. The gain consists of two parts. The firs
_In Figs. 5 and 6, we plot numerical results for the twoa js 5 saving of transmissions for this data update. The
fllter!ng schemes. For mobile fl!terlng, thg result§ for tWQecond part is a potential gain 6%;_;(e — v;) when the
versions are shown, namely, with and without piggy-backssiqyal filter with size:— v; migrates to the parent. The fourth
Their performance differs by at most. In Fig. 5, the total ¢pgice js similar to the third except that the filter migratis

error bound is fixed t(_)gX and a fil_ter of _size 0.5 is attachednot piggy-backed with the data reports (efs descendants)
to each node for stationary filtering. Since the data chan incurs one extra cost for sending this filter upstream to

follow a standard normal distribution, in this setting eéitter o0y node; ;. A sensor node should select the one with
will suppress the updates with a probability of approximate, highest gain among the four choices.

40%. We can see that mobile filtering greatly outperforms We also initialize thei;(-)
stationary filtering. We also see that wh&rnincreases, the cost

Total Transmission Cost
T T T T T T T
Total Transmission Cost

T S T R

function for special cases:

of stationary filtering increases much faster than that dfileo Vi, G;(0) =0, (5)
filtering, implying that mobile filtering is more scalable. Vi, Gi(<0)=—o0, (6)

In Fig. 6, we fix the number of sensors f§ = 30 and Ve, Go(e) =0, (7)
vary the total error bound from 0 to 100. With piggy-back, Ve, Gi(e) =0, no piggy-back (8)
mobile filtering performs better than stationary filteringr f Ve, Gi(e) =1, piggy-back 9)



where condition (5) means there is no gain if the filter is
used up; condition (6) states that negative filters aretistric
prohibited; condition (7) states that there is no gain if the .-

ONONOES
filter has arrived at the base station; and conditions (8) and :
(9) specify the gains for node . BN ONOMC RS

Algorithm CalGain () ENONONOMNS
©

Gi(e,+): the gain at node with residual filter sizee with
piggy-back;G; (e, —): the gain without piggy-back.

1 Initial.ization; Fig. 8. An example of a multi- Fig. 9. An example of a tree,
2 for Vi, e, {+,—} chain tree. divided into multiple chains.

3 Gilet) =maxd Lf Gimale—vn),

Gi-1(e,+) chaine; in the current round. Each chain maintains the number
i+ Gia(e—vi, =) =1, of update messagég; and the minimum residual energy of
4 Gi(e, =) =maxq Giafe+), the sensor nodes on the chain for the reéé&mb rounds. Each
5 end for ! chain also maintains a set of sampling filter sizgs and the
Output: G (E, —) and the filter migration and data filtering ~ €StimatediV; . under these sampling filter sizes. After every
strategies. UpD round, each chain informs the base statior}igf, and

p; for each of the sampling filter sizes. This information can
be submitted by sending a message from the leaf node through
Gi(-) can then be iteratively calculated using dynamige chain topology. In this message, there is a couitefor
programming, see Fig. 7. Note, however, that this optimahch of the sampling filter sizes. When this message passes an
algorithm needs prior information about the data changegtermediate node, the node will add the number of updates
which is difficult to obtain. We thus develop a greedy onlinfecorded by itself to the respectiié’;. This message also
heuristic as follows. Lel’r and T's be two thresholds used marks the minimum residual energy of the sensor nodes. Based
for filter migration and data filtering. If the residual filtsize on these information, the optimal filter re-allocation aftfum
is smaller tharll'g, the filter is not sent upstream unless th@q] is adopted by the base station to calculate the filters to
filter is piggy-backed; if the data update at a sensor is greape allocated to each chain for the néxpD rounds. For the

thanTs, the filter will not suppress this update. Intuitively, a:|ar|fy of the paper, we put this algorithm in the Appendix_
small residual filterT’, means that the chance of suppressing

upstream data reports is small, and thus the filter shoult@otD. Filter Migration in General Trees
sent upstream. The threshdl means that if a data change Finally, we extend our filter migration scheme to accom-
is very large, suppressing this update will significantljuee modate general tree structures for data collection. Naaé th
the chance of suppressing future reports. As such, everif the general data collection tree (the routing structure) lma
current residual filter size is able to suppress this updatepuilt by some standard protocol (e.g., TAG [11]). Our siygte
leaves the opportunities to suppress updates upstream. s to partition the tree into multiple chains and then apply
We will examine the performance of this greedy heuristihe algorithm for multi-chain trees. Unlike the simple niult
against the optimal algorithm as well as the impactgfand chain tree, however, we need to decide where a chain ends

Fig. 7. Calculate Gain Algorithm.

