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ABSTRACT
Carbon intensity forecasting of power grids is critical to the opti-

mization of demand-side consumers. Recently, cross-border power
grids have emerged, i.e., those allowing electricity to be transmit-

ted across different national transmission systems. Cross-border

power grids substantially increase the sharing of highly variable

renewable energy sources (VRE), leading to greater economic ben-

efits and increased reliability. In Europe, the total volume of cross-

border electricity that is exchanged comprises 13% of the annual

net electricity that is generated. Current studies on carbon intensity

forecasting, however, apply to individual regional power grids. In

cross-border grids, the carbon intensity of a regional grid depends

not only on that of its own electricity but also on the carbon inten-

sity from the electricity exchanged with cross-border grids. Thus, if

the cross-border electricity exchange is not captured appropriately,

significant forecasting errors can occur.

In this paper, we formulate a new Carbon Intensity Forecasting

for Cross-border Grids (CFCG) problem by proposing and integrat-

ing carbon flows generated by cross-border electricity exchanges.

The challenge is to capture the complex spatial and temporal de-

pendencies that are involved. We propose a CFCG model based

on a Graph Neural Network (GNN) submodel to learn the spatial

dependencies and a Long Short Term Memory (LSTM) submodel

to learn the temporal dependencies. We evaluate the CFCG model

using real-world data from the cross-border power grids in Europe

involving 28 member countries. We compare five baseline mod-

els. Our results show that the CFCG model achieves an average

improvement of 26.46% or 20.34% as compared to state-of-the-art

forecasting models based on regional grids or one-hop neighbor

grids, respectively.
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1 INTRODUCTION
Global warming is attracting increasing attention in recent years

[32, 38, 42]. Carbon emissions are a major factor in global warming

[24]. Carbon emissions by the power sector increased by 700 Mt

in 2021, accounting for 46% of the global increase [17]. There is a

need for electricity generators and consumers alike to reduce their

carbon usage.

Forecasting the carbon intensity of the electricity supplied by a

power grid is critical in the optimization of demand-side consumers.

Recently, cross-border power grids have emerged, i.e., those allowing

electricity to be transmitted across the transmission systems of

different countries. Cross-border power grids substantially increase

the sharing of highly variable renewable energy sources (VRE),

leading to greater economic benefits and increased reliability. In Eu-

rope, the total volume of cross-border electricity that is exchanged

comprised 13% of the annual net electricity that is generated.

Current studies on carbon intensity forecasting apply to individ-

ual regional power grids. Forecasting models, e.g., Long Short Term

Memory (LSTM), are trained on the historical data on the carbon

intensity of a local regional grid, or in some recent studies on the

carbon intensity of the one-hop neighbor grids is considered. In

the context of cross-border power grids, when a consumer uses

the electricity of a local grid, the carbon intensity of a local grid

depends not only on that of the electricity of the local grid but also

on the carbon intensity from the electricity exchanged with cross-

border grids. For example, the carbon intensity of the local grids

of Switzerland is small, yet, Switzerland imports electricity from

Germany, Austria, Italy, and France. As such, carbon emissions are

involved in the electricity supplied to consumers.

Clearly, if the cross-border electricity exchanges are ignored,

significant forecasting errors can occur. We also observe that even

if we estimate the carbon intensity using cross-border grids and

then perform forecasting based on LSTM, non-trivial errors can still

occur. Intrinsically, the historical trends in cross-border grids and

the electricity that is exchanged in accordance with geographical

topologies are dynamic and correlated across diverse granularities.

It is, therefore, challenging to capture such correlations.

In this paper, we present a holistic study by formulating a new

Carbon Intensity Forecasting for Cross-border Power Grids (CFCG)

problem. In this problem, we propose cross-border carbon flows,

and such flows form a carbon network. The challenge is to learn

the complex spatial and temporal dependencies that are involved.

We propose a new CFCG model based on Graph Neural Networks
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(GNN) and LSTM.
1
Our model has three features: (1) the carbon

intensity variation shows periodic patterns in multiple levels of

granularity, e.g., hourly, daily, and weekly. To capture the patterns

across various granularities, we develop a multi-periodic pattern

encoding scheme to transform the original carbon intensity se-

quence data into data with different periodic granularity settings

(e.g., hourly, daily, weekly); (2) Cross-border power grids have car-

bon flows with spatial dependencies. Thus, in our CFCG model, we

develop and integrate a GNN-based submodel (i.e., GNN layers) to

learn the spatial dependencies; (3) Carbon flows have time depen-

dencies. Thus, in our CFCG model, we develop and integrate an

LSTM-based submodel (i.e., LSTM layers) to uncover the temporal

dependencies. Finally, to fuse different granularities, we generate

the forecasting results using a Hadamard product.

We evaluate our model using the real-world dataset of the cross-

border power grids of 28 countries in Europe. We evaluate CFCG

with four state-of-the-art baseline schemes, including schemes us-

ing carbon intensity data from regional grids only, using data with

one-hop neighbor grids. We also implement a forecasting scheme

in which we apply the carbon intensity data of cross-border grids

and we enhance it with forecasting capability by directly training

an LSTM model; and we then compare CFCG to this model. Our

evaluations show that our model can achieve an improvement of

26.46% and 20.34% as compared to two state-of-the-art schemes

using regional grids or one-hop neighbor grids, respectively. As

compared to a simple application of cross-border grids, we still see

an improvement of 15.83%.

The contributions of the paper can be summarized as follows:

• We present a new study of carbon intensity forecasting in the

context of cross-border power grids.We carefully analyze the

literature and formulate a new carbon intensity forecasting

problem, CFCG.

• We propose a CFCG model based on GNN and LSTM, where

CFCG can uncover both spatial and temporal dependencies.

• We present an evaluation of CFCG using real-world data

from the cross-border power grids of Europe, involving 28

countries. Our evaluation shows that CFCG outperforms

state-of-the-art schemes, and that for certain countries, the

improvement can be significant.

The remaining part of the paper proceeds as follows. In Section

2, we present the background on cross-border power grids, carbon

emissions, and carbon intensity forecasting. We carefully analyze

the related work and position our work in the literature. In Section 3,

we present the problems of existing studies, and the need for a new

study. This motivates our work. We formally formulate our CFCG

problem in Section 4, and develop our solution model in Section 5.

In Section 6, we evaluate our CFCG model, and we conclude our

paper in Section 7.

2 BACKGROUND AND RELATEDWORK
2.1 Cross-boarder Power Grids
Cross-border power grids [12, 26, 45] link two or more power grid

systems, and allow electricity to be transmitted over larger areas

1
We make our codes available: https://github.com/stuabc/CFCG

across borders. There are three prominent advantages to cross-

border power girds.

First, cross-border power grids help market participants to bene-

fit from economies of scale on both the supply and demand sides.

Larger generators can be operated to serve more consumers.

Second, cross-border power grids are diverse in terms of both

supply and demand. This improves the security of the grids. For

example, cross-border power grids can meet the peak demands with

relatively fewer resources [25, 33].

Third, and increasingly important, is the environmental ben-

efits of cross-border power grids. Cross-border power grids can

integrate more variable renewables. On the one hand, they allow

operators to leverage weather patterns across larger spaces. On the

other hand, cross-border grids make it easier to balance the local

variable renewable energy, as it can access greater supplies as well

as additional pools of demands [5, 7].

Cross-border power grids are operated by joint operators. For

example, the European Network of Transmission System Operators

for Energy (ENTSO-E) operates the European cross-border power

grids [41]. It was created to enhance cooperation between national

power grid operators in Europe. The European cross-border power

grids have expanded dramatically during over past years. According

to the latest ENTSO-E statistic report [9], the volume of electricity

that was exchanged was approximately 467TWh, comprising 13%

of the net electricity that was generated. In 2022, 12 new borders re-

ceived their first electric connectivity, joining 80 European borders

[10]. Nine of the ENTSO-E member countries imported more than

50% of their total yearly electricity from their neighbors. Nearly

50% percent of the ENTSO-E member states imports and exports

more than 20% of their domestic electricity generation from the

cross-border power grid [14].

The intrinsic difference of a cross-border grid brings about as

compared to a regional grid is that the carbon intensity borne by

the grids involved a cross-border grid is calculated to reflect their

state-level carbon intensity. Therefore, carbon intensity forecasting

should carry this information.

2.2 Carbon Emission and Carbon Intensity
Forecasting

In electricity generation, carbon emissions result from burning fuels

in power plants. There are two types of carbon emissions [21]:

(1) direct emissions, i.e., the operational carbon emissions that

occur when the fuel is converted into electricity and (2) life-cycle

emissions, which can be determined using methods of assessing

life cycles [4, 16, 39].

The carbon emission factor (in g/kWh) is the quantity of carbon

emitted per unit of electricity produced by a specific energy source

(e.g., coal, wind, solar). Calculating the carbon emission factor is

complex work and is beyond the scope of this paper. We take carbon

emission factors as inputs. Table 1 shows the carbon emission

factors for both direct emissions and life-cycle emissions [21]. The

carbon intensity of a power grid is the carbon emission rate (in

g/kWh) of this power grid, i.e., the total amount of carbon emitted

(Gram) as against the electricity generated (Kilowatt-Hour). This

can be calculated by the energy sources used in this power grid

and the carbon emission factor of the energy sources. As compared
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to the sheer amount of carbon emissions, carbon intensity is more

commonly used as an index in making optimization decisions.

Carbon intensity forecasting aims to predict the carbon intensity

of the electricity supplied by a power grid for a period of time in the

future. It is useful for demand-side optimization, e.g., demand-side

systems can switch their workloads to use electricity at a time that

is "greener." For example, algorithms have been developed for smart

home systems to enable the workloads of household appliances

to be scheduled based on carbon intensity forecasting to reduce

their carbon emissions [29]. Cloud computing schedules have been

developed to distribute the workloads according to the carbon

intensity at different times and places [28, 44]. In [3], deep learning

model training schedules are based on carbon intensity forecasting.

