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ABSTRACT
In recent years, machine learning (ML) based building analytics
have been developed for diverse building services. Yet, the wide-
spread sharing of building data, which underpins the establishment
of ML models, is not a common practice in the buildings industry
today. Clearly, there are privacy concerns. There are studies on
protecting building data, e.g., to 𝑘-anonymize building data; yet
these studies are computational methods. The root causes of why
building operators are or are not willing to share data are unclear.

In this paper, we study the problem of willingness to share build-
ing data. First, we justify our study by investigating the field to
show that data sharing is indeed limited. Second, we examine the is-
sue of the willingness to share building data from the perspective of
a social study. We observe that the intention to disclose (i.e., decision
making on data sharing) is not only based on perceived risks, but
also on perceived benefits. We leverage the privacy calculus theory
and present a systematic study. We develop hypotheses, design a
questionnaire, conduct a survey involving 95 building operators
and service providers around the world, and analyze the results,
wherein we quantify how various factors influence the willingness
to share building data. Third, we use trust, an important factors to
the intention to disclose, to develop a trust model with differentiable
trust levels. Such model provides building operators a mechanism
to share data besides a 0-and-1 choice. We present a case study
where we enhance an existing building data anonymization plat-
form, PAD with the trust model. We show that the enhanced PAD
has a substantially smaller computation workloads.
CCS CONCEPTS
• Security and privacy → Social aspects of security and pri-
vacy;
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1 INTRODUCTION
Over the past few years, there has been a proliferation of building
analytics, i.e., machine learning (ML) based approaches to enhance
the efficiency and operational performance of buildings . Some com-
mon topics are: reducing the energy consumption of HVAC systems,
maintaining thermal comfort for occupants, effectively utilising
the space for building real estate, detecting indoor occupancy, and
improving lighting control .

Despite these encouraging works, the widespread sharing of
building data, which underpins the establishment of ML models,
has remained largely elusive. Such data are usually confined within
specific academic groups working on building-related research
problems or held by external contractors of commercial buildings
who are engaged in monitoring the day-to-day activities that take
place in the building. Often, there are strict clauses attached to
these engagements that prohibit the sharing of building data to be
used for other purposes. Between building operators and service
providers, there are lengthy negotiations on which specific data
are needed by the service providers and data are shared on a need-
to-know basis. Though it may not be always possible to make the
building data fully public, we argue that it is particularly important
for building service providers (as data consumers) to have certain
autonomy in using the building data. For example, it is very common
that service providers (including academicians) develop machine
learning algorithms that need to use knowledge learned from the
data of other buildings.

We investigated recent publications in two computer science
publication venues and two built environment publication venues.
We observed that less than 1/4 of the data-driven publications in
computer science venues used shared data. The percentage is even
smaller in the built environment venues, at less than 1/7. We further
investigated a few existing shared datasets. We observed that they
are restricted in the sense that they can only be used for a very
limited number (usually only one) of building analytics applications.

Clearly, the unwillingness to share data is due to potential con-
cerns on privacy and confidentiality. For example, it has been found
that indoor occupancy data can be used to infer ownership of zones
at the workplace through linkage attacks [41]. In another example,
historical household electricity data can leak information about the
personal habits and daily routines of residents [26].

There are existing studies in which attempts have been made to
mitigate privacy concerns, such as by protecting privacy in data
sharing based on 𝑘-anonymity and other methods. However, these
studies assume that people are willing to share data in the first
place. Computational methods can then be used to balance the
utility of the data that were shared and the privacy risk associated
with doing so. Unfortunately, there has been no study on the root
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causes affecting the willingness to share building data. Our work
fills this gap in the literature.

In this paper, we study the problem of the willingness to share
building data. The challenge is to understand the process by which
people make the decision to share data. We thus resort to conduct-
ing a social research study on people’s attitude towards privacy
and their actual decision making behavior under circumstances
involving privacy. We study a number of social theory frameworks.
In this study, we draw on the privacy calculus theory since it best
reflects the decision making process where the intention to disclose
is based not only on perceived risks, but also on perceived benefits.
This paper presents a systematic study. We developed hypotheses
for a number of influential factors such as perceived severity, trust,
building operation services, building occupant services, and smart
ecosystems. We developed a questionnaire and asked an indepen-
dent professional company to conduct a survey. We collected 95
responses from building operators and building service providers
of diverse backgrounds on their levels of expertise and experience.
We present a rigid data analysis of the results: first, we show that
the overall design of our questionnaire is successful, i.e., the respon-
dents could understand our questions in the way that we expected;
and second, we present the results of our hypotheses, i.e., whether
the influential factors have an impact on the intention to disclose
and the magnitude of that impact. Our statistics reveal three inter-
esting insights. First, that the perceived benefits can contribute as
much as 130.90% in the decision making process as compared to the
perceived risks. Second, the impact of building occupant services is
twice of building operation services. Third, trust is important and
can directly influence the intention to disclose.

The social research study provides scientific understanding of
the factors towards decision making. We further investigate how
our research results can be used. Our results show that trust is an
important factor. Thus, we develop a trust model with differen-
tiable trust levels. Intuitively, our model allows a differentiation
on building data so that building operators can share different
parts of data besides a 0-or-1 choice. We apply this trust model
to enhance a recent privacy-preserving building data publishing
framework, PAD [37]. PAD 𝑘-anonymizes building data records
and it has high computational workloads when the amount of data
is large. We show that with our trust model, less amount of data
needs to be anonymized. Specifically, 45.3% of the total data need to
be anonymized if there is moderate trust. With strong trust, 15.2%
of data need to be anonymized. Our trust model-enhanced PAD
can enjoy substantially reduced computational workloads.

The contribution of the paper can be summarized as:
• We show that data sharing in the building industry has been very
limited to date. We investigate the problem of the willingness
to share building data. To the best of our knowledge, we are the
first to study this problem.