Ts by simulation in Section V. in a general tree (the starting point is always a leaf node).
_ R _ _ We propose to use the intersection of two tree branches as a
C. Filter Migration in Multi-Chain Trees natural ending point. An example of such partitioning isho

The chain structure provides us with a basic understanditigFig. 9. A detailed description for a binary tree partifiog
of mobile filtering. In this section, we consider a more gahercan be found in Fig. 10, which can be easily extended to trees
routing structure, a multi-chain tree consisting of muéip of arbitrary degrees.
chains, which appears in the networks with disjoint muétip

routing or star-like networks. An example is shown in Fig. 8. Algorithm TreeDivision ()

In a multi-chain tree, the initial filters will also be assigh 1for each leafs; do
to the leaf sensor nodes. Since there are multiple leaf nades 2 s = parents;) .
filter size allocation strategy among the leaf nodes is netede 8 while s: s the only child ofs;. or

; gy among _ 4 s is the left child ofsy

Note that if we treat each chain of the tree as a single node, 5 sk = parentsy,)
the tree can be considered as the one-hop network studied in | 6 construct a chain froma; to parengsy)
[2][4]. Thus, we adapt our filter allocation scheme repoiited 7 end for

a previous study [4] and devise our algorithm as follows. Fig. 10. Tree Partitioning Algorithm

The total error bound is first allocated uniformly to the leaf afier partitioning, the tree topology can be treated as a
sensor node of each chain. The filters are re-allocated evgfyii-chain structure, except that residual filters areraggted
UpD rounds. Intuitively, our algorithm re-allocates largeg; the end of a chain (e.gsp and s; in Fig. 9). The filter

filters to the chains with larger number of update packets agfycation and migration algorithms are the same as those
smaller residual energy. Let; be the filter size assigned t04iscussed in the previous sections.



V. SIMULATION RESULTS scheme under both the greedy heuristic and the optimal efflin
A. Simulation Setup algorithm. In the greedy heuristic, we sEk = 0 andTs =
18% of the total filter size. We will show how we choogg
andTs shortly. The optimal algorithm (Fig. 7) is used to serve
Dewpoint — as the performance upper bound in which all data updates on
85 ] a chain are known a priori.

We can see that the more sensor nodes we have, the smaller
the system lifetime for both the mobile and stationary fittgr
schemes. This is because the total filter size is smallerttiean
total data change. Thus, with more nodes, the number of data
packet transmissions increases. We can make two other ob-

70

Data

0 | | | | - . - . . .
A0 T 000 2000 3000 4000 5000 seryatlons._F|r§t, mobile filtering always performs be_ttmn
Time stationary filtering. Second, as the number of nodes inegas
' _ ' the superiority of mobile filtering becomes more substéntia
Fig. 11. Dewpoint trace from LEM project. For example, for 12 nodes, the system lifetime of mobile

We have implemented our mobile filtering scheme in ns{iltering is 2.5 times longer than that of stationary filtgin
[24]. Three typical topologies, namely, a chain, a crossl awhereas for 28 nodes, a three time difference is observed.
a grid topology, have been used for performance evaluatiaNe also compare our scheme with stationary filtering using
The cross topology is a multi-chain topology with four equathe dewpoint trace. The filter size is set 62 x N. As
length branches. In the grid topology, we set the base statishown in Fig. 12(b), similar results are found. In both sets
at the center and a routing tree is built by broadcastingaltor of simulations, our greedy heuristic performs very close to
these topologies, the distance between two neighboringpsenthe optimal solution. Thus, in the remaining simulationg, w
nodes is set to 2m and the transmission power on the physiséll present the results of the greedy heuristic only.
layer is set ta2.5 x 10~ %dBm. We then study the effect of the precision settifigas well

We adopt the same energy settings as those used in #kehe impacts of the two paramet&is andTs on the greedy
Great Duck Island project [7] (we assume the voltage Iseuristic of our mobile filtering scheme. In these simulagio
the same in all compared cases). The power required the number of nodes in a chain is fixed at 16.
the operation of transmitting and receiving a packet are setwith the synthetic data trace, we vary the normalized filter
to 20nAh (Ampere-hour) and 8nAh respectively. The powsaize from 0.8 to 3.6. We can see from Fig. 13(a) that allowing
required for the operation of sensing a sample is 1.438nAhlrger error bound can significantly improve the network
The energy capacity for a sensor node is set to 80mAh. \filetime. In this figure, we show three differefit; settings.
omit the energy for sensors spent in sleeping state. Theraysivlobile-0% represents the case where the filter always ndgrat
lifetime is defined as the lifetime of the first dying node (inpstream as long as its size is greater than 0. Mobile-20% and
terms of operation rounds), which is widely adopted [14][4]Mobile-50% represent that the filter should stop if thererilyo