2.3 Related Work
Estimating the Carbon intensity of a corporate entity has become an

important problem with the increasing concerns over carbon emis-

sions. Carbon intensity cannot be directly measured, but there are

many ways to estimate carbon intensity. Below is a categorization

of the related work. A summary is given in Table 2.

The relatedwork can be grouped under the headings of generation-
based carbon intensity estimation and consumption-based carbon

intensity estimation. This follows the Greenhouse Gas (GHG) pro-

tocol [34] where the carbon emissions of a corporate entity are

distinguished into (1) Scope 1, the emissions associated with the

electricity generation of a corporate entity, e.g., burning fuels and

(2) Scope 2, the emissions associated with the electricity consumed

by a corporate entity [13].
2
Generation-based estimation focuses

on the calibration of carbon emission factors [23]. In particular, [39]

calibrates the factors at an individual country level.

Our paper falls under the heading of consumption-based carbon

intensity estimation. Consumption-based estimation can differ from

generation-based estimation since a corporate entity, as an elec-

tricity consumer, can consume electricity generated from different

power grids, e.g., through delivery by cross-border grids.

Research into consumption-based estimation can be further di-

vided into carbon intensity accounting [36], i.e., to estimate the

carbon intensity at a particular point in history or at the current

time; and carbon intensity forecasting, i.e., to estimate the carbon

intensity at a future time. Intrinsically, carbon intensity accounting

is about trying to accurately estimate the ground truth; thus, it is

useful for guiding financial investments, informing policy-making

decisions, and measuring compliance with regulations [22]. The

carbon intensity accounting of an individual regional grid is equiv-

alent to generation-based carbon intensity estimation. To measure

both the carbon generated in a regional grid and the carbon in-

jected from networked grids, three recent schemes were developed

[27, 31, 36]. All of these schemes calculate the injected carbon based

on a proportional sharing principle, i.e., an equal distribution of

the inflows. The difference is that (1) two schemes (direct coupling

schemes) [27, 36] assume that each grid in the grid network is cou-

pled with all other grids, with a difference in a weighting factor;

and (2) one scheme (an aggregate coupling scheme) [31] assumes

2
In GHG, there is a Scope 3, which includes all other emissions that occur in the

upstream and downstream activities of a corporate entity. It is less related to this paper,

and we do not discuss this category.

that the grid will firstly serve its own country, with the residual

electricity available for use by other countries.

Our paper is about carbon intensity forecasting. As discussed,

carbon intensity forecasting involves trying to accurately estimate

carbon intensity at a future time; thus is useful for making decisions

about demand-side optimization. Carbon intensity forecasting re-

quires historical data on carbon intensity data and takes carbon

intensity accounting as a building block for the ground truths. The

technical difference between carbon intensity accounting and car-

bon intensity forecasting is that accounting is designed to calculate

the ground truth at a point in history (or current) time; thus, the

calculation uses the data in the same time slot. For forecasting, learn-

ing methods should be developed to learn the correlation within

historical data across various time granularities.

There are carbon intensity forecasting schemes. Lowry, G. [19]

proposed an algorithm to forecast the day-ahead carbon intensity

of the power grids of the UK. Additional information was used to

improve the forecasting results. For example, weather data were

leveraged in [18] to forecast the carbon intensity of the power grids

in Denmark. Recently, a scheme [21] developed a deep neural net-

work (DNN) model for each energy source, e.g., coal, oil, solar, etc.,

and the carbon intensity forecasting of a regional grid is calculated

by the average carbon intensity of all energy sources. Another study

[20] focuses on multi-day carbon intensity forecasting, developing

a hierarchical DNN model. As exchanges of electricity take place

among cross-border grids, the carbon intensity of one-hop neigh-

boring grids was considered in [18, 29] to improve the forecasting

results. More specifically, the carbon intensity accounting takes

one-hop neighbor grids into account when constructing historical

and current carbon intensity data. Then, an LSTM model [29] or

a hybrid model with linear regression, splines, and ARIMA [18]

is used for forecasting. To the best of our knowledge, no existing

study takes into consideration the electricity that is exchanged at

the level of cross-border power grids. This paper fills in this gap.

We note that several commercial companies provide carbon in-

tensity estimation services, e.g., ElectricityMap [35], Watttime [43].

Unfortunately, their models and data are not publically available.

3 MOTIVATION
In this section, we first show that carbon intensity accounting only

using one-hop neighbor grids can deviate significantly from the

ground truth with the full network of a cross-border grid. We then

show that it is non-trivial to capture spatial information. More

specifically, when applying an LSTM model to a state-of-the-art

carbon intensity accounting scheme that takes into account the full

networked grids, non-trivial forecasting errors can still occur.

We use the open data from ENSTON [37], which contains the

electricity data of the power grids of 28 European countries from

January 2019 to December 2021. Fig. 1 shows that the results of

carbon intensity accounting when one-hop neighbor grids are used

deviate from those when full networked grids are used. More specif-

ically, we observe that 14 out of 28 countries have an error rate of

20% or higher and that 19 countries have an error rate of 10% or

higher. The deviation can be significant in certain countries. For

example, the carbon intensity of Sweden is 139.25g/kWh when we

consider one-hop neighbor grids, yet it is 54.69g/kWh when we
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Table 1: Carbon emission factors (g/kWh) for different energy source

Emission factors Oil Coal Natural gas Nuclear Wind Solar Hydro Geothermal Biomass Other

Direct emissions 406 760 370 0 0 0 0 0 0 575

Life-cycle emissions 650 820 490 12 11 45 24 38 230 700

20% MAPE
10% MAPE

Figure 1: The countries with
an accounting error over 10%. Figure 2: The forecasting performance of CACC-LSTM

Table 2: Research summary on Carbon Intensity Estimation

Generation-based
Carbon Intensity Estimation

Consumption-based
Carbon Intensity Estimation

[1] [2] [8]

Carbon Intensity

Accounting

[27][31] [36]

Carbon Intensity

Forecasting

Regional grids [6] [19][20][21]

One-hop neighbor grids [18][29]

Cross-border grids CFCG

consider full networked grids, a difference of 165.67%. When we

look into the data, we observe that Denmark, a one-hop neighbor

grid of Sweden has high carbon intensity in its electricity, leading to

a high carbon intensity when considering one-hop neighbor grids.

We then study whether a simple carbon intensity forecasting

scheme based on carbon intensity accounting with networked grids

can have good performance. We apply the state-of-the-art Carbon

intensity ACCounting scheme [36] (we call it CACC in this paper)

and we enhance it with forecasting capability by training an LSTM

model using the historical carbon intensity data of CACC. In this

paper, we call this approach CACC-LSTM.
3
We divide the ENSTON

data into training data (60%), validation data (20%), and testing data

(20%). We show the carbon intensity (g/KWh) in the first week of

the testing data, i.e., February 9
𝑡ℎ

2021 to February 15
𝑡ℎ

2021.

We easily find that the forecasting results of a number of coun-

tries display non-trivial errors. Fig. 2 shows the results of the CACC-

LSTM of France, Latvia, and Norway, where the errors are 12.12%,

16.69%, and 21.11%, respectively. As was explained, CACC was de-

signed to calculate the carbon intensity at a point of time in history

(or currently) time using the data of the same time slot. As such,

CACC-LSTM lacks the ability to fully capture the dynamics and cor-

relation across diverse granularities, e.g., hourly, daily, and weekly.

Overall, there are challenges to capturing the correlations across

diverse granularity periods, to capturing both spatial and temporal

correlations, and to fusing models if submodels are needed. This mo-

tivated us to present a holistic study by formulating a new problem

and developing a new forecasting model.

3
CACC-LSTM is intrinsically equivalent to enhancing [29] where we extend its carbon

intensity accounting from one-hop neighbor grids to networked grids.

4 PROBLEM STATEMENT
4.1 Carbon Network Modeling
Let 𝑖 and 𝑗 be two power grids. The electricity flow 𝑓 𝑒

𝑖 𝑗
(𝑡) is the

total amount of electricity transmitted from 𝑖 to 𝑗 during a period

of time starting at 𝑡 . In practice, the time period is one hour. Let

𝐸𝑖 (𝑡) be the electricity generated by power grid 𝑖 at time 𝑡 . This

electricity is an aggregation of the electricity generated by different

energy sources, e.g., Oil, Coal, Wind, Biomass, etc. Let S be the set

of energy sources and 𝑆 = |S|. Let 𝐸𝑘
𝑖
(𝑡) be the electricity generated

by source 𝑘 at power grid 𝑖 . Clearly 𝐸𝑖 (𝑡) =
∑
𝑘∈S 𝐸𝑘

𝑖
(𝑡).

As was mentioned, different energy sources are used to generate

electricity, and the carbon emitted by each type of energy source

differs. Let 𝑒 𝑓 𝑘 be the carbon emission factor of an energy source

𝑘 . In this paper, we take this carbon emission factor as a constant

for a specific energy source [21]. For example, the carbon emission

factor of Oil is 406g/kWh and the carbon emission factor of Wind

is 0. We show the most common energy sources used to generate

electricity and their carbon emission factor in Table 1.

At a specific time 𝑡 , a power grid 𝑖 generates electricity using

different energy sources: this is because the amount of certain

energy sources change at different times, e.g., solar, wind, etc. This

leads to dynamic carbon emissions at different times. Let carbon
intensity 𝑐𝑖 (𝑡) be the ratio of the total carbon emissions as against

the total electricity generated. Specifically,

𝑐𝑖 (𝑡) =
∑
𝑘∈S 𝑒 𝑓 𝑘 × 𝐸𝑘 (𝑡)

𝐸 (𝑡) (1)

Note that carbon intensity cannot be directly measured. It is

calculated using Eq. 1.