• We conduct our investigation from the perspective of social re-
search. We show that the intention to disclose relates not only
to perceived risks, but also to perceived benefits. We leverage a
privacy calculus theory that exploits the decision-making process
by weighing the benefits and risks.

• We use trust, one influential factor observed in our study, to
design a trust model and we apply it to a PAD system. We show
that the amount of data to be anonymized decreases to 15.2%

Table 1: The number of publications (#), data-driven publications without
data sharing (w/o) and with data sharing (w) in conferences & journals

Conference # w/o w
e-Energy 2018 42 5 1
e-Energy 2019 38 1 2
e-Energy 2020 38 4 0
e-Energy 2021 29 2 0
Buildsys 2018 23 4 0
Buildsys 2019 38 10 3
Buildsys 2020 38 4 2
Buildsys 2021 28 4 0

Journal # w/o w
Appl Energy 318-320 75 3 0
Appl Energy 315-317 102 0 1
Appl Energy 312-314 178 4 0
Appl Energy 309-311 180 1 0
Energy Build 266-268 98 23 1
Energy Build 263-265 50 6 1
Energy Build 260-262 80 8 3
Energy Build 257-259 105 15 2

if there is strong trust and the computational workloads of the
PAD system substantially decreases.

2 BUILDING ANALYTICS AND BUILDING
DATA SHARING: MOTIVATION FOR STUDY

Building Analytics: Currently, the maintenance, operation and
control of buildings are based mainly on the principles of physics.
Recently, big data and ML technologies have been developed for
building services, such as predictive maintenance, operation effi-
ciency, and others. Below are a few examples of building analytics:
• BLF [31]: Building load forecasting predicts the cooling load
demand of a building at a certain time. BLF can improve HVAC
operation and control.

• COP [45]: The coefficient of performance (COP) of a chiller cap-
tures the cooling power output of this chiller given a certain
injection of electricity. COP prediction can improve HVAC oper-
ation and control.

• NILM [22]: Non-intrusive load monitoring uses the electricity
load of a time period to infer what kinds of appliances are in use
and when they are used.

• FDD [12]: Fault detection diagnosis (e.g., HVAC systems or light-
ing systems) takes the indoor environmental data and the me-
chanical readings of a piece of building equipment to detect the
abnormal condition of this equipment.

• HAR [6]: Human activity recognition takes the readings of vari-
ous sensors to recognize the specific activity at a zone.

• TMD [35]: Thermal model development takes indoor environ-
mental data to develop a thermalmodel that simulates the thermal
status in a building.

Building Data Sharing: Data sharing in the fields of computer
vision (CV) and natural language processing (NLP) is common
and they substantially accelerate the development of ML models
and algorithms. While building analytics have been shown to be
effective, data sharing is not common in the building industry sector.
We present an analysis of building data sharing practices.

We first analyze the data sharing practices of the publications in
two computer science publication venues (ACM e-Energy and ACM
Buildsys) and two built environment publication venues (Applied
Energy and Environment and Buildings). Table 1 shows the results.
We see that in the computer science venues, of the 34 data-driven
publications only 8 shared data, or less than 1/4. The proportion
is even smaller in the built environment venues, where of the 60
data-driven publications only 8 shared data, or less than 1/7.

There are datasets which can be shared for non-commercial and
educational purposes. We further analyze to what degree these
existing datasets support common building analytics applications.
We study the six aforementioned applications.



Table 2: Smart building datasets and corresponding supported applications

Dataset
App BLF COP HAR FDD TMD NILM

BLOND × × × × × ⃝
Build-FDD × × × ⃝ × ×
CASAS × × ⃝ × × ×
CU-BEMS ⃝ × × × ⃝ ×
Genome ⃝ × × × × ×
MFRED × × × × × ⃝

• BLOND [22]: collected data from a German office building be-
tween October 2016 and May 2017. It includes records on the
electricity consumption of 15 kinds of appliances.

• Build-FDD [12]: collected data from three laboratories in the USA.
It contains fault data collected from three kinds of devices: air
handling units (AHU), ventilation air volume systems (VAVs),
and rooftop units (RTU).

• CASAS [6]: published 66 datasets collected from smart homes
in Japan, Mexico, Paris, and Milan. CASAS contains records of
different kinds of indoor activities: telephone use, hand washing,
meal preparation, eating and medication use, cleaning, etc.

• CU-BEMS [35]: collected data from an office building in Bangkok,
Thailand from July 2018 to December 2019. It contains three kinds
of energy consumption data (i.e., air conditioning load, lighting
load, and plug load) and three kinds of indoor environmental data
(i.e., indoor temperature, relative humidity, and ambient light).

• Genome [31]: collected the electricity load data from 1,238 build-
ings in the USA and Europe between 2014 to 2016. These build-
ings served 13 different functions (e.g., educational buildings,
government buildings, hospital buildings, etc.).

• MFRED [29]: collected the electricity load data from 390 apart-
ments in the USA from January to December 2019. It contains
data on appliances such as refrigerators, space heaters, light bulbs,
and some entertainment devices.
We observe that these datasets are limited in the sense that it

is quite difficult to use them in a wide range of building analytics
applications. Table 2 shows how such data can be used to support
the aforementioned six building analytics.

That there is little sharing of data and existing datasets are de-
signed to support limited applications was what motivated this
study: to understand the willingness to share building data.