We test two different data traces in our simulation. Th20% or 50% of the normalized filter left, unless it is piggy-
first is a synthetic data trace, where the readings are ralydomsacked. It can be seen thAg does not have a big impact on
and uniformly generated in the range of [0, 10] for eacthe system lifetime. This is because, filter migration iscar
sensor. The second is a real world trace obtained from the Lismall cost compared to data reporting; and when the residual
from Earth and Mars (LEM) project [25] at the Universityfilter is small, it will be piggy-backed by the data packet it
of Washington. We used the dewpoint trace logged by thgils to suppress, making the cost even lower. Thus, we set
station at the University of Washington from August 2004, = 0 for the rest of our simulations.
to August 2005, which consists of more than 500,000 sensornin Fig. 13(b), we test the impact dfs. Mobile-6, Mobile-
readings. For illustration purposes, we plot the first 508tad 8, and Mobile-10 represent th&s settings of 6, 8, and
points of the trace in Fig. 11. We have evaluated our algarith10 respectively. Notice that Mobile-10 implies that theefilt
against other traces in LEM, and similar performance trenghould suppress all the updates if it can. As can be seen, when
are obtained. Each data point in a figure is an average of th@ filter size is small, the system lifetime is longer with a
randomly generated experiments. small Ts; and when the filter size is large, the system lifetime

We compare our mobile filtering scheme with a state-of-th@& longer with a largel’s. This is because when the filter size
art stationary filtering algorithm [4]. It has been showntthds small, suppressing a large update may significantly &ffec
this algorithm outperforms other existing stationary filtg the ability of the mobile filter to suppress more future updat

algorithms ([3][2]) under various configurations. upstream. Thus, Mobile-6 performs better than Mobile-8 and
_ ) Mobile-10. On the other hand, when the filter size is large,
B. Simulation Results the mobile filter should have a greater budget to absorb large

In Fig. 12(a), we show the results under a chain topologiata changes. Setting a loWs in this case will make the
where the synthetic data are used. The total filter size itosetmobile filter suppress all the data changes that are less than
2 x N; that is, each node on average can get a filter size off2; yet with residual filter budget but cannot suppress larger
(hereafter called the normalized filter size, as opposeti¢o tdata changes due to the sniBilf constraint. This is the reason
total filter size2NV). In this figure, we plot the mobile filtering Mobile-6 performs poor when the filter size is greater thdn 2.
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From these simulations, we can see that paranigtdras a VI. MICA-2 EXPERIMENT RESULTS
stronger |m_pact thaff. We ne_xt examine the_mpacts_’ﬁh_ To further validate the effectiveness of mobile filtering,
andTs against the real dewpoint trace to obtain more insights. : ; h

A : oo We have conducted a series of experiments over our Mica-
As shown in Fig. 14(a)l', again, has very_httle |mpactor) the2 sensor network testbed. In the experiments, we deploy 10
performance. On the other hand, from Fig. 14(b), the Impal%ca-z motes to form a chain topology. In each mote, a

of T IS more obvious for_ the dewpoint trace than for theI!?otoconductive sensor is attached to monitor the lighd.dat
synthetic data trace. This is because the data change fori e .. SR

. . : n-additional mote, which is directly connected to a PC, esrv
synthetic trace is at most 10. However, for the dewpomle:racas the base station. For comparison, we implement both the

there are occasionally larger data changes. We may cak thﬁwsobile and the stationary filtering algorithms.

large data changesutliersand they have a larger performance Fig. 18 shows the key modules of our implementation.

impact on mobile filtering. For both our synthetic data trac;i-:he Main module controls our program. THEmer module

and the dewpoint trace, we find that if we §&t= 15%—22% : ) .

. . . . _generates time events, so that thight Sensingnodule can
of the total filter size, the system performance is relayiveP ~ .~ ° - .