In practice, two grids can exchange electricity when they have

connecting lines for electricity transmissions. We call them neigh-
boring grids. Note that when a grid 𝑖 receives electricity flow 𝑓 𝑒

𝑖 𝑗

from grid 𝑗 , 𝑖 also bears the carbon generated by this electricity

flow. We call this carbon flow. Intuitively, we can think that the

carbon emission "flows" from grid 𝑖 to 𝑗 . Let carbon flow 𝑓 𝑐
𝑖 𝑗
(𝑡) be

the total amount of carbon generated by the electricity flow 𝑓 𝑒
𝑖 𝑗
(𝑡)

at time 𝑡 . More specifically, this is the amount of carbon associated
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with the electricity generated by grid 𝑖 and transmitted to grid 𝑗 at

𝑡 . 𝑓 𝑐
𝑖 𝑗
(𝑡) = 𝑓 𝑒

𝑖 𝑗
(𝑡) × 𝑐𝑖𝑖 (𝑡).

Below, we formally present the carbon network modeling for-

mally in the following. For clarity, we summarize key notations in

Table 3.

Table 3: Notations and Descriptions.

Notations Descriptions

G = (V, E,A) Directed graph representing carbon network

𝑐𝑖𝑖 (𝑡) Carbon intensity of power grid 𝑖 at time 𝑡

𝒄 𝒊(𝑡) = {𝑐𝑖𝑖 (𝑡)} ∈ RV Carbon intensity of all power grids at time 𝑡

𝑪𝑰 = {𝒄 𝒊(0), ..., 𝒄 𝒊(𝑡)} Carbon intensity sequence of all power grids

𝑓 𝑒
𝑖 𝑗
(𝑡) Electricity flow from grid i to grid j at time 𝑡

𝒇 𝒆 (𝑡) = {𝑓 𝑒
𝑖 𝑗
(𝑡)} ∈ RE Electricity flows of all power grids at time 𝑡

𝑭 𝒆 = {𝒇 𝒆 (0), ...,𝒇 𝒆 (𝑡)} Electricity flow sequence of all power grids

Definition 1. Carbon network.We use a directed graph G =

(V, E,A) to represent a carbon network whereV = 𝑣1, ..., 𝑣𝑛 is a set
of nodes, 𝑣𝑖 denotes a regional power grid, and |V| = 𝑛. E is a set of
links, where directed link (𝑣𝑖 , 𝑣 𝑗 ) indicates that grid 𝑣 𝑗 will directly
import electricity from grid 𝑣𝑖 . We use a binary adjacency matrix
A ∈ R𝑛×𝑛 to present the connectivity among the power grids.

We now introduce two features that are useful for our learning

model: (1) the carbon intensity sequence, a feature on nodes; and (2)

the electricity flow sequence, a feature on links. The history carbon

intensity sequence data and electricity flow sequence data are the

inputs of our learning model.

Definition 2. Carbon intensity sequence. Recall that 𝑐𝑖𝑖 (𝑡) is
the carbon intensity of a power grid 𝑖 at time 𝑡 . We denote the carbon
intensity sequence of 𝑖 as a vector 𝒄 𝒊(𝑡) = {𝑐𝑖 (0), ..., 𝑐𝑖 (𝑡)} ∈ RV .
This is a time series data. The carbon intensity sequence of all power
grids at time 𝑡 is denoted as a matrix 𝑪𝑰 = {𝒄 𝒊(𝑡)}.

Definition 3. Electricity flow sequence. Recall that 𝑓 𝑒
𝑖 𝑗
(𝑡) is

the electricity flow from power grid 𝑖 to 𝑗 at time 𝑡 . We denote the all
electricity flows of a carbon network at time 𝑡 as a matrix 𝒇 𝒆 (𝑡) =
{∀𝑖, 𝑗, 𝑓 𝑒

𝑖 𝑗
(𝑡)} ∈ RE . The electricity flow sequence of a carbon network

over a period of time 𝑡 is denoted as a three-dimensional matrix
𝑭 𝒆 = {𝒇 𝒆 (0), ...,𝒇 𝒆 (𝑡)}.

The carbon intensity sequence is a two-dimensional matrix

since it is on a node 𝑖 , yet the electricity flow sequence is a three-

dimensional matrix since it works on a link (𝑖, 𝑗).

4.2 Problem formulation
Problem CFCG (Carbon intensity Forecasting for Cross-border
power Grids): Given the carbon network G = (V, E,A), histor-
ical carbon intensity sequence 𝑪𝑰 = {(𝒄 𝒊(0), ..., 𝒄 𝒊(𝑡)}, historical
electricity flow sequence 𝑭 𝒆 = {𝒇 𝒆 (0), ...,𝒇 𝒆 (𝑡)}, learn a predic-

tive function 𝑦 = 𝑓 (G, 𝑪𝑰 , 𝑭 𝒆), which infers the day-ahead carbon

intensity sequence of cross-border power grids.

5 A GNN-LSTM-BASED CFCG MODEL
5.1 Overview
We developed a new CFCG model, see Fig. 3. CFCG consists of four

components. First, to capture the dynamics across diverse periods,

CFCG divides the data into multiple periods, i.e., hourly, daily, and

weekly. In our experiments, we will evaluate the granularity of the

periods. CFCG has a multi-periodic pattern encoding component

to perform a granularity-aware encoding on the input data. Second,

to learn spatial dependencies, CFCG adopts a GNN layer with a

specific embedding mechanism. Third, to learn the temporal de-

pendencies, CFCG adopts an LSTM layer to take the embedding

generated by the GNN layer as inputs, and outputs a high-level

representation. Fourth, to integrate the outputs and generate the

forecasting results, CFCG fuses the outputs of the LSTM layer using

a Hadamard product.

5.2 Multi-periodic Pattern Encoding
The carbon intensity variation has multi-periodic patterns [21]. We

propose to leverage multiple time granularites (e.g., hourly, daily,

and weekly) to model the temporal patterns. Similar techniques

have been used to predict city traffic [46, 47]. Specifically, each time

granularity is regarded as a period to sample the carbon intensity

data points. We can then generate a set of granularity-specific data

series. We define granularity-aware carbon intensity sequence and
granularity-aware electricity flow sequence.

Definition 4. Granularity-aware Carbon Intensity Sequence.
Let 𝑪𝑰𝒑 ∈ R𝑁×𝑇𝑝 be a granularity-specific carbon intensity sequence
with a period granularity of 𝑝 (e.g., an hour), where 𝑁 is the number
of power grids, and𝑇𝑝 is the length of the carbon intensity series under
𝑝 .

For example, when 𝑝 = 𝑑𝑎𝑦, 𝑇𝑝 is 24 times that of 𝑝 = ℎ𝑜𝑢𝑟 .

𝑪𝑰𝒑 = {𝒄 𝒊𝑝 (0), ..., 𝒄 𝒊𝑝 (𝑡−1), 𝒄 𝒊𝑝 (𝑡 ), 𝒄 𝒊𝑝 (𝑡+1), ..., 𝒄 𝒊𝑝 (𝑇𝑝 ) } (𝑝 = ℎ𝑜𝑢𝑟 )

𝑪𝑰𝒑 = {𝒄 𝒊𝑝 (0), ..., 𝒄 𝒊𝑝 (𝑡−24), 𝒄 𝒊𝑝 (𝑡 ), 𝒄 𝒊𝑝 (𝑡+24), ..., 𝒄 𝒊𝑝 (𝑇𝑝 ) } (𝑝 = 𝑑𝑎𝑦)
Similarly, the granularity-aware electricity flow sequence is:

Definition 5. Granularity-aware Electricity Flow Sequence
Let 𝑭 𝒆,𝒑 ∈ R𝑀×𝑇𝑝 be a granularity-specific electricity flow sequence
with the period granularity of 𝑝 (e.g., an hour), where𝑀 is the number
of links, and 𝑇𝑝 is the length of the carbon intensity series under 𝑝 .

In this component, the multi-periodic pattern encoding takes the

granularity period 𝑝 , the historical data of the carbon intensity se-

quence, and the electricity flow sequence as inputs and outputs the

granularity-aware carbon intensity sequence and the granularity-

aware electricity flow sequence.

5.3 GNN-based Spatial Dependency Learning
The spatial dependency of the carbon intensity of the nodes and

the spatial dependency of the electricity flows of the links are key

characteristics of the CFCG problem. We develop a GNN layer

based on graph attention networks [40] to capture such spatial

dependencies.

In the carbon network, nodes have physical restrictions. For

example, certain nodes only serve as exporters. If we treat all nodes
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Figure 3: Overview. We take the history carbon intensity sequence and electricity flow sequence as input and obtain the final
prediction result through our CFCG model.

as the same in the GNN layer, we observe that there can be noises.

As such, we develop a node-aware embedding mechanism with a

set of rules. Such embedding can effectively remove noises.

More specifically, we summarize three simple rules:

• The carbon intensity of a grid serving only as an exporter

will not be affected by neighboring grids..

• The carbon intensity of a grid serving only as an importer

will be affected by all neighboring grids.

• The carbon intensity of a grid serving as both importer and

exporter will be affected by the neighboring grids that export

electricity to it.

Note that in a GNN iteration, there is a node embedding op-

eration. More specifically, each node will aggregate the features

(i.e., carbon intensity sequence and electricity flow sequence) of

neighbor nodes by using learnable normalized attention weights.

