
1

Mobile Filter: Exploring Filter Migration for
Error-Bounded Continuous Sensor Data Collection

Dan Wang,Member, IEEE,Jianliang Xu,Senior Member, IEEE,Feng Wang,Student Member, IEEE,and
Jiangchuan Liu,Senior Member, IEEE

Abstract—In wireless sensor networks, filters, which suppress
data update reports within predefined error bounds, effectively
reduce the traffic volume for continuous data collection. All prior
filter designs, however, arestationaryin the sense that each filter is
attached to a specific sensor node and remains stationary over its
lifetime. In this paper, we proposemobile filter, a novel design that
explores migration of filters to maximize overall traffic reduction.
A mobile filter moves upstream along the data collection path,
with its residual size being updated according to the collected
data. Intuitively, this migration extracts and relays unused filters,
leading to more proactive suppressing of update reports.

While extra communications are needed to move filters, we
show through probabilistic analysis that the overhead is outrun
by the gain from suppressing more data updates. We present an
optimal filter migration algorithm for a chain topology. The algo-
rithm is then extended to general multi-chain and tree topologies.
Extensive simulations demonstrate that, for both synthetic and
real data traces, the mobile filtering scheme significantly reduces
data traffic and extends network lifetime against a state-of-the-
art stationary filtering scheme. Such results are also observed
from experiments over a Mica-2 sensor network testbed.

Index Terms—Sensor Network, Data Collection, Mobile Filter.

I. I NTRODUCTION

Wireless sensor networks have recently been used for many
applications, such as habitat monitoring, military surveillance,
and terrain discovery, where traditional wired/wireless net-
works are not appropriate or available. The primary task of a
sensor network is to continuously collect the sensed data inthe
operational field, so that the field’s properties of interestcan
be monitored. In this paper, we are interested in continuously
gathering data distribution of the sensor field. For example,
we are interested in the following queries:

Query 1:Get the temperature distribution of the sensor field
every other hour for the next 6 months.

Query 2: Monitor the population of wildlife at difference
places every 4 hours for the next 12 months.

Such complex queries, though clearly more difficult to
answer, reveal richer information than a simple aggregate such
as sum or average. For example, a (consistent) change of the
population distribution of the wildlife may be an indication of
the change of the surrounding environment [1].

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

D. Wang is with The Hong Kong Polytechnic University,
Email:csdwang@comp.polyu.edu.hk; J. Xu is with Hong Kong Baptist
University, Email:xujl@comp.hkbu.edu.hk; F. Wang and J. Liu are with
Simon Fraser University, Canada, Email:{fwa1,jcliu}@cs.sfu.ca

A preliminary version of this paper appeared in Proc. the 28th International
Conference on Distributed Computing Systems (IEEE ICDCS’08).

In sensor networks, energy is a severely limited resource,
and communication dominates energy consumption. To obtain
the distribution information aforementioned, the base station
needs to continuously collect data from each sensor node. This
is obviously very energy expensive. Fortunately, approximate
results are usually acceptable as long as the error is bounded
by a certain threshold. Thus, a trade-off between energy
consumption and data quality can be explored. Data filtering,
by exploring temporal data correlation, is an effective in-
network processing scheme towards this goal. Intuitively,if the
difference between the new reading and the previous reported
reading in a sensor node is small, the node should not report
the new reading. Olstonet al. [2] first generalizes this idea to
a filter design for continuous data collection. In their work, a
filter is allocated to each sensor node such that the total filter
size obeys the user-specified error bound. In each round of data
collection, a node willsuppressits data update report if the
difference from the previous report is less than its filter size.
There have been a flourish of follow-ups with more intelligent
filter allocation strategies (e.g., [3][4]).

All these prior filter designs, however, arestationary in
the sense that each filter is attached to a specific node and
remains stationary during a round of data collection. Thus,
unused filters in the current round of data collection might be
wasted, limiting the filtering capability.

In this paper, we proposemobile filter, a novel design that
explores migration of filters to reduce network traffic for error-
bounded data collection. A mobile filter moves upstream along
the data collection path, with its residual size being updated
according to the collected data. Intuitively, this migration
extracts and relays unused filters, leading to more proactive
suppressing of data reports. While extra communications are
needed to move filters, we show through probabilistic analysis
that the overhead is outrun by the gain from suppressing more
data transmissions. The overhead can be further reduced by
piggy-backing the filter information in data update reports1.

An Example. To illustrate the effect of our mobile filtering
scheme, we compare it with a basic stationary filtering scheme
in a toy example in Figs. 1 and 2. Consider a sensor network
of chain topology (s4 throughs0). The base stations0 needs
to record the data for each sensor node in each round (or
use the previously recorded data if it does not hear from the
node). AssumeL1 distance is used for bounding data errors

1The filter information is a few bytes. It can be accommodated in an update
report within a data packet (the packet size is 60 bytes for a Mica-2 mote).

2

s4s0 s1 s2 s3

29 63 32 50

(a) Previously reported data readings.

s4s0 s1 s2 s3

29.3 64.3 33.1 51.2

(b) Data readings of the current round.

s4s0 s1 s2 s3

11 1 1

0.3 1.3 1.1 1.2

X

(c) Stationary filter suppresses one data report froms1.

Fig. 1. An example of a stationary filtering scheme. Total user allowed filter size (error bound) is 4. Nodes0 is the base station.

s4s0 s1 s2 s3

4

0.3 1.3 1.1 1.2

(a) Mobile filtering scheme at the start of the current round.

s4s0 s1 s2 s3

2.8

0.3 1.3 1.1 1.2

X

(b) Mobile filter moves and suppresses data reports.

s4s0 s1 s2 s3

0.1

0.3 1.3 1.1 1.2

XXXX

(c) In total, all four data reports are suppressed.

Fig. 2. An example of a mobile filtering scheme. Total user allowed filter size (error bound) is 4. Nodes0 is the base station.

[5],2 and the total user-allowed filter size (error bound) is 4.
The previously reported reading of each sensor is shown in
Fig. 1(a). In the current round, each sensor acquires a new
reading, as shown in Fig. 1(b). Using the stationary filtering
scheme, filters are allocated to each node and one possible
(uniform) allocation is shown below each sensor in Fig. 1(c).
We can see that the stationary filters can suppress only one data
update report froms1. All other updates need to be reported,
and overall it incurs 2+3+4 = 9 link messages. As a contrast,
we now employ the mobile filtering scheme for the same
scenario. The entire filter is assigned tos4 at the beginning of
the current round, as shown in Fig. 2(a). The filter suppresses
s4’s data update report and the residual filter moves upstream
as shown in Fig. 2(b), which further suppressess3’s update
report. In general, the filter suppresses update reports while it
moves along the path. Eventually, all four update reports are
suppressed, as shown in Fig. 2(c). The total number of link
messages incurred is 3 (for the mobile filter transmission).