3 SOCIAL RESEARCH AND RELATEDWORK
3.1 Social Research on Privacy
Social research on privacy is the study of the decision-making
behavior of people under circumstances involving privacy. Intrin-
sically, there is a “privacy paradox” [4], i.e., how people evaluate
the trade-off in their decision-making process. Various theoreti-
cal frameworks on privacy were developed (e.g., privacy calculus,
prospect theory, etc.) to study the driving forces (e.g., trust, per-
ceived severity, better services) behind the making of decision. We
first briefly present privacy theories and why we choose to adopt
the privacy calculus framework. We then present some studies
using the privacy calculus theory.
Privacy Calculus As early as 1968, it was found that privacy is
related to the behavior of withdrawing to protect certain informa-
tion from the outside world [43]. On the other hand, when people
are interacting with the outside world or developing social rela-
tionships, some forms of disclosure behavior are also required. In

1977, Laufer and Wolfe proposed the “calculus of behavior” theory
to explain that people weigh the perceived benefits and perceived
risks of their disclosure behavior to decide to what extent they will
disclose or withdraw personal information [24]. The trade-off in
the disclosure behavior of people was formally named “privacy cal-
culus" in 1999. There are studies providing extensive details of the
perceived benefits (e.g., trust) and perceived risks (e.g., perceived
severity) related people’s privacy concerns, as well as studies on
empirical supports in various contexts (e.g., e-Commerce, SNS, and
location-based services).
Communication Privacy Management (CPM) theory In [43],
privacy disclosures are regarded as one of the primary approaches to
developing and maintaining social relationships. CPM was adopted
to study how families manage the issue of privacy to maintain
family relationships (e.g., topic avoidance). For example, married
couples avoid talking about the experience of miscarriage to main-
tain their relationships [5]. Intrinsically, CPM theory puts forward
a description of how people erect rule-based boundaries to dis-
closing their information with third parties when developing and
maintaining relationships. CPM theory has been used in other set-
tings, such as employer-employee relationships, customer-retailer
relationships, etc. In our study, we emphasize the consideration
of benefits and risks. Relationship management between building
operators and service providers may be a future study.
Prospect Theory (Nobel Prize 2002) is widely used to analyze
decision-making behavior when the decision makers are facing
risky choices [17]. The key finding of Prospect Theory is an asym-
metric value function, whereby people can be risk-averse but also
risk-seeking depending on whether the choices lead to a gain or a
loss. The asymmetry of this function explains the “irrationality” of
people when making decisions. For example, in the choice of having
a 100% chance to gain $450 or a 50% chance to gain $1,000, people
chose the former even though the expected gain was higher in the
later. Prospect theory has also been used to analyze the decision-
making process in relation to privacy. In this paper, we explore
the forces driving the determination of benefits and risks; thus, we
adopted the privacy calculus theory over the prospect theory.
Contextual Integrity is about studying information flows under
certain circumstances (e.g., in an interview, it might not be appropri-
ate to ask questions related to religion since religion is very private
matter) [34]. The contextual integrity theory states that an appro-
priate flow of information can be regulated with a five-parameter
setting, i.e., regulations should be designed on the subject, sender
and recipient of data, the type of information and the principles of
transmission. Specifically, privacy norms have been developed in
certain contexts (e.g., to govern the actions of people in an online
space), and context integrity theory has been applied to detect and
identify violations of privacy due to the context change. Again, we
are more interested in the forces driving the decision to disclose
data than how the information flows should be regulated. Thus,
contextual integrity is not suitable for our study.

3.2 Studies using the Privacy Calculus Theory
We now present studies using the privacy calculus theory. The
following steps are commonly flowed when conducting a social
study: proposing hypotheses, designing a questionnaire, recruiting



participants, collecting data (i.e., the responses of the participants),
validating the data, analyzing the data, and presenting the findings.

Social Network Services (SNS), such as Facebook and Twitter,
are highly dependent on user information and are well-known
for bringing about privacy concerns. The use of such services is
highly dependent on people’s perceptions of the benefits and risks
involved, and the privacy calculus theory has been applied to gauge
such perceptions. For example, there is a study on information
disclosure through mobile applications. In that study, it was first
hypothesized that personalized services and self presentation are
factors of perceived benefits, and perceived severity and perceived
control of information are factors of perceived risks. To collect
data, a questionnaire was designed and a group of Facebook users
were recruited. In the data analysis, it was shown that personalized
services are the dominant factor in the perceived benefits, and that
perceived control is the dominant factor in the perceived risks [40].
Follow up studies have been conducted on a number of additional
factors, e.g., the influence of culture and gender to better understand
the factors of perceived benefits and perceived risks.

IoT Services may raise concerns about privacy. The privacy
calculus theory has been used to study the intention to adopt IoT
services and to explain the trade-offs when making decisions on
whether to disclose information. For example, it has been found
that the privacy concerns of customers will occasionally not have a
significant influence on the intention to adopt an IoT service; instead
the customers’ trust in the service providers could overcome their
concerns about the risks to their privacy [15].

Healthcare Applications also raise privacy concerns. There
is a large body of research using the privacy calculus theory. Stud-
ies have shown that having trust that a product has been well-
developed plays a direct positive role in the intention to adopt a
healthcare application. Other findings include the discovery that
the current health status of users would influence their willingness
to make disclosures [20].

4 THEORETICAL FRAMEWORK
The assumption of privacy calculus is that the intention to disclose
is based on the calculus of the perceived benefits and perceived risks.

We first clarify the scenario on data disclosures. A building opera-
tor is the data owner, who represents an aggregate of the stakehold-
ers in a building, (e.g., building owners or tenants). In this paper, we
use a building operator to represent the collective decision-making
on data disclosures of the building. A building service provider is
the data consumer, who can develop services for the benefit of the
building. Here, a service also represents the aggregate benefits, e.g.,
an AI service to enhance the occupancy comfort for a commercial
building; an energy conservation service for government build-
ings in a smart city campaign; a piece of research to develop new
understandings on building learning models.

A building operator makes a decision to share building data
to a building service provider. This sharing means that building
service providers have certain autonomy in using the building data.
This gives flexibility to building service providers beyond a strict
Non-Disclosure Agreement (NDA) where the data can be used on
pre-defined terms and a need-to-know basis. We argue that such
sharing is necessary for the overall benefits of the smart building
industry. For example, it is very common that service providers

Figure 1: Research Model

(including academicians) develop machine learning algorithms that
need to use knowledge learned from the data of other buildings.