As such, (Related to rule 1) For a node that is serving as only an

exporter, its embedding is based on itself; (Related to rule 2) For a

node that is serving as only an importer, its embedding is generated

by aggregating the features of all neighboring nodes, links, and

corresponding weight; and (Related to rule 3) For a node that is

serving as both importer and exporter, its embedding is generated

based on the features of neighboring nodes, links, and correspond-

ing weights except for the neighboring nodes that import from it

and related flows. Fig. 4 shows an example of the node embedding

process, where 𝛼 is a learnable weight coefficient.

We would first like to briefly present the node embedding op-

eration. We leverage attention mechanism [40] to learn the node

embedding. Specifically, for each node 𝑖 , the node embedding is

generated by the features aggregated from the neighboring nodes

and edges with corresponding weights. Let N𝑎𝑙𝑙
𝑖

and E𝑎𝑙𝑙
𝑖

be the

set of nodes and edges connected to node 𝑖 , respectively; in partic-

ularly, node 𝑖 is included in N𝑎𝑙𝑙
𝑖

. For each node 𝑖 , the neighboring

nodes set N𝑖 ⊆ N𝑎𝑙𝑙
𝑖

and neighboring edges set E𝑖 ⊆ E𝑎𝑙𝑙
𝑖

are

different when they conform to different rules. We first introduce

the neighboring nodes and edges definition for each rule. Then we

demonstrate the node embedding calculation process based on the

defined neighboring nodes and edges.

For a node 𝑖 that conforms to Rule 1, the node embedding is

calculated based on the exporter itself, and only the feature of the

exporter contributes to the embedding. Thus, we have the neigh-

boring nodes set N𝑖 = {𝑖} and the neighboring edges set E𝑖 = ∅.
For a node 𝑖 that conforms to Rule 2, the node embedding is

calculated based on all the nodes and edges connected to it. Thus,

we have the neighboring nodes set N𝑖 = N𝑎𝑙𝑙
𝑖

and the neighboring

edges set E𝑖 = E𝑎𝑙𝑙
𝑖

.

For a node 𝑖 that conforms to Rule 3, the node embedding is

calculated based only on nodes and edges that export to it. Thus,

we have the neighboring nodes setN𝑖 ⊂ N𝑎𝑙𝑙
𝑖

and the neighboring

edges set E𝑖 ⊂ E𝑎𝑙𝑙
𝑖

.

With the neighboring nodes N𝑖 and neighboring edges 𝐸𝑖 now

defined, we can derive the node embedding based on the embed-

ding weights that are widely used in graph attention networks [40].

Specifically, we suppose that there are 𝑁𝑖 neighboring nodes and 𝐸𝑖

neighboring edges for each node 𝑖 . Let ci𝑝
𝑖
(𝑡) = {𝑐𝑖𝑝

1
(𝑡), . . . , 𝑐𝑖𝑝

𝑁𝑖
(𝑡)}

and f𝑒,𝑝
𝑖

(𝑡) = {𝑓 𝑒,𝑝
1

(𝑡), . . . , 𝑓 𝑒,𝑝
𝐸𝑖

(𝑡)} be the set of neighboring node

features and edge features, respectively. For each node 𝑖 , the em-

bedding weight 𝛼𝑛
𝑖 𝑗
(t) is defined as follows:

𝛼𝑛𝑖 𝑗 (𝑡) =
𝑒𝑥𝑝 (𝜎 (𝑎𝑇𝑛 [𝑊𝑛𝑐𝑖

𝑝

𝑖
(𝑡)∥𝑊𝑛𝑐𝑖

𝑝

𝑗
(𝑡))]))∑

𝑘∈N𝑖
𝑒𝑥𝑝 (𝜎 (𝑎𝑇𝑛 [𝑊𝑛𝑐𝑖

𝑝

𝑖
(𝑡)∥𝑊𝑛𝑐𝑖

𝑝

𝑘
(𝑡))]))

, (2)

where𝑊𝑛 is a learnable weight matrix that linearly transforms the

node features into high-level features, 𝑎𝑛 is the parameter vector

of a feed-forward network with a single layer, and 𝜎 represents

the activation function. Similarly, the embedding weight of edge

𝑘 ∈ E𝑖 to node 𝑖 is defined as 𝛼𝑒
𝑖𝑘
(𝑡), and we have:

𝛼𝑒
𝑖𝑘
(𝑡) =

𝑒𝑥𝑝 (𝜎 (𝑎𝑇𝑒 [𝑊𝑛𝑐𝑖
𝑝

𝑖
(𝑡)∥𝑊𝑒 𝑓

𝑒,𝑝

𝑗
(𝑡))]))∑

𝑗∈E𝑖
𝑒𝑥𝑝 (𝜎 (𝑎𝑇𝑒 [𝑊𝑛𝑐𝑖

𝑝

𝑖
(𝑡)∥𝑊𝑒 𝑓

𝑒,𝑝

𝑗
(𝑡))]))

, (3)
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Figure 4: (a) Illustration of the node-aware embedding of node 𝑛3. The embedding generation for a node serving as only as
an exporter is based on itself. (b) Illustration of the node-aware embedding of node 𝑛2. The embedding generation for a node
serving as only an importer is based on all neighboring nodes and edges. (c) Illustration of the node-aware embedding of node
𝑛4. The embedding generation for a node serving as both importer and exporter is based on information from neighboring
nodes and edges that export to it.

where𝑊𝑒 is a learnable weight matrix that linearly transforms

the edge features into high-level features, and 𝑎𝑒 is the parameter

vector of a feed-forward network with a single layer.

With the embedding weights 𝛼𝑛
𝑖 𝑗
(𝑡) and 𝛼𝑒

𝑖𝑘
(𝑡) learned, we can

derive the node embedding of node 𝑖 , which is the concatenation

of the weighted neighboring nodes feature and edges features. Let

𝑐𝑖
𝑝

N𝑖
(𝑡) and 𝑐𝑖𝑝E𝑖

(𝑡) be the weighted sum of neighboring nodes and

edge features. We then have:

𝑐𝑖
𝑝

N𝑖
(𝑡) = 𝜎 (𝑊𝑛 ·

∑︁
𝑗∈N𝑖

𝛼𝑛𝑖 𝑗 (𝑡)𝑐𝑖
𝑝

𝑗
(𝑡)), (4)

and

𝑐𝑖
𝑝

E𝑖
(𝑡) = 𝜎 (𝑊𝑒 ·

∑︁
𝑘∈E𝑖

𝛼𝑒𝑖 𝑗 (𝑡) 𝑓
𝑒,𝑝

𝑘
(𝑡)) . (5)

Finally, the node embedding 𝑐𝑖
𝑝

𝑖
(𝑡) of node 𝑖 can be combined by a

concatenation operation ∥:

𝑐𝑖
𝑝

𝑖
(𝑡) = (𝑐𝑖𝑝N𝑖

(𝑡)∥𝑐𝑖𝑝E𝑖
(𝑡)) (6)

5.4 LSTM-based Temporal Dependence
Learning

Spatial dependency learning provides the representation of each

node integrated with the representation of the nodes and links in

the carbon network. We next learn the temporal dependency. We

leverage LSTM [15], a neural network that can successfully process

time series data, to learn the temporal dependency. Specifically,

there is a memory cell c𝑡 to store the observation of time step 𝑡 ,

and three gates are designed to control the state of the memory

cell: forget gate f𝑡 , input gate i𝑡 and output gate o𝑡 . Let x𝑡 be the
input, and the LSTM function 𝐿𝑆𝑇𝑀 (x𝑡 ) can be defined as:s

𝐿𝑆𝑇𝑀 (x𝑡 ) = o𝑡 ⊙ 𝜙 (c𝑡 ), (7)

where 𝜙 (·) is a tangent function, c𝑡 = f𝑡 ⊙ c𝑡−1 + i𝑡 ⊙ c𝑡 , and ⊙
denotes the operation of product.

For the hourly carbon intensity sequence, the input of the LSTM

network is defined as C̃Iℎ = {c̃i𝑝 (0), . . . , c̃i𝑝 (𝑡), c̃i𝑝 (𝑡+1), . . . , c̃i𝑝 (𝑇𝑝 )}.
The output of the LSTM network is defined as

𝑦′
ℎ
= 𝐿𝑆𝑇𝑀 (C̃Iℎ) (8)

For the daily carbon intensity sequence, the input of the LSTM

network is defined as C̃I𝑑 = {c̃i𝑝 (0), . . . , c̃i𝑝 (𝑡), c̃i𝑝 (𝑡+24), . . . , c̃i𝑝 (𝑇𝑝 )}.
The output of the LSTM network is defined as

𝑦′
𝑑
= 𝐿𝑆𝑇𝑀 (C̃I𝑑 ) (9)

For the weekly carbon intensity sequence, the input of the LSTM

network is defined as C̃I𝑤 = {c̃i𝑝 (0), . . . , c̃i𝑝 (𝑡), c̃i𝑝 (𝑡+168), . . . , c̃i𝑝 (𝑇𝑝 )}.
The output of the LSTM network is defined as

𝑦′𝑤 = 𝐿𝑆𝑇𝑀 (C̃I𝑤) (10)

5.5 Multi-periodic patterns Integration
In this part, we will discuss how to generate the final prediction

result. We develop a gating mechanism [11] to fuse representations

with different granularites. Specifically, we generate the final pre-

diction result 𝑌 ′
by the Hadamard product ⊙. After learning the

temporal dependence of carbon intensity with LSTM, we can obtain

the predicted future carbon intensity in three granularities: hourly

representation 𝑦′
ℎ
, daily representation 𝑦′

𝑑
, and weekly representa-

tion 𝑦′𝑤 . Then, we can integrate them to obtain the final prediction

result as follows:

𝑌 ′ =𝑊ℎ ⊙ 𝑦′
ℎ
+𝑊𝑑 ⊙ 𝑦′

𝑑
+𝑊𝑤 ⊙ 𝑦′𝑤 (11)

where𝑊ℎ ,𝑊𝑑 , and𝑊𝑤 are learnable parameters for different granularity-

aware representations, reflecting the weight of the three compo-

nents on the forecasting target.