Intrinsically, one may consider the filter (i.e., the error
bound allowed by the user) a valuable resource that can be
exploited for conserving energy. In the stationary filtering
scheme, each filter has to make an independent decision about
data suppressing. The filters have no knowledge of how other
filters are used by other sensor nodes. Therefore, the utilization
of the filter resource is not optimized; for example, the filters
on s2 throughs4 are wasted in the above example. The mobile
filtering scheme, on the other hand, is able to adapt to the
current data readings and allocates filters on the fly to optimize
the utilization. This intuition will be formalized in our analysis.

There are, however, many design issues left to be addressed;
for example, a formal error bound model is needed for the data
collection and filtering scheme; filter migration and data filter-
ing algorithms should be developed to maximize the overall
traffic reduction. We shall address these issues in detail inthe
rest of this paper. Our contributions are summarized as follows.
First, we propose a novel mobile filtering scheme. Second, we
develop an optimal filter migration and data filtering algorithm
for a chain topology. We extend our algorithm to general multi-
chain and tree topologies for sensor data collection. Third, our
scheme is validated through extensive simulations using both
synthetic and real-world traces, as well as experiments on a

2
L1 distance is the sum of the absolute difference over all paired values in

the two datasets. Note however that the general framework ofmobile filtering
does not depend on specific data error models.

Mica-2 sensor testbed.
The rest of the paper is organized as follows. We review

related work in Sec. II. The system model is described in Sec.
III. Sec. IV is devoted to our mobile filter design. We show
the simulation results in Sec. V, followed by our preliminary
experimental results using Mica-2 sensors in Sec. VI. Finally,
Sec. VII concludes the paper and discusses future work.

II. RELATED WORK

Wireless sensor networks have been extensively studied in
recent years; a survey can be found in [6]. Many sensor net-
works are designed for continuous data collection applications
over a long period of time. Real-world examples include the
sensor network deployed on Great Duck Island [7] to monitor
the habitat of birds, ZebraNet in Africa [8] to monitor the
behavior of wildlife, and the volcano monitoring system [9].

As sensor nodes are usually constrained by a limited power
supply, energy efficiency is a key consideration in sensor
network designs. A pioneer work [10] has suggested various
in-network processing techniques to reduce the network traffic.
One effective in-network processing scheme is in-network
aggregation. By exploring the query’s characteristics, aninter-
mediate sensor node can compute a partial aggregate of its own
value and the values of the downstream nodes before reporting
to its upstream nodes. A number of aggregate functions, such
as MAX, MIN, SUM, AVG, and MEDIAN, have been studied
[11][12][13]. Another effective in-network processing scheme
is to make use of spatial data correlation, and the studies
include clustering [14], sampling [15] and overhearing [16].
Our work falls into an orthogonal category where temporal
data correlation is explored [17], and we are interested in
non-aggregatedata. Non-aggregate data can provide a fine-
grained analysis of the phenomena in the sensor field, which
is requested by many applications [18][19][20]. For example,
in the Sonoma Redwoods project [18], the biologists would
like to receive detailed data for model analysis and hypotheses
testing. These in-network processing techniques can also be
combined to achieve higher energy efficiency; see [3][21].

To explore temporal data correlation, data filtering is a
commonly used technique that trades data quality for energy
efficiency. In [2], a filter is allocated to each sensor node where
the total filter size is constrained by the user error bound. The
filters shrink periodically and the server will re-allocatethe
left-over error bound to the sensor nodes based onburden

3

scores. The burden score of a node is calculated based on a
set of parameters involving the number of update packets gen-
erated by the sensor node since the last filter reallocation,the
current filter size, and the data reporting cost. The work in [3]
further incorporates in-network aggregation into filter designs,
where an intermediate node computes partial aggregates from
its descendants. A more intelligent filter adjustment scheme is
proposed in [4]. In contrast to the previous studies where the
filters are reallocated mainly based on data changing patterns,
the optimization in [4] explicitly takes the residual energy of
the sensor nodes into consideration.

Note that filter re-allocation is a costly operation and is done
infrequently so that the cost can be amortized. Thus, though
these prior studies [3][2][4] have different filter (re)allocation
mechanisms, they share a common assumption: the filter
attached to a specific sensor node will be used for suppressing
data reports for this node only. In other words, filters are
stationary and only data traverse inside the network. The
novelty of our work is that we allow the filters to move in each
round of data collection, and we show that given the same error
bounds, the migration of filters suppresses significantly more
data transmissions, making the system more energy efficient.

III. SYSTEM MODEL

In our system, the readings from individual sensors are
periodically collected by the base station to evaluate complex
distribution queries; we call each data collection around. In
the first round, all the sensor nodes report their readings. In the
subsequent rounds, the sensor nodes report readings that are
not suppressed. If the base station does not receive a report
from a sensor node, its previously reported reading will be
treated as collected data and used for current query evaluation.

A. The Error Bound Model

To facilitate our presentation, in this paper we employ
L1 distance as the error bound model. Specifically, let the
true readings of the sensor nodes bex1, x2, . . . , xN and let
the readings collected by the base station bex′

1, x
′
2, . . . , x

′
N ;

the L1 distance is thenL1 =
∑N

i=1 |xi − x′
i|. If the user-

specified precision requirement isE, the error-bounded data
collection must guaranteeL1 =

∑N

i=1 |xi − x′
i| ≤ E. L1

distance is commonly used to measure the distance between
complex distributions [5]. The smaller is theL1 distance of
two distributions, the closer are the two distributions. More
formally, if the L1 distance is small, any event will happen
with similar probability in the two distributions.

It is worthwhile to note that our mobile filtering scheme is
not limited to theL1 model. It is straightforward to show that

it can work withLk distance whereLk = k

√

∑N

i=1 |xi − x′
i|

k

for anyk = 0, 1, 2, · · ·. In general, the mobile filtering scheme
is workable for any aggregate error bound model where the
overall error bound is a function of the error introduced from
individual sensor node. Additional examples are weightedLk

distance, KL-divergence, etc.
To bound the error of data collection, data filters are

installed (either statically or dynamically) on sensor nodes in
the network. Each filter is associated with a deviation bound
(hereafter referred to asfilter size) and the total filter size

Level 0

Level 1

Level 2

Base

Station

Fig. 3. Underlying communication/routing structure.

should not exceed the boundE. During a round of data
collection, a sensor node reports its data to the base station
only if the deviation between the current reading and the last
reported reading exceeds the filter size.

We would like to remark that there are applications that
explicitly specify an error bound for each sensor node (e.g.,
tolerating the error of the readings of each node to be bounded
within 1), instead of an aggregate error bound. For these
applications, the filter size of each node can be just set as
requested and no filter allocation/re-allocation is necessary.
Notice that the stationary filtering scheme also aims to work
with aggregate error bounds and periodically (re)-allocates
filter sizes based on system workload. We emphasize that both
the stationary and mobile filtering schemes do not control
the user error model and the error bound. Given the error
model and the error bound, they both try to optimize the
system performance and we will show that mobile filtering
outperforms the stationary filtering scheme.

