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ABSTRACT
Recently, we have seen a flourish of data-driven building applica-
tions. It has also been noted that the main effort in application devel-
opment today is on data preprocessing. More specifically, buildings
have entities, e.g., a chiller. To extract their data values or to control
the entities, applications need to refer to themetadata of a building,
i.e., the data describe the entities in a building. Data preprocessing
organizes the raw metadata of a building into a form that can be
easily recognized by applications. Different buildings have different
metadata conventions. Data preprocessing today is largely an ad
hoc process and is manually done in a building-by-building manner.

How to automate data preprocessing is challenging. In this pa-
per, we first formulate a problem on converting building raw meta-
data with ad hoc conventions into a building metadata model that
follows a standard convention, e.g., the Brick metadata schema.
Depending on application scenarios, we present three variants of
the problem. This problem is intrinsically a text analysis problem.
We thus propose to leverage the information extraction paradigm,
a type of document processing to extract structured information
from unstructured documents/texts. We analyze real-world build-
ing metadata and present a set of challenges on corpus denoise,
coreference resolution, disambiguity, etc. We develop a system,
Cloze with corresponding solutions. We evaluate Cloze with six
real-world buildings. Our results show that Cloze can learn and
automatically recognize raw metadata and their relations with an
accuracy of 96.3%.
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1 INTRODUCTION
In recent years, we have seen a flourish of data-driven building
applications [3, 30, 35]. It has also been noted that the main effort
in developing such applications today is on data preprocessing
of the raw metadata of buildings [10]. Buildings have abundant
raw metadata, i.e., the data that describe the entities in buildings.
For example, the metadata “WKGO-CP01" refers to a chiller in the
WKGO building with ID 01. A piece of metadata is used to pin-
point an entity so as to extract the data values of this entity or to
control this entity. Raw metadata should be preprocessed into an
organization so that applications can easily recognize them. For
example, WKGO-CP01 should be labeled as a chiller. Different build-
ings have different metadata conventions, e.g., in another building,
WTS_Chiller refers to a chiller. Unfortunately, these conventions
are only human-readable. Thus, data preprocessing today is largely
an ad hoc process and is manually done in a building-by-building
manner.

To support data-driven building applications, building metadata
schema have been developed [1, 7]. A building metadata schema is a
predefined organization of building metadata. One notable example
is Brick [7], where the metadata should be organized into a triple
(entity, relation, entity), e.g., (chiller, hasLocation, room). The Brick
schema defines a set of entity classes and relation classes commonly
used in buildings (e.g., a Chiller entity class and a hasLocation
relation class). Building applications can be developed on top of
a standard building metadata schema to easily pinpoint building
entities. Nevertheless, the building metadata of a specific building
are developed with its own conventions to satisfy its own needs,
and they may not match a standard building metadata schema such
as Brick. It is still a manual process to develop the building metadata
model that can follow a building metadata schema for a specific
target building. How to automate this process is challenging.

In this paper, we study the building metadata model generation
problem and we study it in the context of the Brick schema. We
note that, in practice, there are source buildings with labeled meta-
data that can be used for training. We develop and train machine
learning (ML) models to classify building metadata into Brick entity
classes and the building metadata pairs into Brick relation classes.
For example, metadata WKGO-CP01 should be classified into a
Chiller entity and WKGO-BF into a Basement Floor entity; and the
pair WKGO-CP01 and WKGO-BF into a hasLocation relation. We
present three variants of the problem: (P1) there is no labeled data
for the target building, i.e., only labeled data from source buildings;
(P2) there is no labeled data for the target building but the target
building has specification files to describe its metadata convention;
and (P3) there are (partial) labeled data from the target building.
Existing studies, e.g., Scrabble [13] and ProgSyn [8] all fall into P3.
These systems require experts to label metadata for each target
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Figure 1: Examples of the Brick Schema

building and this could be demanding in practice. In this paper,
we complement existing studies with P1 and P2. We carefully ana-
lyze the practical scenarios for P1 and P2, and we develop Cloze, a
system that can progressively solve P1 and P2.