6 EVALUATION
6.1 Evaluation Setup
In this section, we present the evaluation of our CFCG model with

the following research questions.

RQ1: How does CFCG perform when compared with state-of-

the-art day-ahead carbon intensity forecasting techniques?

RQ2: How do our designs in the key components contribute to

the performance of CFCG?

RQ3: What explainable patterns does CFCG capture during car-

bon intensity forecasting?

RQ4: The CFCG model applies a carbon intensity accounting

method as a building block. How does the carbon intensity account-

ing component affect our CFCG model?

367



e-Energy ’23, June 20–23, 2023, Orlando, FL, USA Zhang et al.

Table 4: Performance comparison of all approaches on datasets of 28 countries in terms of MAE, RMSE, and MAPE (based on
lifecycle emission factors).

Methods Metric

Countries

AT BE BG CH CY CZ DE DK EE ES FI FR GR HR HU

DACF

MAE 36.02 34.68 20.95 110.25 20.64 32.60 39.16 45.77 68.74 25.16 12.55 9.50 39.43 34.30 20.99

RMSE 48.82 43.28 27.01 143.56 27.89 39.80 54.94 57.40 86.00 32.57 17.38 12.92 52.91 43.20 26.45

MAPE(%) 24.07 19.61 5.53 59.06 3.44 8.00 11.31 25.20 25.33 14.95 10.21 18.77 11.37 14.43 9.10

TSBP

MAE 24.02 27.34 23.42 60.7 20.8 27.32 42.39 36.77 40.3 27.87 16.02 8.96 47.44 34.28 21.13

RMSE 32.32 34.82 29.57 81.15 27.96 34.52 55.02 46.68 53.54 35.41 20.43 12.06 59.47 42.42 26.41

MAPE(%) 17.83 15.16 4.90 45.49 3.97 6.01 11.58 18.53 13.17 14.44 12.75 16.50 11.73 12.75 7.51

HCMF

MAE 23.92 28.73 26.93 65.62 21.88 27.38 47.81 37.27 42.75 28.12 16.00 9.35 55.68 34.71 22.23

RMSE 32.57 35.91 33.75 86.79 28.94 34.72 59.54 47.04 54.38 35.72 20.94 12.38 67.69 42.91 27.66

MAPE(%) 16.58 15.85 5.86 46.85 3.65 6.12 12.76 18.37 13.87 14.16 11.54 16.94 13.21 12.43 7.51

CCAC

MAE 25.93 32.42 20.82 49.57 27.34 26.01 51.45 44.94 45.96 26.78 13.16 9.56 53.09 25.71 19.37

RMSE 36.34 42.42 28.20 51.20 41.20 35.13 68.38 58.71 63.74 34.90 18.70 13.23 70.26 34.15 25.25

MAPE(%) 18.82 18.45 5.64 44.52 4.64 6.82 17.09 23.54 16.73 16.89 10.04 18.40 15.11 11.67 8.43

CCAC-LSTM

MAE 24.13 28.56 23.88 45.90 21.94 25.48 46.78 36.22 36.82 26.55 12.46 9.19 45.29 28.38 21.53

RMSE 32.53 35.77 30.42 81.88 28.89 32.99 58.96 45.91 50.73 33.78 16.96 12.12 59.19 36.15 27.24

MAPE(%) 19.13 17.69 5.46 40.62 3.66 6.57 14.60 19.46 12.99 15.82 10.65 18.75 13.22 11.67 9.49

CFCG
MAE 22.92 26.21 19.27 28.16 23.26 23.05 38.51 34.57 35.24 19.94 11.71 7.96 41.72 23.40 16.33
RMSE 31.93 34.54 25.66 39.37 32.61 30.37 54.79 44.82 49.95 26.84 15.97 11.16 55.21 31.05 21.19

MAPE(%) 16.57 15.05 4.75 29.70 3.93 5.97 10.91 16.94 12.48 12.67 8.86 14.74 11.56 10.34 7.06

Methods Metric

Countries

IE IT LT LV NL NO PL PT RS RO SE SI SK AVERAGE

DACF

MAE 53.59 26.43 74.14 58.71 33.31 10.11 41.63 40.06 36.48 30.28 6.80 40.21 45.00 37.41

RMSE 76.12 33.72 91.65 73.99 45.44 19.42 51.79 52.24 47.12 39.40 8.97 48.17 52.86 48.39

MAPE(%) 16.03 8.50 46.95 24.66 7.11 20.81 6.57 23.88 7.38 9.42 12.89 31.09 16.17 17.57

TSBP

MAE 84.27 27.76 62.67 76.76 32.09 10.11 38.6 40.93 49.11 32.12 10.13 40.96 26.33 35.38

RMSE 106.76 34.56 78.68 91.81 43.91 17.07 49.56 52.49 60.34 40.97 12.91 51.22 32.97 45.15

MAPE(%) 24.13 7.37 39.35 31.52 7.06 23.13 5.71 22.89 7.83 9.46 19.35 22.50 9.29 15.78

HCMF

MAE 88.24 28.29 64.85 75.80 33.37 10.43 39.92 40.14 64.12 33.61 10.17 43.23 27.68 37.44

RMSE 109.81 35.68 80.79 91.07 44.80 17.05 50.67 53.89 80.62 42.72 12.80 52.29 34.41 47.34

MAPE(%) 24.64 7.48 41.50 30.96 7.08 23.53 5.79 22.76 11.41 9.57 19.05 25.42 9.37 16.22

CCAC

MAE 106.44 23.32 61.50 44.97 42.69 9.52 45.92 49.09 33.94 35.78 5.85 24.94 24.08 35.01

RMSE 139.95 30.59 86.36 61.13 57.18 19.76 61.70 65.30 44.93 47.17 8.50 34.06 31.71 46.79

MAPE(%) 35.79 7.92 36.77 19.53 9.05 22.42 7.52 30.91 6.84 11.70 10.60 15.02 9.72 16.44

CCAC-LSTM

MAE 90.84 23.46 60.30 44.77 33.50 9.32 39.29 40.68 37.67 33.38 7.06 26.45 24.71 32.88

RMSE 111.70 30.08 77.70 58.01 44.83 17.10 49.99 52.35 48.13 42.19 9.27 33.15 31.39 42.48

MAPE(%) 27.09 7.80 36.17 18.06 7.11 21.23 6.34 25.23 7.55 10.26 13.97 19.67 9.43 15.35

CFCG
MAE 84.10 20.67 51.96 39.33 32.09 8.38 34.45 37.26 32.83 29.28 5.34 22.28 23.09 28.33
RMSE 98.02 26.64 69.67 52.09 43.70 15.85 45.87 50.18 43.13 38.63 7.56 29.59 29.68 37.72

MAPE(%) 22.66 6.97 29.30 17.47 6.95 19.89 5.61 22.74 6.76 9.40 9.64 13.68 9.22 12.92

Data Description. To evaluate the performance of CFCG, we

use the real-world electricity dataset from the cross-border power

grids of the European Network of Transmission System Operators

for Electricity’s (ENTSOE’s) transparency platform [37]. The data

is comprised of hourly electricity production data and cross-border

electricity flow data from 2019 to 2021. The data of 28 countries

are included. For the sake of brevity, we present the abbreviation

of countries in Append A.

Evaluation Metrics.We adopt three commonly used metrics:

(1) Mean absolute error (MAE): 𝑀𝐴𝐸 = 1

𝑚

∑𝑚
𝑖

��𝑦𝑖 − 𝑦′
𝑖

��
. (2) Mean

Absolute Percentage Error (MAPE):𝑀𝐴𝑃𝐸 = 1

𝑚

∑𝑚
𝑖

��� 𝑦𝑖−𝑦′
𝑖

𝑦𝑖

���. (3) Root
Mean Squared Error (RMSE): 𝑅𝑀𝑆𝐸 =

√︃
1

𝑚

∑𝑚
𝑖

��𝑦𝑖 − 𝑦′
𝑖

��
.

Carbon Intensity Ground Truth. As discussed, the carbon
intensity cannot be directly measured. Different carbon intensity

accounting methods are used to estimate the ground truth of carbon

intensity. In this paper, we apply three methods[27, 31, 36]. We

use [27] as our baseline ground truth and we show its detailed

computation in Appendix B.Wewill evaluate the impact of different

ground truths on our CFCG model.

Training and Testing.We use the first 60% of the data as the

training set, the next 20 as the validation set, and the remaining 20%

as the test set. Our model is trained using the RMSprop Optimizer

[30]. To prevent overfitting, we employ early-stopping and model

checkpointing techniques. To maintain the forecasting accuracy,

we re-train our model every three months.

Baselines. We compare our CFCG model with the following:

DACF [21]: DACF is a state-of-the-art forecasting scheme for

regional grids. DACF establishes a DNN model for each energy

source and then calculates the averaged carbon intensity. It does

not consider spatial dependencies to forecasts for regional grids.

TSBP [29] and HCFM [18]: TSBP and HCFM are schemes that

estimate the historical and current carbon intensities using one-

hop carbon intensity accounting. Then TSBP then applies an LSTM

model to forecast the carbon intensity of the grid, whereas HCFM

develops a hybrid model based on linear regression, splines, and

ARIMA to forecast the carbon intensity of the grid.

CACC and CCAC-LSTM: CCAC is the carbon intensity account-

ing scheme in [36]. We use the carbon intensity of the current time

as the forecasting result of the next time slot. CCAC-LSTM (de-

scribed in Section 3) enhances CACC with an LSTM model, i.e., the

LSTM model will be trained by being given the historical carbon

data of CACC.