Note that this sharing does not necessarily mean that the build-
ing operator discloses the data to fully public. Under the privacy
calculus theory framework, data sharing will need to have some
minimum agreements, e.g., usage for non-commercial and educa-
tional purposes since disclosing data fully public indicates that the
perceived risk can be infinite and thus is beyond the expressiveness
of the privacy calculus theory. Signing strict NDAs indicates that
the perceived risk is zero; and as said, it does not benefit the overall
industry. In this paper, we study the in-between scenarios and we
strive to understand what the concerns/factors are to trigger the
decision-making process to share data in these scenarios.

Clearly, the process by which the building operators make the
decision to disclose data is a dependent variable to a number of
factors. In the privacy calculus theory, these factors are called con-
structs. In this paper, we hypothesize eight constructs. Our overall
privacy calculus research model is shown in Fig. 1; and we will
explain the choices of these constructs shortly. We comment that
there are other constructs; yet we want to limit the complexity of
our research model and the length of our questionnaire. We leave
investigating other constructs to a future study.

We also comment that the privacy concerns in this paper include
confidentiality concerns, i.e., building operators do not want to
disclose data sometimes because they are concerned about revealing
their potential problems in operation and control. Scientifically, this
is a confidentiality factor rather than a privacy factor. As an early
study, we use privacy to include both privacy and confidentiality
concerns since building operators would calculate both factors
when making decisions to share or not to share data.

4.1 Antecedents1 of the Disclosure Intention
In our proposed privacy calculus model, there are three basic con-
structs; namely, perceived benefits, perceived risks, and disclosure
intention. Perceived benefits are generally related to customized ser-
vices, financial rewards and the promotion of the public image, etc.
For example, Bee’ah, a company in the Middle East, upgraded their
office building by adopting the smart building services provided by
Johnson Control and Microsoft. This upgrade improved the quality
of the office, and also reduced the building energy consumption by
5% and water consumption by 20% [1]. Perceived risks are the de-
gree to which people believe that there is a potential loss associated
with the disclosure of their data (e.g., through misused by service
1Antecedent originated from behavioral psychology. It indicates the stimulus that cues
an organism into performing decision-making behavior. In social studies, the factors
that are significantly related to a behavior are the antecedents of this behavior.



providers [8] or by being sold to third parties without permission
[44]). For example, in a study conducted in Orizaba, Mexico, it
was specifically stated that the disclosure of the 10-month building
data was subject to individual negotiation due to perceived risk
involving privacy concerns [36].

Similar to previous studies, we put forward to the following
hypotheses on the positive effect of perceived benefits and negative
effect of perceived risks on the willingness to disclose building data:
H1. Perceived benefits are positively related to the intention to

share building data with a smart building service provider.
H2. Perceived risks are negatively related to the intention to

share building data with a smart building service provider.

4.2 Antecedents of Perceived Benefits
New services are the subject of perceived benefits. For example,
in the context of adopting new mobile applications, people would
show a positive attitude towards disclosing their data to service
providers if they could get personalized services in return (e.g.,
a birthday coupon or book recommendation) [25]. For building
operators, we hypothesize that obtaining smart building services
are positively related to perceived benefits.

We consider two types of smart building services: (1) building
operation services and (2) building occupant services. Building op-
eration services improve building operation, i.e., they help building
operators save effort or cost in operating building. For example, the
BLF, COP and FDD in §2 are of this type. Building occupant ser-
vices improve the comfort and productivity of building occupants.
For example, the HAR and TMD (also in §2) are of this type. Our
hypotheses about these two types of smart building services are:
H3. Building operation services are positively related to building

operators’ perceived benefits.
H4. Building occupants services are positively related to building

operators’ perceived benefits.
It has been found that the ecosystem of a service can boost the

quality of a service and also increase users’ loyalty to the service
[42]. An example of this is the Apple ecosystem established through
iTunes and the App Store. We note that smart buildings co-evolve
with smart city, smart governance, smart grid, etc., e.g., it has been
shown that a smart grid can help to improve the energy manage-
ment system of a building [33]. We address people’s belief in the
smart ecosystem as a driving force behind the perceived benefits.
We propose the following hypothesis:
H5. A smart ecosystem is positively related to building operators’

perceived benefits.

4.3 Antecedents of Perceived Risks
Building operators will estimate the consequences of the use of
building data and perceive the potential risks involved [32]. Per-
ceived severity refers to the trigger of privacy protection behavior
[23]. For example, a building operator considers that the water
temperature data of a chiller may not trigger a threat, yet the CO2
density data may trigger a threat to the location privacy of occu-
pants. It is empirically shown that in the context of the adoption of
technology, perceived severity could raise people’s concerns on the
adoption [32]. We propose the following hypothesis:

H6. The perceived severity of sharing building data with a smart
building services provider is positively related to the building
operator’s perceived risks.

If trust is established, people will lower their awareness of the po-
tential risks and be more inclined to disclose data [8]. In a study on
people’s concerns about privacy on the Internet, trust was addressed
and it was found that people believe that a company is dependable
if it protects personal information [27]. Following studies investi-
gated people’s trust in terms of the closeness of the relationships of
the company [7] and people’s knowledge showing of the company
(e.g., brand reputation [3]). We thus have:
H7. Trust is negatively related to a building operator’s perceived

risks.
Previous studies also showed that the effect of trust could even

overwhelm people’s concerns about privacy and directly influence
the decision to disclose information [18]. Thus, in addition to the
effect of trust on perceived risks, we also hypothesize the effect of
trust on intention to disclose directly:
H8. Trust is positively related to a building operator’s intention to

share building data with a smart building services provider.

5 RESEARCH METHODOLOGIES
5.1 Questionnaire Design
Our questionnaire consists of two parts, a background survey and
main questions. Our questionnaire is public accessible2.

The first part of the questionnaire focuses on the background
of the participants, including their demographic profile and their
professional knowledge profile.