. . periodically access the Analog Digital Conversion (ADC)
good. Therefore, in the rest of our experiments, welise= 0 .
i . . hardware to get data from the light sensor. Tmd Processor
andTs = 18% of the total filter size as our default settings.
module accepts and processes commands from the base sta-

We next examine the cross topology. We first consider thign, including parameter initialization. ThHéobile/Stationary
lifetime under different numbers of nodes. The results férltering module suppresses the data and passes the unsup-
the synthetic data trace and the dewpoint trace are showrPli§ssed data to theommunicatiormodule for transmission.
Fig. 15(a) and Fig. 15(b). Again, our mobile filtering scheme In the experiment, we monitor the light data in our research
performs consistently better than stationary filtering i 1ab. The statistics of a sample set of light changes can be see
to 100%. We also study the paramet@pD, the number from Fig. 19. About 60% of the updates are within one ADC
of rounds between successive re-allocation of the filters fghit, but the update can be as large as 20 ADC units.
different chains. The results for the synthetic data trawé a Fig. 20 shows the lifetime results with different precision
the dewpoint trace are shown in Fig. 16(a) and Fig. 16(i9gttings for both mobile and stationary filtering schemese T
where the total number of nodes is set to 24. We observe th@rmalized filter size varies from 1 to 7 ADC units. In our ex-
asUpD increases, the system lifetime generally improves. TH@riments{’r andTs are again set to 0% and 18%. We can see
system will become stabilized sooner for a smaller presisiothat our mobile filtering consistently outperforms station
This is because it takes a shorter time to correctly pretiet tfiltering, by 55% to 80%. This confirms our simulation results
data changing pattern for smaller filters. The synthetiaddturthermore, when the normalized filter size increases, the
trace shows a larger performance variation than the dewpd@@in of mobile filtering increases faster than that of stetiy
trace; the changes of the later are more predictable. filtering. This is because, when the normalized filter size

increases]’s also increases, which offers more opportunities

Finally, we examine our mobile filtering scheme for & 7 for mobile filtering to suppress more data updates.
grid topology. From Figs. 17(a) and 17(b), it can be seen thatwe have also performed experiments for other environmen-

our mobile filtering scheme outperforms the stationaryrfil@ tal data (such as temperature) of our lab environments, and
scheme for both the synthetic and the dewpoint trace. similar results have been observed.
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VII. CONCLUSION AND FUTURE WORK APPENDIX

In this paper, we have proposed a novel mobile filtering
scheme for error-bounded non-aggregate data collection inThe following filter allocation algorithm (Fig. 21) is from
sensor networks. By exploring the migration of filters, #6]. Each chain maintains a set of sampling filter sizés;,

mobile filter extracts and relays unused filters in the nelwoB £, ..., %EZ %EZ ..w 2E;, 3E;. We useE;,
to suppress as many data update reports as possible. to denote this set. The sensors will count the total number

An analytical study has been performed to quantify the pesf updates for each of these candidate filter sizes. Every
formance benefit of mobile filtering against the convention& pD rounds, the filter size of each chain is re-calculated by
stationary filtering. We have also presented the detaileblilmo this algorithm. As specified in [26], the motivation of using
filter designs for a chain routing topology. An optimal offlin exponentially spaced candidate filter sizes is to adjuseihm
filter migration algorithm as well as a greedy online heigistbounds at coarse granularity when they are far away from the
were developed. The algorithm was further extended to génesptimum, and adjust them at fine granularity when they are
multi-chain and tree topologies. Extensive simulatiorsagtd  close to the optimum.
that: i) a small error allowed in data collection can siguifitty
improve network lifetime, which verifies the importance of
this study; ii) our mobile filtering scheme performs close . .
to the o);;tim)al offline algorithm gunder a clzain topology; E’Ei’*:.tOtal and candidate error bounds for chain

e X | Wi, ps: update message rate fdr; . and the minimum
and iii) the mobile filtering scheme substantially extenis t | residual energy of chain
network lifetime against the state-of-the-art statiorfitgring 1 Vi, g, rig = Wi
scheme under various system configurations. Our prelipinar v "z, —1 "
experimental results based on a Mica-2 sensor testbecefurth 3 while miny<;<,, =; #m
validated our simulation results. 4 J =arg MaX<i<n,z,#m Ti,z;

Algorithm The Optimal Error Bound Allocation

We believe many future work can be done. We are working 5 if Ejzj41 4>, Eix; > E then
on a more advanced mobile filter migration strategy in genera g endbirfeak
graphs. Another interesting direction is to investigateniore 8 2; = a;+1
depth of theT's and Ty for general data. 9 end while

Output: optimal error bound; ., allocated for each chain
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