6.2 Performance Results (RQ1)
We compare the performance of CFCG with five baselines. Table 4

shows the results in terms of MAE, RMSE, and MAPE, where the

best-performing method is highlighted in bold font.
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Figure 5: The points in the scatter plot represent the performance of each model on the countries. Forecast errors are higher in
countries with larger proportions of electricity imports and generation.

Overall, CFCG outperforms existing schemesDACF, TSBP, HCMF,

and CCAC by at least 18.12%. More specifically, CFCG achieves an

average improvement of 26.46% (from 17.57% to 12.92%), 18.12%

(from 15.78% to 12.92%), 20.34% (from 16.22% to 12.92%), and 21.41%

(from 16.44% to 12.92%) in MAPE. Even compared to CCAC-LSTM,

we see an improvement of 15.83% (from 15.35% to 12.92%). On av-

erage, CFCG not only outperforms previous models, but we also

observe that CFCG outperforms TSBP, HCMF, CACC, and CCAC-

LSTM in all countries. The only exception is that DACF outperforms

CFCG in Cyprus, Ireland, and Greece, where regional grids domi-

nate. CFCG inherits the features of existing models and captures

new features. Thus, CFCG can steadily outperform other models.

Fig. 5 shows forecasting errors as a function of the ratio of elec-

tricity imports (0 to over 200%). Each dot represents a country

and different countries have different import ratios. We see that

forecasting errors increase as electricity imports increase. This is

because the difficulty of forecasting increases when more dynam-

ics are involved. We can also see that our CFCG model not only

outperforms all other schemes, but that our errors also increase

more slowly in comparison to the increase in the electricity import

ratios. DACF, TBSP, and HCFM perform better than CACC and

CACC-LSTM when the electricity import ratio is small. Clearly,

these schemes perform well when a regional grid dominates. When

the electricity import ratio increases, the performance of CACC

and CACC-LSTM improves.

6.3 Model Ablation Study (RQ2)
We now evaluate our designs in two key components of CFCG

through an ablation study, the granularity-aware encoding compo-

nent and the node-aware embedding mechanism.

The Granularity-Aware Encoding Component: We study

the impact of the granularity in the temporal patterns on the carbon

intensity forecasting results. We examine four configurations on

the granularity period 𝑔 of the CFCG model:

• 𝐶𝐹𝐶𝐺ℎ : 𝑔 ∈ {ℎ𝑜𝑢𝑟 }
• 𝐶𝐹𝐶𝐺ℎ,𝑑 : 𝑔 ∈ {ℎ𝑜𝑢𝑟, 𝑑𝑎𝑦}
• 𝐶𝐹𝐶𝐺ℎ,𝑤 : 𝑔 ∈ {ℎ𝑜𝑢𝑟,𝑤𝑒𝑒𝑘}
• 𝐶𝐹𝐶𝐺ℎ,𝑑,𝑤 : 𝑔 ∈ {ℎ𝑜𝑢𝑟, 𝑑𝑎𝑦,𝑤𝑒𝑒𝑘}

The results are displayed in Fig. 6.𝐶𝐹𝐶𝐺ℎ,𝑑,𝑤 shows consistently

better performance than the other configurations. 𝐶𝐹𝐶𝐺ℎ,𝑑,𝑤 out-

performs𝐶𝐹𝐶𝐺ℎ by 11.07% (from 12.92 % to 14.35 %) in MAPE. This

demonstrates that our design in integrating multiple time granular-

ites into our CFCG model benefits the learning process. 𝐶𝐹𝐶𝐺ℎ,𝑑

is slightly better than 𝐶𝐹𝐶𝐺ℎ,𝑤 possibly due to finer-granularity.

Overall, capturing temporal patterns in multiple granularities im-

proves the performance of the model.
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Figure 6: Effect of multi-granularity dynamics in terms of
MAPE, MAE, and RMSE.

The Node-aware Embedding Mechanism:We study the im-

pact of our node embedding mechanism, (i.e., we embed different

types of nodes according to different rules) on the carbon inten-

sity forecasting results. We compare CFCG with a simplified CFCG

model 𝐶𝐹𝐶𝐺𝑤𝑛 by removing the node-aware embedding mecha-

nism (i.e., removing the three rules). Fig. 7 shows the errors. We

see that the averaged forecasting error with and without the node-

aware embedding mechanism is comparable. This indicates that,

on average, the level of noise is not high. However, we observe that

in certain countries, the presence of the node-aware embedding

mechanism can lead to a more significant impact. Fig. 8 shows

that the node-aware embedding mechanism improved forecasting

results in Sweden and the Czech Republic by 12.76% and 13.07%.

When we investigate the data in detail, we see that the hourly

electricity outflow of Sweden and the Czech Republic during the

period 2019-2021 was 4185.95 MW and 2682.14 MW respectively,

accounting for 23.21% and 29.29% of their electricity generation.

Thus, the node-aware mechanism has a greater impact.
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6.4 Explainable patterns learned (RQ3)
We attribute the performance improvements of CFCG to its ability

to learn the spatial dependencies and temporal dependencies. We

now visualize that CFCG has indeed learned these dependencies.

Spatial dependency learned. In Fig. 9 we illustrate the ground

truth of the carbon intensity of the countries in the cross-border

grids and the forecasting results in a spatial dimension. We illus-

trate the first two days in the testing data. We use color to show

the ground truth, i.e., the darker the color, the greater the carbon

intensity; and we use the size of a circle to show the forecasting

results, i.e., the larger the circle, the greater the carbon intensity.

We can see that the pattern of our forecasting results matches the

ground truth in the spatial dimension.
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Figure 9: The spatial dependency learned by CFCG.

Temporal dependence learned. In Fig. 10 we illustrate the

ground truth of the carbon intensity of the countries in the cross-

border grids and the forecasting results in a temporal dimension.

We show two randomly selected countries Sweden and Hungary.

We can see that the pattern of our forecasting results matches the

ground truth in the temporal dimension.
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Figure 10: The temporal dependency learned by CFCG.

6.5 Performance Results under Alternative
Ground Truths (RQ4)

As discussed previously, carbon intensity cannot be directly mea-

sured and different carbon intensity accounting methods are used

to calculate the ground truth of carbon intensity from historical

data. In our paper, we apply a direct coupling scheme in [27] to esti-

mating the ground truth of carbon intensity. We now examine two

alternative approaches to estimate the ground truth of the historical

carbon intensity: the direct coupling approach [36] and the aggre-

gate coupling approach [31]. We implement the two approaches to

calculate two new ground truth datasets for carbon intensity. We

show the results in Appendix Table 6). We see that the performance

results remain the same across different ground truths. For exam-

ple, CFCG achieves an average decrease of 19.80% (from 16.01%

to 12.84%), 18.58% (from 15.77% to 12.84%), 21.65% (from 16.39% to

12.84%), 26.07% (from 17.37% to 12.84%), and 14.57%(from 15.03% to

12.84%) in MAPE compared to the DACF, TSBP, HMCF, CCAC, and

CCAC-LSTM models based on Ground Truth 2. Intrinsically, our

model is a learning model and it will not be affected by the ground

truth of carbon intensity. This is confirmed in Appendix C.

7 CONCLUSION
In this paper, we studied day-ahead carbon intensity forecasting in

the context of cross-border power grids. In cross-border power grids,

the total carbon emissions of a local grid will not only carry the

carbon emissions of its own grids (or its adjacent neighbor grids)

but also carry the carbon emissions of the member grids in the

cross-border grid. Current forecasting studies have yet to take this

factor into their learning model. We showed that ignorance can lead

to forecasting errors. We also showed that even we first estimate

the carbon intensity of cross-border grids and use such history

data to perform a learning using existing methods, e.g., LSTM,

there can still be non-trivial errors. From the perspective of carbon

intensity forecasting, cross-border power grids have both spatial

and temporal dependencies in the carbon flow among member

grids, and we need new designs to appropriately capture such

dependencies. We developed a new learning model with embedded

layers based on GNN and LSTM, learning the spatial and temporal

dependencies, as well as designs of multi-periodic pattern encoding

and node-aware embedding. We evaluated our model through the

real-world data of the cross-border power grids in Europe with 28

member countries and the results showed that our model is effective

in improving forecasting errors.

370



A GNN-based Day Ahead Carbon Intensity Forecasting Model for Cross-Border Power Grids e-Energy ’23, June 20–23, 2023, Orlando, FL, USA

ACKNOWLEDGMENTS
The authors are indebted to the anonymous reviewers for their

constructive comments; and their time and efforts guiding this

paper into a better shape. This work is supported by RGC GRF

15210119, 15209220, 15200321, 15201322, ITF ITS/056/22MX, CRF

C5018-20G of Hong Kong.

REFERENCES
[1] BW Ang, Peng Zhou, and LP Tay. 2011. Potential for reducing global carbon

emissions from electricity production—A benchmarking analysis. Energy Policy
39, 5 (2011), 2482–2489.

[2] Beng Wah Ang and Bin Su. 2016. Carbon emission intensity in electricity pro-

duction: A global analysis. Energy Policy 94 (2016), 56–63.

[3] Lasse F Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan. 2020. Car-

bontracker: Tracking and predicting the carbon footprint of training deep learn-

ing models. arXiv preprint arXiv:2007.03051 (2020).
[4] Francesco Asdrubali, Giorgio Baldinelli, Francesco D’Alessandro, and Flavio

Scrucca. 2015. Life cycle assessment of electricity production from renewable

energies: Review and results harmonization. Renewable and Sustainable Energy
Reviews 42 (2015), 1113–1122.