B. Data Collection Model

For each round, we use a data collection model similar
to TAG [11]. The underlying network is structured as a tree
and the data is propagated from the leaf nodes to the root.
Specifically, each sensor node is associated with alevel in the
tree, which indicates the number of hops the node is away
from the base station (i.e., the root) (see Fig. 3). To avoid
transmission collisions, the time is divided into slots, and a
sensor node is kept in asleepingstate for most of the time
in a round. In each time slot, starting from the leaf level,
the sensor nodes at one level are activated to enter into a
processingstate, and the sensor nodes at the level with one
hop closer to the sink enter into alisteningstate. Upon being
in the processing state, a sensor node acquires a new reading,
processes it together with the data received from its children,
and possibly transmits some data to its parent node. A sensor
node in the listening state monitors the wireless channel and
buffers all incoming packets for further processing. Various
synchronization techniques can facilitate this state transition
[22][11]. A round of data collection is completed when the
processing state propagates to the root. In our data collection,
we assume that reliable transmission protocol [23] is used for
underlying routing and no packet is lost.

IV. M OBILE FILTERING: DESIGN AND OPTIMIZATION

The objective of our mobile filtering scheme is to minimize
the total data transmission cost while maintaining the user
specified error bound. In this section, we first outline a

4

Aggregate the

filter

Put update

report in buffer

Has filter?

 No

 Message arrives

Yes

Has report?

 Yes

 No

(a) Listening state

Suppress rn?

Send all reports in

buffer to parent

 No

Yes

 Can process

 Suppress rn

e = e - |ro - rn|

ro = rn

Compose an

update report

for rn in buffer

Has reports

in buffer?

No

Generate a

filter message

in buffer

 Yes

Piggy-back

the filter

Migrate filter?

 Yes

 No

(b) Processing state

Fig. 4. Operations of a sensor node in each round.

practical mobile filter design. We then analyze this scheme
for a chain routing topology. We show that it outperforms
stationary filtering and derive an optimal offline migration
strategy, together with an efficient online heuristic. We further
extend the algorithm to multi-chain and tree topologies.

A. Operations of Mobile Filters

In stationary filtering schemes, each filter only needs to
suppress the newly sensed data if it can. In mobile filtering
schemes, a mobile filter may not suppress a newly sensed
data in the sensor node it travels. The intuition here is
that suppressing the data consumes its filter size and may
restrict the mobile filter’s ability to suppress more data updates
upstream. In addition, a mobile filter needs to decide whether
to travel to the next sensor node. The intuition here is that if
the residual filter size is small, a mobile filter may not travel
further to reduce the overhead it incurs.

Formally, in each round of data collection, each sensor node
s first senses a new readingrn and then operates as follows. In
the listening state,s receives message(s) sent from its children.
Let e be its current filter size (we will show later how this size
is initialized). If the incoming message contains an unused
filter ein, s updates the filter ase = e + ein. If the message
contains an update report, it is buffered for forwarding later.
Detailed operations for this stage are shown in Fig. 4(a).

When the sensor nodes enters into its processing state,
a data filtering strategyfirst decides whether the current
filter is to suppressrn. Let ro be the last reading reported
to the base station. Ifrn is suppressed, a filter size of
|ro − rn| is consumed and the residual filter size is updated
to e = e − |ro − rn|. Otherwise ifrn is not suppressed, an
update report is composed and buffered, and the residual filter
size remainse. The second decision is whether to migrate the
residual filter upstream. If there are update reports (either its
own or the reports forwarded for its descendants) to be sent to
the parent, the residual filter can be piggy-backed. Otherwise,
a filter migration strategywill decide whether to migrate the
residual filter using a separate message. Finally, the sensor
node forwards all update reports in the buffer to its parent.
Detailed operations for this stage are summarized in Fig. 4(b).

By the end of each round of data collection, each node resets
the filter size. It is easy to see that under this operational
model, the sum of the data changes suppressed does not
exceed the total error bound in each round of data collection.
Thus, the user-specified precision requirement is guaranteed.
The remaining task is to design data filtering and migration
strategies so as to minimize the overall data transmission cost.

B. Filter Migration in Chain Topology

We start our discussion with a simple chain topology. We
first show that the mobile filter should initially be placed at
the leaf node.

Theorem 1:For a chain topology, the filter should be allo-
cated as a whole to the leaf sensor node in order to minimize
the total communication cost.3

Proof: Denote the sensor nodes on a chain bys0, s1, . . .,
sN−1, sN , wheres0 is the base station andsN is the leaf
sensor node. We prove the theorem by induction.

Assume that we do not allocate any filter tosN−1. If there
is a data change forsN , the update must be reported fromsN

to s0. The cost of this update isN . The overall communication
cost should also include the cost with a filter installed on the
sub-chain fromsN−1 to s0.

If we allocate any fraction of filter sizeF to the leaf node
sN , there are two cases: 1) migrate the filter tosN−1 without
suppressing the update atsN . Since this filter migration can
be piggy-backed by the update report, it does not incur extra
cost. The overall cost is also the sum ofsN ’s update cost (i.e.,
N) and the cost with a filter of sizeF installed on the sub-
chain fromsN−1 to s0. 2) suppress the update atsN . Thus,
the cost of allocating a filter size ofF to sN is the minimum
of the costs of 1) and 2). Notice that 1) has the same cost
with allocating the buffer tosN−1. Therefore, allocatingF to
sN will result in no worse performance than allocating it to
sN−1. It is easy to see that we can do induction both in terms
of F andsN−1. As such, this completes the proof.

Following this theorem, given a total error bound ofE, the
filter size allocated to the leaf node isE and the filter sizes
allocated to all other nodes are zero. The filter then follows
the operations described in Section IV.A. By the end of each
round, the leaf node resets the filter size toE and all other
nodes reset the filter sizes to zero. Note that resetting the filter
sizes does not incur any communication cost.

1) Mobile versus Stationary Filtering:We now give a
formal cost analysis of the mobile filtering scheme, assuming
the data changes follow a standard normal distribution. While
this analysis is necessarily simplified, it provides a clearer view
of the benefit of mobile filtering. That is, in stationary filtering
scheme, the total error bounds have to be divided among all
sensor nodes; and each node may have small filters, making
the probability of filter size violation high. The mobile filtering
scheme, on the other hand, fully exploits the filter size.

Let E be the total filter size, andXi(i = 1, 2, · · · , N) be
the random variable for the sensor value change of nodesi.
Assume that the change for each sensor node is i.i.d. and that

3Here, we assume that the sensor readings always change between two
consecutive rounds of data collection.