The second part contains the main questions. A summary is
given in Table 3: Column 1 shows the eight constructs; Column
2 shows the measurement items, i.e., the questions that we devel-
oped3, organized according to constructs; (note, however, that in
our questionnaire we neither inform the participants of the con-
structs, nor tell them that the questions are organized according
to constructs); and Column 3 shows the references we consulted
when developing the measurement items; many constructs were
investigated in other studies, and we chose our measurement items
(questions) primarily by adopting the items from them:

Perceived Severity: we consulted the studies on social network
[32], where themeasurement items represent the people’s perceived
severity of different types of data. Consequently, we design PSEV1
for the perceived severity on overall data and PSEV2 to PSEV4 on
three major categories of smart buildings data.

Trust: we referred to the study [8, 21] on the trust between the
data owner and e-commerce retailer, where the measurement items
show how the data owner determines that the service provider is
trustworthy. We designed TRST1, which is about the reputation
of the service provider, and TRST2 which is about the business
relationship between the building operator and the service provider.

Building Operation Services and Building Occupant Services: we
followed a study on location-based services [38], where the mea-
surement items list different types of services that require the data

2https://github.com/KaruBios/PISB
3In the privacy calculus theory, measurement items is the formal term used to refer to
questions related to the constructs that are to be measured. A questionnaire includes
other questions, such as those on demographic profiles.



owner to disclose their data in exchange. We designed BOS1-BOS3
for three types of building operation services and OPS1-OPS2 for
two types of building occupant services.

Smart Ecosystem:we followed the literatures on investigating IoT
ecosystems [14, 28]. We noted that Smart City is one type of Smart
Ecosystem. We thus designed SECO1 to investigate the smart city
development in the cities of the participants. We designed SECO2
to investigate the popularity of smart buildings in the participants’
cities, where the popularity of a service/product represents the
development of an ecosystem [28].

Perceived Risks: we used the measurement items from [25, 44] as
our PR1-PR3 to investigate the perceived risks of disclosing building
data. PR1-PR3 requires the participants to give answers based on
their intuition, knowledge and estimations.

Perceived Benefits: we adapted the measurement items from [14,
25, 44] to investigate the perceived benefits on disclosing building
data in exchange for smart building services. We designed PB1 for
the overall benefits and PB2-PB4 for three specific types of benefits.

Disclosure Intention: we followed [38], and designed DI1 to inves-
tigate people’s willingness to disclose building data. We designed
DI2-DI3 to investigate whether people’s disclosure intention differs
according to different types of building data involved.

We measure the constructs with items assessed using a 5-point
Likert scale, with 1 indicating (“Strongly Disagree”) and 5 indicating
(“Strongly Agree”). A summary of the items is shown in Table 3.

5.2 Characteristics of the Sample
To recruit participants for this study, we sought professional ser-
vices from an independent marketing company. We requested to
recruit building operators (e.g., the facility operators in a com-
mercial building) as well as engineers from smart building service
providers (e.g., application engineers from Johnson Control) as our
target participant group. We held multiple rounds of discussions
with the company to ensure that they understand our requests.

Eventually, we have 95 responses with 46 from the building oper-
ators and 49 from engineers from smart building service providers.
The background statistics on the respondents are reported in Table 4.
The respondents were diverse in terms of their level of experiences,
the type of building they operated, and their speciality.

6 DATA ANALYSIS
We analyze the measurement model and structural model. A mea-
surement model shows the relationship between the measurement
items and the constructs. It indicates whether the overall design of
our measurement items is successful, e.g., whether the respondents
can understand our questions in the way we expected. A structural
model shows the relationship between the constructs; e.g., whether
trust has an impact on the disclosure intention (Hypothesis 5), and
if yes, how much. It shows the results in relation to our hypotheses.

We conduct the analysis using the Structural Equation Modeling
(SEM) methods. SEMmethods are a group of methods used in social
and behavioral sciences for a model representing some observable
or theoretical phenomenon where a phenomenon is theorized to
be related to one another with a structure [9].

There are a number of SEM methods, e.g., covariance-based
structural equation modeling (CB-SEM) and Partial Least Square
structural equation modeling (PLS-SEM). CB-SEM is used in studies
with a large number of respondents (e.g., more than 200); otherwise,

there may be non-convergence model fitting problems. In this paper,
we adopted PLS-SEM, which is designed for experiment with small
sample size. PLS-SEM can simultaneously evaluate a measurement
model and a structural model. We used SamrtPLS 3.0 to analyze our
collected data and fit our research model.

6.1 Measurement Model Results
We first present how successful our measurement model is. We
follow the standard procedure and evaluate the results from an
intra-construct perspective and an inter-construct perspective:

Intra-construct evaluation. For a measurement item, e.g., Per-
ceived Severity, we determine whether the responses of the par-
ticipants, e.g., to PSEV1-PSEV4, are sufficiently consistent with
this construct. We evaluate the (1) the convergent validity of the
proposed constructs; i.e., whether the scale setting of different mea-
surement items in the same construct are consistent or not; and (2)
the discriminant validity of the proposed constructs, which verifies
the consistency of the question’s design (e.g., expression and word-
ing) in the same construct. We use four metrics: Factor Loading,
Average Variance Extraction (AVE), Composite Reliability (CR), and
Cronbach’s 𝛼 . The results are shown in Table 5.

Factor loading refers to the correlation coefficients between the
measurement items and the construct, e.g., the correlation between
PSEV1 (sharing data raises serious problems) and Perceived Severity.
The factor loading of PSEV1 to perceived severity is 0.828, which
indicates that the correlation between PSEV1 and Perceived Severity
is significantly strong. The threshold for factor loading showing
that the design of measurement model is successful is 0.6 [11]. We
can see that all factor loadings are greater than the threshold.

AVE is a measure of the measurement errors introduced by the
design of the questions and the collecting of data [19]. A high
AVE value indicates that the corresponding construct has good
discriminant validity. The recommended threshold for AVE is 0.5
[11]. We can see that all AVEs are greater than the threshold.