[5] Heymi Bahar and Jehan Sauvage. 2013. Cross-border trade in electricity and the

development of renewables-based electric power: lessons from Europe. (2013).

[6] Neeraj Dhanraj Bokde, Bo Tranberg, and Gorm Bruun Andresen. 2021. Short-

term CO2 emissions forecasting based on decomposition approaches and its

impact on electricity market scheduling. Applied Energy 281 (2021), 116061.

[7] Hans G Brauch. 2015. Environmental and Energy Security: Conceptual Evolution

and Potential Applications to European Cross-Border Energy Supply Infras-

tructure. In Environmental Security of the European Cross-Border Energy Supply
Infrastructure. Springer, 155–185.

[8] Art Diem, Cristina Quiroz, and TH Pechan. 2012. How to use eGRID for carbon

footprinting electricity purchases in greenhouse gas emission inventories. US
Environmental Protection Agency (2012), 2015–01.

[9] ENTSO-E. 2017. Electricity In Europe 2017, Statistics and Data.

https://www.entsoe.eu/publications/statistics-and-data/#electricity-in-europe
(2017).

[10] ENTSO-E. 2022. High-Level Report TYNDP 2022. https://2022.entsos-tyndp-
scenarios.eu/ (2022).

[11] Albert Gu, Caglar Gulcehre, Thomas Paine, Matt Hoffman, and Razvan Pas-

canu. 2020. Improving the gating mechanism of recurrent neural networks. In

International Conference on Machine Learning. PMLR, 3800–3809.

[12] Edward Halawa, Geoffrey James, Xunpeng Shi, Novieta H Sari, and Rabindra

Nepal. 2018. The prospect for an Australian–Asian power grid: A critical appraisal.

Energies 11, 1 (2018), 200.
[13] Edgar G Hertwich and Richard Wood. 2018. The growing importance of scope 3

greenhouse gas emissions from industry. Environmental Research Letters 13, 10
(2018), 104013.

[14] Lion Hirth, Jonathan Mühlenpfordt, and Marisa Bulkeley. 2018. The ENTSO-E

Transparency Platform–A review of Europe’s most ambitious electricity data

platform. Applied energy 225 (2018), 1054–1067.

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[16] Hiroki Hondo. 2005. Life cycle GHG emission analysis of power generation

systems: Japanese case. Energy 30, 11-12 (2005), 2042–2056.

[17] Paris IEA. 2022. Global Energy Review: CO2 Emissions in 2021.

https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2 (2022).
[18] Kenneth Leerbeck, Peder Bacher, Rune Grønborg Junker, Goran Goranović,

Olivier Corradi, Razgar Ebrahimy, Anna Tveit, and Henrik Madsen. 2020. Short-

term forecasting of CO2 emission intensity in power grids by machine learning.

Applied Energy 277 (2020), 115527.

[19] Gordon Lowry. 2018. Day-ahead forecasting of grid carbon intensity in support

of heating, ventilation and air-conditioning plant demand response decision-

making to reduce carbon emissions. Building Services Engineering Research and
Technology 39, 6 (2018), 749–760.

[20] Diptyaroop Maji, Prashant Shenoy, and Ramesh K Sitaraman. 2022. CarbonCast:

multi-day forecasting of grid carbon intensity. In Proceedings of the 9th ACM
International Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation. 198–207.

[21] Diptyaroop Maji, Ramesh K Sitaraman, and Prashant Shenoy. 2022. DACF: day-

ahead carbon intensity forecasting of power grids using machine learning. In

Proceedings of the Thirteenth ACM International Conference on Future Energy
Systems. 188–192.

[22] Gregory J Miller, Kevin Novan, and Alan Jenn. 2022. Hourly accounting of carbon

emissions from electricity consumption. Environmental Research Letters 17, 4
(2022), 044073.

[23] Divya Pandey, Madhoolika Agrawal, and Jai Shanker Pandey. 2011. Carbon foot-

print: current methods of estimation. Environmental monitoring and assessment
178 (2011), 135–160.

[24] Hans-Otto Pörtner, Debra C Roberts, H Adams, C Adler, P Aldunce, E Ali, R Ara

Begum, R Betts, R Bezner Kerr, R Biesbroek, et al. 2022. Climate change 2022:

Impacts, adaptation and vulnerability. IPCC Sixth Assessment Report (2022).
[25] Lidia Puka and Kacper Szulecki. 2014. The politics and economics of cross-border

electricity infrastructure: A framework for analysis. Energy Research & Social
Science 4 (2014), 124–134.

[26] O Pupo-Roncallo, J Campillo, D Ingham, L Ma, and M Pourkashanian. 2021.

The role of energy storage and cross-border interconnections for increasing the

flexibility of future power systems: The case of Colombia. Smart Energy 2 (2021),

100016.

[27] Shen Qu, Hongxia Wang, Sai Liang, Avi M Shapiro, Sanwong Suh, Seth Sheldon,

Ory Zik, Hong Fang, and Ming Xu. 2017. A Quasi-Input-Output model to improve

the estimation of emission factors for purchased electricity from interconnected

grids. Applied energy 200 (2017), 249–259.

[28] Ana Radovanovic, Ross Koningstein, Ian Schneider, Bokan Chen, Alexandre

Duarte, Binz Roy, Diyue Xiao, Maya Haridasan, Patrick Hung, Nick Care, et al.

2021. Carbon-aware computing for datacenters. arXiv preprint arXiv:2106.11750
(2021).

[29] Ana Carolina Riekstin, Antoine Langevin, Thomas Dandres, Ghyslain Gagnon,

and Mohamed Cheriet. 2018. Time series-based GHG emissions prediction for

smart homes. IEEE Transactions on Sustainable Computing 5, 1 (2018), 134–146.

[30] Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms.

arXiv preprint arXiv:1609.04747 (2016).

[31] Mirko Schäfer, Bo Tranberg, Dave Jones, and AnkeWeidlich. 2020. Tracing carbon

dioxide emissions in the European electricity markets. In 2020 17th International
Conference on the European Energy Market (EEM). IEEE, 1–6.

[32] Prashant Shenoy. 2023. Energy-Efficiency versus Carbon-Efficiency: What’s the

difference? ACM SIGENERGY Energy Informatics Review 2, 4 (2023), 1–2.

[33] Bhupendra Kumar Singh. 2013. South Asia energy security: Challenges and

opportunities. Energy policy 63 (2013), 458–468.

[34] Mary Elizabeth Sotos. 2015. GHG protocol scope 2 guidance. (2015).

[35] R Tomorrow. 2019. electricityMap. https://www.electricitymap.org (2019).

[36] Bo Tranberg, Olivier Corradi, Bruno Lajoie, Thomas Gibon, Iain Staffell, and

Gorm Bruun Andresen. 2019. Real-time carbon accounting method for the

European electricity markets. Energy Strategy Reviews 26 (2019), 100367.
[37] ENTSOE transparency platform. 2022. European association for the coop-

eration of transmission system operators. Retrieved February 1, 2023 from
https://transparency.entsoe.eu/ (2022).

[38] Philip Ulrich, Tobias Naegler, Lisa Becker, Ulrike Lehr, Sonja Simon, Claudia

Sutardhio, and Anke Weidlich. 2022. Comparison of macroeconomic develop-

ments in ten scenarios of energy system transformation in Germany: National

and regional results. Energy, Sustainability and Society 12, 1 (2022), 1–19.

[39] Jan Frederick Unnewehr, Anke Weidlich, Leonhard Gfüllner, and Mirko Schäfer.

2022. Open-data based carbon emission intensity signals for electricity generation

in European countries–top down vs. bottom up approach. Cleaner Energy Systems
3 (2022), 100018.

[40] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[41] Jean Verseille and Konstantin Staschus. 2014. The mesh-up: ENTSO-E and

European TSO cooperation in operations, planning, and R&D. IEEE Power and
Energy Magazine 13, 1 (2014), 20–29.

[42] John Wamburu, Noman Bashir, David Irwin, and Prashant Shenoy. 2022. Data-

driven decarbonization of residential heating systems. In Proceedings of the 9th
ACM International Conference on Systems for Energy-Efficient Buildings, Cities,
and Transportation. 49–58.

[43] Watttime. 2022. Watttime. https://www.watttime.org/ (2022).
[44] Philipp Wiesner, Ilja Behnke, Dominik Scheinert, Kordian Gontarska, and Lauritz

Thamsen. 2021. Let’s wait awhile: how temporal workload shifting can reduce

carbon emissions in the cloud. In Proceedings of the 22nd International Middleware
Conference. 260–272.

[45] Priyantha Wijayatunga, Deb Chattopadhyay, and Prem N Fernando. 2015. Cross-

border power trading in South Asia: A techno economic rationale. (2015).

[46] Mingzhou Xu, Derek F Wong, Baosong Yang, Yue Zhang, and Lidia S Chao. 2019.

Leveraging local and global patterns for self-attention networks. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics. 3069–
3075.

[47] Xiyue Zhang, Chao Huang, Yong Xu, and Lianghao Xia. 2020. Spatial-temporal

convolutional graph attention networks for citywide traffic flow forecasting. In

Proceedings of the 29th ACM international conference on information & knowledge
management. 1853–1862.

371



e-Energy ’23, June 20–23, 2023, Orlando, FL, USA Zhang et al.

A APPENDIX A

Table 5: Country Abbreviations

Abbreviation Country Abbreviation Country

AT Austria HU Hungary

BE Belgium IE Ireland

BG Bulgaria IT Italy

CH Switzerland LT Lithuania

CY Cyprus LV Latvia

CZ Czech NL Netherlands

DE Germany NO Norway

DK Denmark PL Poland

EE Estonia PT Portugal

ES Spain RS Serbia

FI Finland RO Romania

FR France SE Sweden

GR Greece SI Slovenia

HR Croatia SK Slovakia

B APPENDIX B
Carbon Intensity Accounting. Carbon intensity in a power grid

cannot be directly measured. We now briefly present the detailed

calculation of carbon intensity accounting. We follow [27] and [36].