Our observation is that this building metadata model generation
problem is intrinsically a text analysis problem. We thus lever-
age the information extraction (IE) paradigm [21]. IE is a type
of document processing that can extract structured information
from unstructured documents/texts. It has been applied in specific
domains, such as clinical notes summarization, and legal claim
identification [22, 25]. IE provides us concrete steps to follow as
well as perspectives on the challenges and solution approaches
to refer to. Specifically, Cloze materializes two main ML tasks of
IE, building entity recognition [17] and building relation extraction
[6], and train a building entity recognition model and a building
relation extraction model. Cloze overcomes a number of challenges
to learn the shared knowledge among source buildings (for P1) and
to learn the additional knowledge specific to the target building by
its specification file (for P2).

To learn shared knowledge, the challenges are (1) joint learning:
the metadata of source buildings have joint knowledge, both intra-
the two learning tasks on entity recognition and relation extraction,
and inter- the two tasks. We develop Bi-LTSM based models to
learn the joint knowledge in the words and in the characters of
metadata. We also develop multitask learning to learn the joint
knowledge between the two tasks; (2) corpus denoise: metadata of
source buildings often contain information specific to the source
buildings. For example, WKGO-CP01 contains the name of the
buildingWKGO. They add noises in learning shared knowledge. We
develop a filtering algorithm to detect and denoise these metadata;
and (3) coreference resolution: a building entity can have multiple
metadata references; for example, a chiller can be referred to as𝐶𝑃 ,
𝐶𝐻𝑃 , 𝐶𝐻 , etc. We develop a coreference resolution algorithm to
detect the coreference and anaphoric links between text entities.

To learn the additional knowledge of a target building, the chal-
lenges are (1) model transfer : we first need to preserve the knowl-
edge learned from source buildings. Thus, we develop new Bi-LSTM
models and model fine-tuning algorithms to effectively transfer
the models of the source buildings into the models of the target
building; (2) additional knowledge learning: the target building has
new entities and also new texts in its own metadata. We leverage
the specification file of the target building to learn such knowledge
without the need for labeled data; and (3) disambiguity: When we
preserve the shared knowledge from the source buildings and in-
tegrate new knowledge from the target building, ambiguity may

ChillerWKGO-CP01

WKGO-BF Basement Floor

hasLocation

isA

isA

(a) Data Model of WKGO

ChillerWTS_Chiller

hasLocation

isA

1st-Floor
isA

Basement Floor

(b) Data Model of RICE

Figure 2: Examples on the building metadata models of
WKGO and RICE, both follow the Brick Schema

arise. Again, we leverage the specification file to generate samples
to disambiguate the knowledge.

We implement Cloze and integrate it into the Brick eco-system.1
We evaluate Cloze using six real-world buildings, and two Brick
schema versions 1.0 and 1.2. We show that Cloze can serve a set of
11 universal applications in smart buildings (P1) with an accuracy
of 96.6% by successfully learning the shared knowledge from source
buildings. We show that Cloze can serve arbitrary applications for
a target building (P2) with an accuracy of 96.3% by successfully
learning the additional knowledge of the target building. Both
outperform existing systems, e.g., Scrabble [13].

The contribution of this paper can be summarized as follows:

• We articulate a formulation of the building metadata model
generation problem. We analyze three variants that fit dif-
ferent practical scenarios (§2.1).

• We analyze the challenges in the problem, both in learning
the shared knowledge of source buildings and in learning the
additional knowledge of a target building §2.3. We develop a
Cloze system based on the IE paradigm §3 which effectively
addresses the challenges.

• We implement Cloze and integrate it into the Brick ecosys-
tem. We evaluate Cloze using the data of six real-world build-
ings, and two Brick schema versions 1.0 and 1.2. Our results
show that Cloze can achieve an accuracy of 96.3%.

2 THE PROBLEM AND CHALLENGES
2.1 The Problem
Before we formally present our problem, we first describe an ex-
ample on Brick, building metadata model, and the classification of
metadata/metadata pairs. Brick defines two types of classes, build-
ing entity classes and building relation classes, all are organized
in a hierarchy. Figure 1 shows an example. In Brick, the building
metadata models ofWKGO and RICE are shown in Figure 2. WKGO-
CP01 and WTS-Chiller, though with different text conventions, all
fall into the Chiller entity class. We need to automatically construct
such models and the key steps are to classify metadata into build-
ing entity classes and metadata pairs into building relation classes.
Figure 3 shows an example that WKGO-BF-CP01 is classified to
the entity class Chiller; and the relation of WKGO-BF-CP01 and
WKGO-BF is classified to the relation class hasLocation.