5

Xi follows a normal distribution ofN(0, 1). Without loss of
generality, we consider the case where only the upper bound
of the filter is violated.

For stationary filtering, each node will be assigned a filter
size of E

N
under uniform allocation. The probability that the

filter is violated at nodesi is pi = Pr[Xi > E
N

] = 1 −

Pr[Xi ≤
E
N

] = 1
2 (1−erf

(

E√
2N

)

). Define an indicator random
variableYi such that

Yi =

{

1 if Xi > E
N

;
0 otherwise.

We haveE[Yi] = pi × 1 + (1 − pi) × 0 = pi = 1
2 (1 −

erf
(

E√
2N

)

). Given nodesi’s update cost ofi, the expected

transmission cost isE[
∑N

i=1 Yi × i] = E[Yi]
∑N

i=1 i =
N(N+1)

2 E[Yi].
For mobile filtering, the filter migrates upstream and sup-

presses the data reports as long as it can and the filter migration
stops when the residual filter size is not enough to suppress a
data update. The probability that the filter is violated at node
si is pi = Pr[Xi > E −

∑N+1
j=i+1 Xj] = Pr[

∑N+1
j=i Xj > E]

(DefineXN+1 = 0). Let Zi =
∑N

j=i Xj . SinceXi’s are i.i.d,
Zi is also a normal distribution ofN(0, N − i+1). Define an
indicator random variableYi such that

Yi =

{

1 if Zi > E;
0 otherwise.

We haveE[Yi] = pi = 1
2 (1 − erf

(

E√
2(N−i+1)

)

). The

expected cost of mobile filtering is thenE[
∑N

i=1 Yi × i] =
∑N

i=1 E[Yi]i. If the filter migration is not piggy-backed with
data reports, there is at most an additional cost ofN .

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100

T
ot

al
 T

ra
ns

m
is

si
on

 C
os

t

Number of Nodes (N)

Stationary
Mobile (w/o Piggy-back)

Mobile (w/ Piggy-back)

Fig. 5. Expected cost as a function
of N . E =

1

2
N .

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

T
ot

al
 T

ra
ns

m
is

si
on

 C
os

t

Total Filter Size

Stationary
Mobile (w/o Piggy-back)

Mobile (w/ Piggy-back)

Fig. 6. Expected cost as a function
of the total filter sizeE. N = 30.

In Figs. 5 and 6, we plot numerical results for the two
filtering schemes. For mobile filtering, the results for two
versions are shown, namely, with and without piggy-back.
Their performance differs by at mostN . In Fig. 5, the total
error bound is fixed toN

2 and a filter of size 0.5 is attached
to each node for stationary filtering. Since the data changes
follow a standard normal distribution, in this setting eachfilter
will suppress the updates with a probability of approximately
40%. We can see that mobile filtering greatly outperforms
stationary filtering. We also see that whenN increases, the cost
of stationary filtering increases much faster than that of mobile
filtering, implying that mobile filtering is more scalable.

In Fig. 6, we fix the number of sensors toN = 30 and
vary the total error boundE from 0 to 100. With piggy-back,
mobile filtering performs better than stationary filtering for

all cases tested. Even without piggy-back, only afterE = 50
does mobile filtering perform worse than stationary filtering.
Note that whenE = 50, each node obtains a filter size of
50/30 = 1.67 for stationary filtering, which implies that the
probability of a new reading being suppressed is as high as
90%. In other words, the error bound is extremely large in
this case, which may not provide meaningful results and is
not desirable for most applications.

We state again that data change distributions depend on
specific applications. One may question the performance for
the distributions where there are a few data changes that are
significantly large; and these data changes may consume the
filter size if the mobile filter suppresses the data update reports
as long as it can. This is why more advanced data filtering and
filter migration strategies are needed. The algorithm we show
in next subsection will advisably omit these few data changes
so as to suppress significantly more data updates; and thus
fits for all distributions. In our experiments, we also use real
world traces that match a wide range of application scenarios.

2) Filter Migration and Data Filtering Strategies:Recall
that our objective is to minimize the number of update reports
transmitted in the network given a total filter size ofE. In this
section, we first develop an optimal offline solution (through
dynamic programming) with all data changes known a priori.
Let i be the distance (in terms of hops) between theith node
and the base station. Letvi be the data change (against the
last reported value) at sensor nodesi, and e be the residual
filter size. Let Gi(e) be the gain from placing a filter of
sizee at sensor nodesi, which represents the cost difference
between suppressing the data update at nodesi and migrating
the residual filter size upstream.

Gi(e) = max















i (1)
Gi−1(e), piggy-back (2)
i + Gi−1(e − vi), piggy-back (3)
i + Gi−1(e − vi) − 1, no piggy-back (4)

There are four possible choices thatsi can execute, as shown
in (1)-(4). With the first choice, the data update is suppressed,
and the residual filter is not sent upstream. With the second
choice, the data update is not suppressed and reported to the
base station. In this case, the unused filter sizee is piggy-
backed upstream to nodesi−1. With the third choice, the data
update is suppressed. The gain consists of two parts. The first
part is a saving ofi transmissions for this data update. The
second part is a potential gain ofGi−1(e − vi) when the
residual filter with sizee−vi migrates to the parent. The fourth
choice is similar to the third except that the filter migration is
not piggy-backed with the data reports (ofsi’s descendants)
and incurs one extra cost for sending this filter upstream to
sensor nodesi−1. A sensor node should select the one with
the highest gain among the four choices.

We also initialize theGi(·) function for special cases:

∀i, Gi(0) = 0, (5)
∀i, Gi(< 0) = −∞, (6)
∀e, G0(e) = 0, (7)
∀e, G1(e) = 0, no piggy-back (8)
∀e, G1(e) = 1, piggy-back (9)

6

where condition (5) means there is no gain if the filter is
used up; condition (6) states that negative filters are strictly
prohibited; condition (7) states that there is no gain if the
filter has arrived at the base station; and conditions (8) and
(9) specify the gains for nodes1.

Algorithm CalGain ()

Gi(e, +): the gain at nodei with residual filter sizee with
piggy-back;Gi(e,−): the gain without piggy-back.

1 Initialization;
2 for ∀i, e, {+,−}

3 Gi(e, +) = max

{

i + Gi−1(e − vi, +),
Gi−1(e,+)

4 Gi(e,−) = max

{

i + Gi−1(e − vi,−) − 1,
Gi−1(e, +),
i

5 end for

Output: GN (E,−) and the filter migration and data filtering
strategies.

Fig. 7. Calculate Gain Algorithm.