Composite Reliability (CR) and Cronbach’s𝛼 are themetrics used
to evaluate measurement errors introduced by the scale setting of
the measurement items. A high CR value and a high Cronbach’s 𝛼
value represent good convergent reliability of the corresponding
construct. The recommended Cronbach’s 𝛼 and CR thresholds are
both greater than 0.7 [13]. We can see that the Cronbach’s 𝛼 and
CR values are all above the thresholds, with the exception of the
value of Cronbach’s 𝛼 for the Smart Ecosystem. As shown in [39],
this will not overturn our results. Therefore, the results indicate
that the measurement model is of sufficient reliability.

Inter-construct evaluation. We evaluate the discriminant va-
lidity of our proposed constructs (convergent validity cannot apply
to an inter-construct evaluation). Basically we need to check the
root of the AVE value of each construct and the correlation coeffi-
cients with other constructs. As shown in Table 6, the root of the
AVE value for all constructs is greater than the correlation coeffi-
cients with the other constructs, which confirms the discriminant
validity according to [11].

6.2 Structural Model Analysis
Now we present the test results on our structural model, i.e., to
determine whether our proposed hypotheses are supported or re-
jected. We use the PLS statistics for the evaluation and show the



Table 3: Measurement Items

Construct Measurement Items Ref.
1. Perceived Severity PSEV1: Sharing the data collected from my building with service provider would raise serious

problems.
[32]

PSEV2: Sharing energy consumption data of my building with service provider would raise serious
problems.
PSEV3: Sharing the mechanical data of the devices in my building with service provider would
raise serious problems.
PSEV4: Sharing the data related to the occupants in my building with service provider would raise
serious problems.

2. Trust TRST1: The service provider is a well-known company in industry. [8, 21]
TRST2: The service provider has a closed and stable collaboration relationship with us.

3. Building Operation BOS1: The smart building service provider could provide us energy saving service. [38]
Services BOS2: The service provider could provide us predictive maintenance system

BOS3: The service provider could provide us smart security system.
4. Building Occupant OPS1: The service provider could provide us smart workplace management system. [38]
Services OPS2: The service provider could provide us smart human-centric lighting system.
5. Smart Ecosystem SECO1: Our city is a well-developed smart city. [14, 28]

SECO2: Many buildings have been adapted into smart building in our city.
6. Perceived Risks PR1: Adopting smart building services to my building would involve many unexpected problems. [25, 44]

PR2: Adopting smart building services to my building would be risky.
PR3: The potential for loss in adopting smart building services to my building would be high.

7. Perceived Benefits PB1: I believe that smart building services could bring benefits to us and our building. [25, 44]
PB2: I believe that using smart building service can improve the asset value of the building. [14]
PB3: I believe that smart building services could help my building meet the requirements of green
norms or sustainable development released by the government or other related authorities of our
city.

8. Disclosure Intention DI1: I will allow the service provider to have fully access to the data of my building. [21, 38]
DI2: I will allow the service provider to access the data of my building regardless the category of
the data.
DI3: I will allow the service provider to access the data of my building regardless the time period
of the data.

Table 4: Characteristics of the sample

Variables Levels Frequency Percent
Building Operators (N1=46)
Building Operation Experience <=5 14 30.4%
(years) 5-10 20 43.5%

10-15 7 15.2%
>15 2 4.3%
X 3 6.5%

Building Type Commercial 20 43.5%
Residential 20 43.5%
Mixed 4 8.7%
X 2 4.3%

Engineers from
Service Provider (N2=49)
Work Experience (years) <=5 25 51.0%

6-10 16 32.7%
>10 3 6.1%
X 5 10.2%

Speciality Computer Science 14 28.6%
Civil Engineering 20 40.8%
Others 10 20.4%
X 5 10.2%

“X” represents missing item of input

results in Fig. 2. We check the path coefficients (𝛽) between the
constructs and the 𝑝 value (𝑝) to verify whether our proposed hy-
potheses are supported. Path coefficients represent the statistical
linkage between the independent factor and the dependent factor
(e.g., in Perceived Severity→ Perceived Risks, Perceived Severity is

Table 5: Measurement Model Statistics

Construct Item Factor Loading AVE CR Cronbach’s 𝛼
Perceived Severity PSEV1 0.828 0.785 0.936 0.908

PSEV2 0.915
PSEV3 0.918
PSEV4 0.901

Trust TRST1 0.784 0.739 0.849 0.666
TRST2 0.930

Building Operation BOS1 0.809 0.677 0.863 0.762
Services BOS2 0.794

BOS3 0.864
Building Occupant OPS1 0.833 0.729 0.843 0.637
Services OPS2 0.769
Smart Ecosystem SECO1 0.865 0.705 0.827 0.583

SECO2 0.814
Perceived Benefits PB1 0.768 0.689 0.869 0.773

PB2 0.851
PB3 0.867

Perceived Risks PR1 0.857 0.668 0.858 0.755
PR2 0.843
PR3 0.748

Disclosure Intention DI1 0.893 0.795 0.921 0.871
DI2 0.905
DI3 0.878

the independent factor and Perceived Risks is the dependent factor).
A path coefficient with a positive value indicates that the indepen-
dent factor has a positive effect on the dependent factor, and a path
coefficient with a higher absolute value represents a stronger effect.
The 𝑝 value is the statistical indicator showing whether the effect



Table 6: Discriminant Validity
*Diagonal numbers indicate the square roots AVEs, the other numbers indicate the
correlation coefficients between constructs.

DI BOS OPS PB PR PSEV SECO TRST
DI 0.892
BOS 0.483 0.823
OPS 0.428 0.684 0.854
PB 0.464 0.675 0.764 0.830
PR -0.381 -0.351 -0.312 -0.234 0.818
PSEV -0.371 -0.324 -0.291 -0.248 0.817 0.886
SECO 0.530 0.375 0.392 0.533 -0.050 -0.124 0.839
TRST 0.556 0.521 0.531 0.533 -0.419 -0.393 0.488 0.860

of the independent factor on the dependent factor is significant, i.e.,
whether the linkage is acceptably real. A small 𝑝 value represents
great significance. An acceptable 𝑝 value should be less than 0.1 for
experiments with a small sample size.