Both apply the direct coupling scheme. In what follows, we first

present the detailed calculation of [27]. Then we discuss [36], where

different emission factors are used in different countries.

The total electricity of 𝑁 regional power grids is represented as

a 1 by 𝑁 vector 𝒙 whose element can be calculated by Eq. 12.

𝑥𝑖 = 𝐸𝑖 +
𝑁∑︁
𝑗=1

𝑓 𝑒𝑗𝑖 (12)

Where 𝑬 is the 1 by N vector and 𝐸𝑖 represents the electricity

generation of grid 𝑖 . 𝒇 𝒆 is an 𝑁 by 𝑁 matrix. The element 𝑓 𝑒
𝑖 𝑗
of the

matrix 𝒇 𝒆 refers to the exchange of electricity from grid 𝑖 to grid 𝑗 .

The amount of carbon emitted by all power grids is represented

as a 1 by𝑁 vector 𝒄𝒙 . The element 𝑐𝑥
𝑖
of 𝒄𝒙 refers to the total carbon

emitted in the power grid 𝑖 , including local generation amount of

carbon emissions embodied in the importing of electricity, as in Eq.

13.

𝑐𝑥𝑖 = 𝑐
𝑔

𝑖
+

𝑁∑︁
𝑗=1

𝑏 𝑗𝑖𝑐
𝑥
𝑗 (13)

where 𝑩 is an 𝑁 by 𝑁 coefficient matrix, which captures the differ-

ent shares of electricity exchanged in relation to total electricity.

The element 𝑏𝑖 𝑗 of 𝑩 can be calculated by 𝑓 𝑒
𝑖 𝑗
/𝑥𝑖 ; 𝑐𝑔𝑖 is the amount

of carbon emissions generated by the local production of electricity

in power grid 𝑖 , which can be calculated using Eq. 14.

𝑐
𝑔

𝑖
=

𝑛∑︁
𝑚=1

𝐸𝑘𝑖 𝑒 𝑓
𝑘

(14)

where 𝑘 denotes a specific energy source, 𝑒 𝑓 𝑘 is the emission factor

of energy source 𝑘 (see Table 1), and 𝐸𝑘
𝑖
is the electricity generated

by source 𝑘 in power grid 𝑖 .

The Eq. 13 can be rearranged as Eq. 15, which is represented by

vectors and matrices.

𝒄𝒙 = 𝒄𝒈 + 𝒄𝒙𝑩 = 𝒄𝒈 (𝑰 − 𝑩)−1 (15)

where 𝑰 is an identity matrix.

Finally, the carbon intensity 𝒄 𝒊 of cross-border power grids can
be calculated using Eq. 16 according to the definition of the carbon

intensity of electricity.

𝒄 𝒊 = 𝒄𝒙 �̂�−1 (16)

where �̂� is the diagonal matrix of 𝒙 , and 𝒄 𝒊 is a 1 by 𝑁 vector

that represents the carbon intensity of all 𝑁 grids when electricity

exchanges are taken into consideration.

In [36], it is observed that different generation technologies are

used in different countries, leading to different emission factors for

different countries. To capture this, Eq. 14 can be rewritten as

𝑐
𝑔

𝑖
=

𝑛∑︁
𝑚=1

𝐸𝑘𝑖 𝑒 𝑓
𝑘
𝑖 (17)

where 𝑒 𝑓 𝑘𝑖 is the emission factor of energy source 𝑘 in country 𝑖 .
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Table 6: Performance results (in MAPE (%)) under three different carbon intensity accounting methods, representing three
ground truth (Ground Truth GT1, GT2, GT3).

Methods Ground Truth

Countries

AT BE BG CH CY CZ DE DK EE ES FI FR GR HR HU

DACF

GT1 24.07 19.61 5.53 59.06 3.44 8.00 11.31 25.20 25.33 14.95 10.21 18.77 11.37 14.43 9.10

GT2 18.90 17.48 5.89 73.24 2.12 7.10 9.73 22.88 21.63 9.83 8.43 11.92 7.90 13.85 8.34

GT3 17.96 16.15 4.86 74.44 2.44 6.08 8.92 21.82 21.71 8.90 8.25 10.93 7.73 12.13 8.14

TSBP

GT1 17.83 15.16 4.90 45.49 3.97 6.01 11.58 18.53 13.17 14.44 12.75 16.50 11.73 12.75 7.51

GT2 17.91 15.21 4.89 48.98 3.21 5.72 11.65 18.56 14.24 14.20 12.81 16.34 11.68 12.97 7.65

GT3 17.89 15.11 4.81 45.88 3.38 5.95 11.45 18.80 13.36 14.72 13.01 16.48 11.36 12.58 7.37

HMCF

GT1 16.59 15.86 5.87 46.86 3.65 6.12 12.77 18.38 13.87 14.17 11.54 16.95 13.21 12.43 7.51

GT2 16.12 16.90 5.92 48.37 3.12 6.31 12.10 16.34 12.63 16.55 10.91 15.44 16.72 11.93 8.52

GT3 18.47 14.55 5.32 45.88 2.66 6.03 13.10 14.55 13.88 15.21 9.24 13.21 14.55 10.88 7.51

CCAC

GT1 18.82 18.45 5.64 44.52 4.64 6.82 17.09 23.54 16.73 16.89 10.04 18.4 15.11 11.67 8.43

GT2 23.90 17.88 8.99 45.31 5.17 8.23 22.29 31.40 17.76 16.55 12.26 21.36 15.80 16.13 8.54

GT3 22.80 17.11 8.12 46.56 7.18 9.05 21.24 32.63 21.83 14.55 13.27 22.92 13.66 16.33 10.07

CCAC-LSTM

GT1 19.13 17.69 5.46 40.62 3.66 6.57 14.60 19.46 12.99 15.82 10.65 18.75 13.22 11.67 9.49

GT2 18.38 16.94 5.74 47.89 3.91 5.84 11.81 18.66 12.24 15.10 9.94 17.96 12.51 10.92 8.78

GT3 18.53 17.16 5.87 42.90 4.08 5.82 12.01 18.82 12.27 15.17 10.05 18.07 12.64 10.99 8.84

CFCG
GT1 16.57 15.05 4.75 29.70 3.9. 5.97 10.91 16.94 12.48 12.67 8.86 14.74 11.56 10.34 7.06
GT2 15.62 15.50 4.96 37.86 4.22 5.63 9.45 18.41 13.10 13.32 8.98 15.11 10.91 11.00 7.69
GT3 15.82 15.59 4.49 37.85 4.01 5.86 9.50 18.22 12.91 13.28 8.21 14.98 11.31 10.53 7.26

Methods ground truth

Countries

IE IT LT LV NL NO PL PT RS RO SE SI SK AVERAGE

DACF

GT1 16.03 8.50 46.95 24.66 7.11 20.81 6.57 23.88 7.38 9.42 12.89 31.09 16.17 17.57

GT2 12.98 7.61 39.57 24.43 5.23 27.25 4.34 15.69 7.16 8.87 13.29 26.95 16.14 16.01

GT3 12.27 7.75 35.97 22.49 5.31 28.74 4.14 14.64 6.20 4.86 12.30 25.97 15.20 15.24

TSBP

GT1 24.13 7.37 39.35 31.52 7.06 23.13 5.71 22.89 7.83 9.46 19.35 22.50 9.29 15.78

GT2 24.05 7.05 38.89 32.43 6.09 23.45 4.81 22.12 7.94 8.47 19.42 22.63 8.26 15.77

GT3 24.19 6.77 34.32 27.13 5.87 23.42 4.83 21.91 7.96 8.59 19.34 22.54 8.43 15.26

HMCF

GT1 24.65 7.48 41.50 30.96 7.08 23.54 5.79 22.76 11.41 9.57 19.05 25.42 9.37 16.22

GT2 25.28 8.63 44.21 32.94 6.52 28.69 5.72 16.71 10.81 9.42 18.25 24.18 9.54 16.39

GT3 23.45 7.21 40.55 31.54 5.79 26.74 5.05 19.25 9.75 8.65 17.88 24.56 8.89 15.51

CCAC

GT1 35.79 7.92 36.77 19.53 9.05 22.42 7.52 30.91 6.84 11.70 10.60 15.02 9.72 16.44

GT2 38.83 9.77 30.29 14.59 9.27 25.12 9.71 29.53 6.24 16.30 9.80 14.40 9.06 17.37

GT3 38.73 10.94 32.09 14.83 8.59 19.35 8.72 28.79 7.72 14.81 11.85 14.62 12.96 17.90

CCAC-LSTM

GT1 27.09 7.80 36.17 18.06 7.11 21.23 6.34 25.23 7.55 10.26 13.97 19.67 9.43 15.35

GT2 26.35 7.06 37.41 19.35 6.37 20.51 5.56 24.48 6.83 9.52 13.25 18.90 8.67 15.03

GT3 26.40 7.12 37.40 19.35 6.44 22.54 5.56 24.47 6.88 9.74 13.36 19.11 8.83 15.02

CFCG
GT1 22.66 6.97 29.30 17.47 6.95 19.89 5.61 22.71 6.76 9.40 9.64 13.68 9.22 12.92
GT2 17.58 6.94 31.16 18.25 5.94 20.21 4.36 15.39 7.07 8.37 9.54 14.90 8.10 12.84
GT3 17.19 6.47 30.32 17.60 5.44 20.44 4.70 15.41 7.46 8.41 9.66 14.52 8.23 12.70
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