Gi(·) can then be iteratively calculated using dynamic
programming, see Fig. 7. Note, however, that this optimal
algorithm needs prior information about the data changes,
which is difficult to obtain. We thus develop a greedy online
heuristic as follows. LetTR and TS be two thresholds used
for filter migration and data filtering. If the residual filtersize
is smaller thanTR, the filter is not sent upstream unless the
filter is piggy-backed; if the data update at a sensor is greater
thanTS, the filter will not suppress this update. Intuitively, a
small residual filterTR means that the chance of suppressing
upstream data reports is small, and thus the filter should notbe
sent upstream. The thresholdTS means that if a data change
is very large, suppressing this update will significantly reduce
the chance of suppressing future reports. As such, even if the
current residual filter size is able to suppress this update,it
leaves the opportunities to suppress updates upstream.

We will examine the performance of this greedy heuristic
against the optimal algorithm as well as the impact ofTR and
TS by simulation in Section V.

C. Filter Migration in Multi-Chain Trees

The chain structure provides us with a basic understanding
of mobile filtering. In this section, we consider a more general
routing structure, a multi-chain tree consisting of multiple
chains, which appears in the networks with disjoint multi-path
routing or star-like networks. An example is shown in Fig. 8.

In a multi-chain tree, the initial filters will also be assigned
to the leaf sensor nodes. Since there are multiple leaf nodes, a
filter size allocation strategy among the leaf nodes is needed.
Note that if we treat each chain of the tree as a single node,
the tree can be considered as the one-hop network studied in
[2][4]. Thus, we adapt our filter allocation scheme reportedin
a previous study [4] and devise our algorithm as follows.

The total error bound is first allocated uniformly to the leaf
sensor node of each chain. The filters are re-allocated every
UpD rounds. Intuitively, our algorithm re-allocates larger
filters to the chains with larger number of update packets and
smaller residual energy. LetEi be the filter size assigned to

s8

s0

s5

s6

s7

s12

s9

s10

s11

s4

s1

s2

s3

…... …...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 8. An example of a multi-
chain tree.

s6

s0

s7

s8

s5

s9

s10

s11s4

s1

s2

s3

Fig. 9. An example of a tree,
divided into multiple chains.

chainci in the current round. Each chain maintains the number
of update messagesWi and the minimum residual energypi of
the sensor nodes on the chain for the recentUpD rounds. Each
chain also maintains a set of sampling filter sizesEi,∗ and the
estimatedWi,∗ under these sampling filter sizes. After every
UpD round, each chain informs the base station ofWi,∗ and
pi for each of the sampling filter sizes. This information can
be submitted by sending a message from the leaf node through
the chain topology. In this message, there is a counterWi for
each of the sampling filter sizes. When this message passes an
intermediate node, the node will add the number of updates
recorded by itself to the respectiveWi. This message also
marks the minimum residual energy of the sensor nodes. Based
on these information, the optimal filter re-allocation algorithm
[4] is adopted by the base station to calculate the filters to
be allocated to each chain for the nextUpD rounds. For the
clarify of the paper, we put this algorithm in the Appendix.

D. Filter Migration in General Trees

Finally, we extend our filter migration scheme to accom-
modate general tree structures for data collection. Note that
the general data collection tree (the routing structure) can be
built by some standard protocol (e.g., TAG [11]). Our strategy
is to partition the tree into multiple chains and then apply
the algorithm for multi-chain trees. Unlike the simple multi-
chain tree, however, we need to decide where a chain ends
in a general tree (the starting point is always a leaf node).
We propose to use the intersection of two tree branches as a
natural ending point. An example of such partitioning is shown
in Fig. 9. A detailed description for a binary tree partitioning
can be found in Fig. 10, which can be easily extended to trees
of arbitrary degrees.

Algorithm TreeDivision ()

1 for each leafsi do
2 sk = parent(si)
3 while si is the only child ofsk or
4 si is the left child ofsk

5 sk = parent(sk)
6 construct a chain fromsi to parent(sk)
7 end for

Fig. 10. Tree Partitioning Algorithm

After partitioning, the tree topology can be treated as a
multi-chain structure, except that residual filters are aggregated
at the end of a chain (e.g.,s2 and s7 in Fig. 9). The filter
allocation and migration algorithms are the same as those
discussed in the previous sections.

7

V. SIMULATION RESULTS

A. Simulation Setup

 40

 45

 50

 55

 60

 65

 70

 0 1000 2000 3000 4000 5000

D
at

a

Time

Dewpoint

Fig. 11. Dewpoint trace from LEM project.

We have implemented our mobile filtering scheme in ns-2
[24]. Three typical topologies, namely, a chain, a cross, and
a grid topology, have been used for performance evaluation.
The cross topology is a multi-chain topology with four equal-
length branches. In the grid topology, we set the base station
at the center and a routing tree is built by broadcasting. Forall
these topologies, the distance between two neighboring sensor
nodes is set to 2m and the transmission power on the physical
layer is set to2.5 × 10−6dBm.

We adopt the same energy settings as those used in the
Great Duck Island project [7] (we assume the voltage is
the same in all compared cases). The power required for
the operation of transmitting and receiving a packet are set
to 20nAh (Ampere-hour) and 8nAh respectively. The power
required for the operation of sensing a sample is 1.438nAh.
The energy capacity for a sensor node is set to 80mAh. We
omit the energy for sensors spent in sleeping state. The system
lifetime is defined as the lifetime of the first dying node (in
terms of operation rounds), which is widely adopted [14][4].

We test two different data traces in our simulation. The
first is a synthetic data trace, where the readings are randomly
and uniformly generated in the range of [0, 10] for each
sensor. The second is a real world trace obtained from the Live
from Earth and Mars (LEM) project [25] at the University
of Washington. We used the dewpoint trace logged by the
station at the University of Washington from August 2004
to August 2005, which consists of more than 500,000 sensor
readings. For illustration purposes, we plot the first 5000 data
points of the trace in Fig. 11. We have evaluated our algorithm
against other traces in LEM, and similar performance trends
are obtained. Each data point in a figure is an average of 10
randomly generated experiments.

We compare our mobile filtering scheme with a state-of-the-
art stationary filtering algorithm [4]. It has been shown that
this algorithm outperforms other existing stationary filtering
algorithms ([3][2]) under various configurations.

B. Simulation Results

In Fig. 12(a), we show the results under a chain topology
where the synthetic data are used. The total filter size is setto
2×N ; that is, each node on average can get a filter size of 2
(hereafter called the normalized filter size, as opposed to the
total filter size2N). In this figure, we plot the mobile filtering

scheme under both the greedy heuristic and the optimal offline
algorithm. In the greedy heuristic, we setTR = 0 andTS =
18% of the total filter size. We will show how we chooseTR

andTS shortly. The optimal algorithm (Fig. 7) is used to serve
as the performance upper bound in which all data updates on
a chain are known a priori.