The results show that Perceived Risks has a negative impact
(𝛽 = −0.178, 𝑝 = 0.079) on the willingness of building operators
to disclose their building data, meanwhile Perceived Benefits has
positive and statistically significant effect (𝛽 = 0.233, 𝑝 = 0.031) on
building operators’ disclosure intention. Therefore, in our study,
both H1 and H2 are supported. In terms of the antecedents of
perceived benefits, the positive effect of both Building Operation
Services (𝛽 = 0.237, 𝑝 < 0.05) and Building Occupant Services
(𝛽 = 0.505, 𝑝 < 0.001) on the building operators’ Perceived Benefits
are significant. This means both H3 and H4 are supported. In
addition, the positive effect of a Smart Ecosystem on Perceived
Benefits is also significant (𝛽 = 0.246, 𝑝 < 0.001). Therefore, H5 is
also supported in our study. In terms of the antecedents of perceived
risks, Perceived Severity has a significant positive effect (𝛽 = 0.772,
𝑝 < 0.001) on the building operators’ Perceived Risks, which leads
to support forH6. We also see that Trust does not have a significant
effect on Perceived Risks (𝛽 = −0.116, 𝑝 = 0.205). This means that
H7 is rejected. Intuitively, this means that whether or not there
is trust, trust cannot be used to predict whether or not building
operators have Perceived Risks. However, the positive effect of
Trust on the building operators’ disclosure intention was found to
be significant (𝛽 = 0.358, 𝑝 < 0.001). Therefore, H8 is supported.
6.3 Insight and Practical Implications

We present three insights that can be drawn from our results.
First, we observe that the magnitude of perceived benefits is

significantly greater than the perceived risks for 130.90% (0.233
over 0.178). This reflects that one can expect more gains by putting
more efforts on perceived benefits than perceived risks. This echoes
the main theme of this paper, and implies that the willingness
of sharing building data not only depends on perceived risks but
significantly more on perceived benefits.

Second, we observe that the magnitude of building occupant
services is twice of building operation services for 213.08% (0.505
over 0.237). We believe that this reflects the reality. Building opera-
tors weigh more on occupant services since occupant services may
directly increase their rental fees; which may be more significant
than operations services. One implication is to synthesize operation
services (e.g., energy conserving) into occupant services such as
Environmental, Social, and Governance (ESG) services; this can
increase the willingness of sharing building data more significantly.

Third, we observe that the magnitude of trust is significantly
greater than perceived benefits for 153.65% (0.358 over 0.233). This
asks building data consumers to pay more attention to trust. One

Figure 2: Structural Model

potential solution is to develop a trust model with different levels.
With differentiable levels, building data owners have more choices
in sharing different parts of building data besides a 0-or-1 choice.

7 CASE STUDY: TRUST MODEL-ENHANCED
PAD

We present a case to show how our study can be used to increase
data sharing, which may also be used to improve the performance
of systems. Specifically, we study a privacy-preserving building
data publishing framework, PAD [37]. PAD computes 𝑘-anonymity
for building data records. It has high computational workloads
when the amount of data to be anonymized is large. In this paper,
we observe that trust can increase the intention to disclose. We
argue that if there exist a trust model with different levels on the
trust of building service providers, building operators will have a
mechanism to increase data sharing. This can reduce the amount of
data to be anonymized. In what follows, we briefly introduce PAD
and then develop a new trust model-enhanced PAD.

7.1 PAD: a Privacy-preserving Building Data
Publishing Framework.

PAD was developed to protect building data privacy through 𝑘-
anonymity of the published data whilemaintaining good data utility.
Specifically, PAD performs anonymization on the building data by
aggregating the data records with pre-training a measuring method
on distance metric. For example, the number of occupants in a zone
may expose the location privacy of occupants, e.g., it can disclose
the working hours of the occupants located in a specific zone. With
PAD, zones can be 𝑘-anonymized, i.e., one can only tell the number
of occupants in an aggregate of 𝑘-zones and it becomes difficult to
infer the number of occupants in a specific zone.

Similar to other anonymization methods [30], PAD has relatively
high computational workloads when the amount of data is large.
Specially, let 𝑁 be the total number of data collection sensors, 𝑇 be
the total period of the collection time, 𝑛𝑖 𝑗 be the amount of data
collected by sensor 𝑖 in time period 𝑗 . Let 𝑀 be the total amount
of data. We have𝑀 =

∑𝑁
𝑖=1

∑𝑇
𝑗=1 𝑛𝑖 𝑗 . Let 𝑘 be the anonymity level.

With the pre-training measuring method and the aggregation algo-
rithm of the PAD, the computation workloads of PAD is determined
by the number of sensors and the amount of data (which is affected
by the time period) which can be expressed as:

𝑂 (𝑃𝐴𝐷) = 𝑁 2𝑀 + (𝑁
𝑘

− 1) (𝑁
2
+ 𝑘 − 2) . (1)



7.2 Trust model-enhanced PAD
Wenow develop a new trust model. This trust model allows building
operators to share different amount of data given different levels
of trust. For example, a building operator may give an academi-
cian data to develop a COP analytics application. If he trusts that,
different to a commercial company, the academician will neither
have the incentive nor have the capability to develop personal-
ized advertisement to building occupants, the amount of data to
be anonymized can be reduced. In another example, if the building
operator gives the data to a long-term collaborator, and he trusts
that the building service provider will seek consent from him when
using data different from the COP analytics application [27], the
building operator can share even more data, e.g., only zones that
are most sensitive with the senior admins need to be anonymized.

We propose a simple trust model. Specifically, suppose each data
record has a sensitivity level 𝑙 ∈ {1, 2, . . . ,ℒ}, where a greater value
of 𝑙 indicates a higher sensitivity. Let 𝐿 ∈ ℒ be the trust level; i.e., a
data owner trusts a data consumer in 𝐿 means that raw data records
with sensitivity level less than or equal to 𝐿 (𝑙 ≤ 𝐿) can be published
to the data consumer without anoynimization. We materialize the
sensitivity levels and trust levels as follows.