We can see that the more sensor nodes we have, the smaller
the system lifetime for both the mobile and stationary filtering
schemes. This is because the total filter size is smaller thanthe
total data change. Thus, with more nodes, the number of data
packet transmissions increases. We can make two other ob-
servations: First, mobile filtering always performs betterthan
stationary filtering. Second, as the number of nodes increases,
the superiority of mobile filtering becomes more substantial.
For example, for 12 nodes, the system lifetime of mobile
filtering is 2.5 times longer than that of stationary filtering,
whereas for 28 nodes, a three time difference is observed.
We also compare our scheme with stationary filtering using
the dewpoint trace. The filter size is set to0.2 × N . As
shown in Fig. 12(b), similar results are found. In both sets
of simulations, our greedy heuristic performs very close to
the optimal solution. Thus, in the remaining simulations, we
will present the results of the greedy heuristic only.

We then study the effect of the precision settingE as well
as the impacts of the two parametersTR andTS on the greedy
heuristic of our mobile filtering scheme. In these simulations,
the number of nodes in a chain is fixed at 16.

With the synthetic data trace, we vary the normalized filter
size from 0.8 to 3.6. We can see from Fig. 13(a) that allowing
larger error bound can significantly improve the network
lifetime. In this figure, we show three differentTR settings.
Mobile-0% represents the case where the filter always migrates
upstream as long as its size is greater than 0. Mobile-20% and
Mobile-50% represent that the filter should stop if there is only
20% or 50% of the normalized filter left, unless it is piggy-
backed. It can be seen thatTR does not have a big impact on
the system lifetime. This is because, filter migration incurs a
small cost compared to data reporting; and when the residual
filter is small, it will be piggy-backed by the data packet it
fails to suppress, making the cost even lower. Thus, we set
TR = 0 for the rest of our simulations.

In Fig. 13(b), we test the impact ofTS . Mobile-6, Mobile-
8, and Mobile-10 represent theTS settings of 6, 8, and
10 respectively. Notice that Mobile-10 implies that the filter
should suppress all the updates if it can. As can be seen, when
the filter size is small, the system lifetime is longer with a
smallTS; and when the filter size is large, the system lifetime
is longer with a largeTS. This is because when the filter size
is small, suppressing a large update may significantly affect
the ability of the mobile filter to suppress more future updates
upstream. Thus, Mobile-6 performs better than Mobile-8 and
Mobile-10. On the other hand, when the filter size is large,
the mobile filter should have a greater budget to absorb large
data changes. Setting a lowTS in this case will make the
mobile filter suppress all the data changes that are less than
TS; yet with residual filter budget but cannot suppress larger
data changes due to the smallTS constraint. This is the reason
Mobile-6 performs poor when the filter size is greater than 2.5.

8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 15 20 25 30

Li
fe

tim
e

Number of Nodes

Mobile-Optimal
Mobile-Greedy

Stationary

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 15 20 25 30

Li
fe

tim
e

Number of Nodes

Mobile-Optimal
Mobile-Greedy

Stationary

(b)

Fig. 12. Lifetime as a function of number of nodes for chain topology
under (a) synthetic data and (b) dewpoint trace.

 0

 500

 1000

 1500

 2000

 2500

 1 1.5 2 2.5 3

Li
fe

tim
e

Precision (Filter Size)

Mobile-0%
Mobile-20%
Mobile-50%

Stationary

(a)

 0

 500

 1000

 1500

 2000

 2500

 1 1.5 2 2.5 3

Li
fe

tim
e

Precision (Filter Size)

Mobile-6
Mobile-8

Mobile-10
Stationary

(b)

Fig. 13. Lifetime as a function of precision under syntheticdata, (a)
impact ofTR, (b) impact ofTS .

 0

 200

 400

 600

 800

 1000

 1200

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Li
fe

tim
e

Precision (Filter Size)

Mobile-0%
Mobile-50%

Stationary

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Li
fe

tim
e

Precision (Filter Size)

Mobile-0.6
Mobile-1.0
Mobile-1.4
Stationary

(b)

Fig. 14. Lifetime as a function of precision under dewpoint trace, (a)
impact ofTR, (b) impact ofTS .

 0

 500

 1000

 1500

 2000

 15 20 25 30 35
Li

fe
tim

e

Number of Nodes

Dynamic
Static

(a)

 0

 500

 1000

 1500

 2000

 15 20 25 30 35

Li
fe

tim
e

Number of Nodes

Dynamic
Static

(b)

Fig. 15. Lifetime as a function of number of nodes for cross topology
under (a) synthetic data and (b) dewpoint trace.

From these simulations, we can see that parameterTS has a
stronger impact thanTR. We next examine the impacts ofTR

andTS against the real dewpoint trace to obtain more insights.
As shown in Fig. 14(a),TR, again, has very little impact on the
performance. On the other hand, from Fig. 14(b), the impact
of TS is more obvious for the dewpoint trace than for the
synthetic data trace. This is because the data change for the
synthetic trace is at most 10. However, for the dewpoint trace,
there are occasionally larger data changes. We may call these
large data changesoutliersand they have a larger performance
impact on mobile filtering. For both our synthetic data trace
and the dewpoint trace, we find that if we setTS = 15%−22%
of the total filter size, the system performance is relatively
good. Therefore, in the rest of our experiments, we useTR = 0
andTS = 18% of the total filter size as our default settings.

We next examine the cross topology. We first consider the
lifetime under different numbers of nodes. The results for
the synthetic data trace and the dewpoint trace are shown in
Fig. 15(a) and Fig. 15(b). Again, our mobile filtering scheme
performs consistently better than stationary filtering by 50%
to 100%. We also study the parameterUpD, the number
of rounds between successive re-allocation of the filters for
different chains. The results for the synthetic data trace and
the dewpoint trace are shown in Fig. 16(a) and Fig. 16(b),
where the total number of nodes is set to 24. We observe that
asUpD increases, the system lifetime generally improves. The
system will become stabilized sooner for a smaller precision.
This is because it takes a shorter time to correctly predict the
data changing pattern for smaller filters. The synthetic data
trace shows a larger performance variation than the dewpoint
trace; the changes of the later are more predictable.

Finally, we examine our mobile filtering scheme for a7×7
grid topology. From Figs. 17(a) and 17(b), it can be seen that
our mobile filtering scheme outperforms the stationary filtering
scheme for both the synthetic and the dewpoint trace.

VI. M ICA-2 EXPERIMENT RESULTS

To further validate the effectiveness of mobile filtering,
we have conducted a series of experiments over our Mica-
2 sensor network testbed. In the experiments, we deploy 10
Mica-2 motes to form a chain topology. In each mote, a
photoconductive sensor is attached to monitor the light data.
An additional mote, which is directly connected to a PC, serves
as the base station. For comparison, we implement both the
mobile and the stationary filtering algorithms.

Fig. 18 shows the key modules of our implementation.
The Main module controls our program. TheTimer module
generates time events, so that theLight Sensingmodule can
periodically access the Analog Digital Conversion (ADC)
hardware to get data from the light sensor. TheCmd Processor
module accepts and processes commands from the base sta-
tion, including parameter initialization. TheMobile/Stationary
Filtering module suppresses the data and passes the unsup-
pressed data to theCommunicationmodule for transmission.

In the experiment, we monitor the light data in our research
lab. The statistics of a sample set of light changes can be seen
from Fig. 19. About 60% of the updates are within one ADC
unit, but the update can be as large as 20 ADC units.

Fig. 20 shows the lifetime results with different precision
settings for both mobile and stationary filtering schemes. The
normalized filter size varies from 1 to 7 ADC units. In our ex-
periments,TR andTS are again set to 0% and 18%. We can see
that our mobile filtering consistently outperforms stationary
filtering, by 55% to 80%. This confirms our simulation results.
Furthermore, when the normalized filter size increases, the
gain of mobile filtering increases faster than that of stationary
filtering. This is because, when the normalized filter size
increases,TS also increases, which offers more opportunities
for mobile filtering to suppress more data updates.

We have also performed experiments for other environmen-
tal data (such as temperature) of our lab environments, and
similar results have been observed.

9

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100

Li
fe

tim
e

Number of Rounds

Precision = 1.2
Precision = 1.6
Precision = 2.0

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100

Li
fe

tim
e

Number of Rounds

Precision = 0.2
Precision = 0.3
Precision = 0.4

(b)

Fig. 16. Lifetime as a function of number of nodes for cross topology
under (a) synthetic data and (b) dewpoint trace.

 0

 100

 200

 300

 400

 500

 600

 1 1.5 2 2.5 3

Li
fe

tim
e

Precision (Filter Size)

Mobile
Stationary

(a)

 0

 100

 200

 300

 400

 500

 600

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Li
fe

tim
e

Precision (Filter Size)

Mobile
Stationary

(b)

Fig. 17. Lifetime as a function of filter allocation for crosstopology
under (a) synthetic data and (b) dewpoint trace.

Communication

Mobile
Filtering

Stationary
Filtering

Timer

Light Sensing

Cmd Processor

Main

Module

Flow

Fig. 18. Modules for Mica-2 sensor experi-
ments.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20

P
er

ce
nt

ag
e

Update Range

Light

Fig. 19. Data changes of the ADC readings of
light.

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7

Li
fe

tim
e

Precision (Filter Size)

Dynamic
Static

Fig. 20. Lifetime as a function of precision
setting in the Mica-2 network for light data.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel mobile filtering
scheme for error-bounded non-aggregate data collection in
sensor networks. By exploring the migration of filters, a
mobile filter extracts and relays unused filters in the network
to suppress as many data update reports as possible.

An analytical study has been performed to quantify the per-
formance benefit of mobile filtering against the conventional
stationary filtering. We have also presented the detailed mobile
filter designs for a chain routing topology. An optimal offline
filter migration algorithm as well as a greedy online heuristic
were developed. The algorithm was further extended to general
multi-chain and tree topologies. Extensive simulations showed
that: i) a small error allowed in data collection can significantly
improve network lifetime, which verifies the importance of
this study; ii) our mobile filtering scheme performs close
to the optimal offline algorithm under a chain topology;
and iii) the mobile filtering scheme substantially extends the
network lifetime against the state-of-the-art stationaryfiltering
scheme under various system configurations. Our preliminary
experimental results based on a Mica-2 sensor testbed further
validated our simulation results.

We believe many future work can be done. We are working
on a more advanced mobile filter migration strategy in general
graphs. Another interesting direction is to investigate inmore
depth of theTS andTR for general data.

ACKNOWLEDGMENTS

Dan Wang’s work is supported by grant Hong Kong
PolyU/G-YG78, A-PB0R, A-PJ19, 1-ZV5W, and RGC/GRF
PolyU 5305/08E. Jianliang Xu’s work was supported by
the Research Grants Council of Hong Kong under Projects
HKBU211307 and HKBU210808. Jiangchuan Liu’s work is
supported by an NSERC Discovery Grant, an NSERC DAS
Grant, an NSERC Strategic Project Grant, and an MITACS
Project Grant.

APPENDIX

The following filter allocation algorithm (Fig. 21) is from
[26]. Each chain maintains a set of sampling filter sizes1

2Ei,
3
4Ei, . . ., 2K−1

2K Ei, 2K+1
2K Ei, . . ., 5

4Ei, 3
2Ei. We useEi,∗

to denote this set. The sensors will count the total number
of updates for each of these candidate filter sizes. Every
UpD rounds, the filter size of each chain is re-calculated by
this algorithm. As specified in [26], the motivation of using
exponentially spaced candidate filter sizes is to adjust theerror
bounds at coarse granularity when they are far away from the
optimum, and adjust them at fine granularity when they are
close to the optimum.

Algorithm The Optimal Error Bound Allocation

E,Ei,∗: total and candidate error bounds for chaini
Wi,∗, pi: update message rate forEi,∗ and the minimum
residual energy of chaini

1 ∀i, j, ri,j =
Wi,j

pi

2 ∀i, xi = 1
3 while min1≤i≤n xi 6= m
4 j = arg max1≤i≤n,xi 6=m ri,xi

5 if Ej,xj+1 +
∑

i6=j
Ei,xi

> E then
6 break
7 end if
8 xj = xj + 1
9 end while

Output: optimal error boundEi,xi
allocated for each chain

Fig. 21. Optimal candidate precision allocation in a single-hop network

Line 1 is to compute the normalized energy consumption
rate ri,j for each candidateEi,j . The initialization in Line 2
starts from the smallest error bound for all chains. In each
iteration of Line 3-9, the error bound of the chain with the
highest energy consumption rate is replaced with its next
smallest candidate. Finally, the error bound of each chain is
calculated and will be used for the nextUpD rounds.

10

REFERENCES

[1] T. He, S. Ben-David, and L. Tong, “Nonparametric change detection
and estimation in large scale sensor networks,”IEEE Trans. Signal
Processing, vol. 54, no. 4, pp. 1204–1217, 2006.

[2] C. Olston, J. Jiang, and J. Widom, “Adaptive filters for continuous
queries over distributed data streams,” inProc. ACM SIGMOD’03, San
Diego, CA, USA, Jun. 2003.

[3] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos, “Hierarchical in-
network data aggregation with quality guarantees,” inProc. IEEE
EDBT’04, Heraklion, Greece, Mar. 2004.

[4] X. Tang and J. Xu, “Extending network lifetime for precision-
constrained data aggregation in wireless sensor networks,” in Proc. IEEE
INFOCOM’06, Barcelona, Spain.

[5] T. Batu, L. Fortnow, R. Rubinfeld, W. Smith, and P. White,“Testing
that distributions are close,” inProc. IEEE FOCS’00), Redondo Beach,
CA, USA, Nov. 2000.

[6] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,”IEEE Communications Magazine, vol. 40, no. 8,
pp. 102–114, 2002.

[7] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” inProc. ACM
WSNA’02, Atlanta, GA, USA, 2002.