Sensitivity levels: It has been observed that some sensors (e.g.,
flowrate sensors of the HVAC system) and some time periods (e.g.,
arrival/departure periods) are sensitive in inferring the occupancy
[16]. We develop spatial and temporal sensitivity levels for both the
sensors and the time periods; these are also the two core factors to
bring about the computation workloads of PAD in Eq. (1):
• Sensor sensitive (SS) levels: It is known that the flowrate sen-
sors can reflect the real-time cooling load and can be used to
predict the occupancy levels; yet the flowrate sensors on differ-
ent chillers contribute differently in the occupancy prediction
[10]. Accordingly, we develop three SS-levels: (1) Low-level: the
flowrate sensors installed on back-up chillers; (2) Middle-level:
the flowrate sensors installed on the chillers for daily use; (3)
High-level: the flowrate sensors installed on main chiller pipes;
high-level sensors can infer the overall cooling load whereas
middle-level sensors can infer the cooling load of a specific chiller.

• Time sensitive (TS) levels: It is known that different time pe-
riods have different sensitivity [16]. Accordingly, we develop
three TS-levels: (1) Low-level: the closing hours and Work From
Home (WFH) period due to Covid-19; (2) Middle-level: normal
office hours; (3) High-level: the arrival/departure periods (8am-
10am/5pm-7pm); the location privacy are more sensitive.
Trust levels: building operators can classify building service

providers. We study four trust levels: (1) no trust; all data records
need to be anonymized; (2) moderate trust, e.g., building service
providers will use the data for non-commercial activities. The data
records of SS and TS at the middle-level and high-level need to be
anonymized; (3) strong trust, building service providers will inform
the building operators of how he uses the data [27], (e.g., TRST2
in our questionnaire). Only the data records of SS and TS at the
high-level need to be anonymized; and (4) full trust.

We apply our trust model in a real-world case of the WKGO
Building of Hong Kong. The total number of the flowrate sensors
of WKGO is 596, and the collection period was November 2019 to
May 2021. With PAD, the computation time to anonymize all data

is 16.42 hours in a state-of-the-art computer. With our trust model,
the amount of data to be anonymized decreases. For example, at
the moderate trust level and the strong trust level, the amount of
data to be anonymized can decrease to 45.3% and 15.2% and the
computational time reduces to 2.48 hours and 0.82 minutes, which
is 15.1% and 0.02% to that of anonymizing all data.

8 DISCUSSIONS
8.1 Theoretical and Practical Contributions
In this study, we analyze a number of social research theoretical
frameworks. The main theoretical contribution of this study is that
we put forward the first privacy calculus model to study the data
disclosure behavior of building operators.

In addition to what have been discussed in §6.2, our study ex-
hibits several practical implications with regard to increasing the
willingness of building operators to disclose their data. First, the
main theme of the paper was supported, i.e., the intention to dis-
close is affected not only by perceived risks but also by perceived
benefits. We think one current fact is that building operators are
still not familiar with (and not confident about) the benefits brought
about by smart building services. Towards this end, we suggest that
smart building service providers and academicians strive to better
articulate, quantify, and standardize building services. Second, a
smart ecosystem can also promote perceived benefits. We suggest
that the government promote smart buildings and smart cities. Re-
cently, we saw a few AI competitions in smart buildings and smart
cities [2] led by the government, and data disclosures followed suit.
Third, we observe that trust has a significant effect on the disclosure
intention. Therefore, we suggest that service providers engage in
satisfactory business arrangement with building operators and also
provide systems with better security protection.

8.2 Limitations
We present three limitations of our work. First, the number of
participants in our study was on the low side. In social research,
the recommended number of participants is around 10 times the
number of measure items (i.e., questions). We had 22 technical ques-
tions (Table 3) but only 95 participants. This is because we needed
participants with a certain level of experience in buildings. Recruit-
ing such participants by professional companies has high costs.
Second, there are many stakeholders in the context of smart build-
ings, such as building occupants, property owners, information
security officer, etc. They represent diverse data owners and their
concerns may not be the same. Previous studies in other contexts
did categorize data owners, e.g., age and ethnic groups. We omitted
these to control the complexity of our research model. Third, there
are many privacy factors in the context of smart buildings. For
example, the government could be involved as a driving force in
increasing the willingness of building operators to disclose their
data. Previous studies in other contexts did involve government
regulations as a factor in this endeavor. Similarly, building oper-
ators would be willing to make their building smart in order to
fulfill their social responsibilities and requirements. For example,
Environmental, Social, and Governance (ESG) factors have become
extremely important in obtaining investment. These factors can
become future work to understand specific topics in depth.



9 CONCLUSION AND FUTUREWORK
Data sharing is quite uncommon in the smart building industry. Ex-
isting studies (e.g., k-anonymity, differential privacy) have focused
on the aspects of algorithms in protecting data while maintaining
good data utility. The root causes of why people are or are not
willing to share building data are unclear. This work demonstrated,
through a social research study based on the privacy calculus the-
ory, that the intention to disclose is related not only to perceived
risks, but also to perceived benefits. We studied six antecedent in-
fluential factors, such as trust, building services, smart ecosystems,
and others. We developed a trust model allowing building data to
have differentiable levels. Thus, building operators have choices to
share different parts of the data and this increases data sharing and
reduces the workloads of anonymization systems.

Our study provides an initial understanding of the decision-
making process on building data sharing. Future works can involve
three aspects. First, this paper adopted the privacy calculus theory.
We believe that other theoretical frameworks are also worth consid-
ering. Second, we considered a limited number of stakeholders and
six basic influential factors. Clearly, there are other stakeholders
and factors involved in the decision-making process on building
data sharing. Third, we urge to study differentiable levels for all
factors; aiming at de facto practices and consensuses. This can
facilitate overall data sharing.
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