[8] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: Designtradeoffs and
early experiences with zebranet,” inProc. ACM ASPLOS’02, San Jose,
CA, USA, Oct. 2002.

[9] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh,
“Fidelity and yield in a volcano monitoring sensor network,” in Proc.
USENIX OSDI’06, Seattle, WA, USA, Nov. 2006.

[10] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century
challenges: Scalable coordination in sensor networks,” inProc. ACM
MOBICOM’99, Seattle, WA, USA, Aug. 1999.

[11] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “Tag: A tiny
aggregation service for ad hoc sensor networks,” inProc. USENIX
OSDI’02, Boston, MA, USA, Dec. 2002.

[12] N. Shrivastava, C. Buragohain, S. Suri, and D. Agrawal,“Medians and
beyond: New aggregation techniques for sensor networks,” in Proc. ACM
SENSYS’04, Baltimore, MD, USA, Nov. 2004.

[13] Y. Yao and J. Gehrke, “Query processing in sensor networks,” in Proc.
CIDR’03, Asilomar, CA, USA, Jan. 2003.

[14] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensornetworks,”
in Proc. HICSS’00, Wailea Maui, HI, USA, Jan. 2000.

[15] D. Wang, Y. Long, and F. Ergun, “A layered architecture for delay
sensitive sensor networks,” inProc. IEEE SECON’05, Santa Clara, CA,
USA, 2005.

[16] A. Silberstein, K. Munagala, and J. Yang, “Energy-efficient monitoring
of extreme values in sensor networks,” inProc. ACM SIGMOD’06,
Chicago, IL, USA, Jun. 2006.

[17] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis, “Tina: A
scheme for temporal coherency-aware in-network aggregation,” in Proc.
ACM MobiDE’03, San Diego, CA, USA, 2003.

[18] D. Chu, A. Deshpande, J. Hellerstein, , and W. Hong, “Approximate
data collection in sensor networks using probabilistic models,” in Proc.
IEEE ICDS’06, Atlanta, GA, USA, Apr. 2006.

[19] J. Gao, L. Guibas, and J. Hershberger, “Sparse data aggregation in sensor
networks,” inProc. ACM IPSN’07, Cambridge, MA, USA, Apr. 2007.

[20] B. Sheng, Q. Li, and W. Mao, “Data storage placement in sensor
networks,” inProc. ACM MOBIHOC’06, Florence, Italy, May 2006.

[21] W. Xue, Q. Luo, L. Chen, and Y. Liu, “Contour map matchingfor event
detection in sensor networks,” inProc. ACM SIGMOD’06, Chicago, IL,
USA, Jun. 2006.

[22] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, “Impact
of network density on data aggregation in wireless sensor networks,” in
Proc. ICDCS’02, Vienna, Austria, Jul. 2002.

[23] A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges of
reliable multihop routing in sensor networks,” inProc. ACM SENSYS’03,
Los Angeles, CA, USA, Nov. 2003.

[24] The network simulator ns-2. [Online]. Available:
http://www.isi.edu/nsnam/ns/

[25] Live from earth and mars (lem) project. [Online]. Available:
http://www-k12.atmos.washington.edu/k12/grayskies

[26] X. Tang and J. Xu, “Optimizing lifetime for continuous data aggregation
with precision guarantees in wireless sensor networks,”IEEE/ACM
Transactions on Networking, vol. 16, no. 4, pp. 904–917, 2008.

PLACE
PHOTO
HERE

Dan Wang (S’05-M’07) received the B. Sc degree
from Peking University, Beijing, China, in 2000, the
M. Sc degree from Case Western Reserve University,
Cleveland, Ohio, USA, in 2004, and the Ph. D.
degree from Simon Fraser University, Burnaby, B.C.,
Canada, in 2007; all in computer science. He is
currently an assistant professor at the Department of
Computing, The Hong Kong Polytechnic University.
His research interests include wireless sensor net-
works, Internet routing, and peer-to-peer networks.
He is a member of the IEEE.

PLACE
PHOTO
HERE

Jianliang Xu is an Associate Professor in the De-
partment of Computer Science, Hong Kong Bap-
tist University. He received the BEng degree in
computer science and engineering from Zhejiang
University, Hangzhou, China, and the PhD degree
in computer science from Hong Kong University of
Science and Technology. His research interests in-
clude data management, mobile computing, wireless
sensor networks, and distributed systems. He is a
senior member of the IEEE.

PLACE
PHOTO
HERE

Feng Wang (S’07) received both his Bachelor’s
and Master’s degree in Computer Science and Tech-
nology from Tsinghua University, Beijing, China,
in 2002 and 2005, respectively. He is currently
a Ph.D. student in School of Computing Science
at Simon Fraser University. His research interests
include wireless sensor networks, peer-to-peer live
streaming and distributed computing. In summer
2006, he interned in Microsoft Research Asia. In
spring 2008 and spring 2009, he was a visiting Ph.D.
student in Department of Computing at The Hong

Kong Polytechnic University. In spring 2010, he visited theWireless Ad Hoc
Networks Lab in the Institute of Software at Chinese Academyof Sciences. He
was awarded Tsinghua University Scholarship for ExcellentStudent in 1998,
2000 and 2001. At Simon Fraser University, he was awarded theSFU-CS
Graduate Entrance Scholarship in 2005 and the Graduate Fellowship in 2007,
2008 and 2009. He was also awarded the Chinese Government Scholarship for
Outstanding Self-financed Students Studying Abroad in 2009. He is a Student
Member of IEEE and IEEE Communications Society.

PLACE
PHOTO
HERE

Jiangchuan Liu (S’01-M’03-SM’08) received the
BEng degree (cum laude) from Tsinghua University,
Beijing, China, in 1999, and the PhD degree from
The Hong Kong University of Science and Technol-
ogy in 2003, both in computer science. He is a recip-
ient of Microsoft Research Fellowship (2000), Hong
Kong Young Scientist Award (2003), and Canada
NSERC DAS Award (2009). He is a co-recipient of
the Best Student Paper Award of IEEE IWQoS’2008,
the Best Paper Award (2009) of IEEE ComSoc
Multimedia Communications Technical Committee,

and the Best Paper Award Runner-up of IEEE IWQoS’2010.
He is currently an Associate Professor in the School of Computing Science,

Simon Fraser University, British Columbia, Canada, and wasan Assistant
Professor in the Department of Computer Science and Engineering at The
Chinese University of Hong Kong from 2003 to 2004.

His research interests include multimedia systems and networks, wireless
ad hoc and sensor networks, and peer-to-peer and overlay networks. He is a
Senior Member of IEEE and a member of Sigma Xi. He is an Associate Editor
of IEEE Transactions on Multimedia, and an editor of IEEE Communications
Surveys and Tutorials. He is TPC Vice Chair for Information Systems of IEEE
INFOCOM’2011.