The building metadata model generation problem (P1):
given the Brick building metadata schema; the metadata of a set of
source buildings and their labels; develop and train (1) a building
entity recognition model (BEntity) to classify a piece of metadata

1We make our codes available: https://github.com/fangger4396/Cloze
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(1) WKGO-BF-CP01, isA, ___A____
A. Chiller B. AHU C. VAV D.Damper

(2) WKGO-BF-CP01, ____C____, WKGO-BF
A. hasPart B.hasPoint C. hasLocation D. controls

Figure 3: Examples on building entity recognition and build-
ing relation extraction

into an entity class and (2) a building relation extraction (BRelation)
model to classify two building metadata into a relation class.

P1 is agnostic to any specific building. It serves the applications
that require the metadata to be classified into entity classes that
are universal across all buildings. In this paper, we categorize these
universal entity classes by the top-level Brick classes in the Brick
hierarchy. More specifically, Brick has three root classes Equipment,
Location, and Points and we categorize the next two level classes
under these three classes as the universal Brick entity classes. In
practice, it is sufficient to classify a piece of metadata into its uni-
versal Brick entity classes. For example, an application may need
the power consumption sensor data of an AHU fan. In building C,
AHU_3_Supply_Fan_Power is the power sensor, while in building
D, AHU-3_exh_fan_pow is the power sensor. In the regular Brick
entity classes, AHU_3_Supply_Fan belongs to the Supply Fan class
and the AHU-3_exh_fan belongs to the Exhaust Fan class. However,
it is sufficient to categorize AHU_3_Supply_Fan or AHU-3_exh_fan
into the Fan class in Brick. Tools such as Mortar [11] and Energon
[12] can retrieve the power consumption data correctly following
the Fan class (and then its Power Sensor class).

There are also applications that are closely tied with a specific
target building. It is then necessary to classify the metadata into
regular Brick entity classes. We need additional inputs to learn the
knowledge specific to the target building.

One such additional input is the building metadata specification
file. Figure 4 shows an example.2 Intuitively, a specification file
describes the abbreviation convention of the building metadata.

Note that it is difficult to directly convert the specification file
into Brick classes since the specification files of different buildings
vary greatly; many descriptions are arbitrarily written and the
description in the specification file can even mismatch Brick classes.
Nonetheless, specification files can provide information related
to the target building. We will use specification files to generate
composed metadata of the target building, which can be used to
assist model training. We have problem P2:

Problem P2: Problem P1 with an additional input of a metadata
specification file of the target building.

We can also pre-label a partial set of the metadata of the target
building. This leads to problem P3:

Problem P3: Problem P1 with additional inputs of a set of pre-
labeled metadata of the target building.

Existing systems, e.g., Scrabble and ProgSyn, all fall into P3. In
these systems, the pre-labeled metadata is critical to achieving good
performance. More specifically, these systems adopt active learning
methods which allow experts to iteratively label the metadata of
the target building. In an iteration, active learning will evaluate
2We put two real-world metadata specification files in https://github.com/fangger4396/
Specification-File/blob/main/metadata_specification_file.md.

Equipment Code
Equipment Description Equipment Code

Water Cooling Chiller CH

Condensing Water Pump CWP

Condensing Water Valve CWVLV

… …

Room Code
Room Description Room Code

Plant Room PLANT

Pump Room PRM

… …

Function Code
Function Description Function Code

Chilled Water Flow Rate CHWFWR

Chilled Water Inlet Temperature CHWIT

… …

Figure 4: An example metadata specification file

the expert labels in the current iteration and inform the experts
to label the more representative metadata (those with a greater
difference from existing labeled metadata) in the next iteration.
These approaches, though tried to reduce the amount of pre-labeling
effort to a certain extent, intrinsically rely on pre-labeled metadata.
As said, seeking expert engineers to label metadata for each target
building may be difficult in practice. In this paper, we complement
existing studies with P1 and P2.We need to develop new approaches
since the solutions used in P3 cannot perform well in P1 and P2.

2.2 Potential Approach: Information Extraction
Without expert labels on metadata, we take an approach to investi-
gate the characteristics of buildingmetadata and develop algorithms
to process it. We observe that building metadata processing is intrin-
sically a text analysis problem. We thus leverage the information
extraction (IE) paradigm [21], which can provide us a systematic
solution framework. IE is a task of automatically extracting struc-
tured information from unstructured documents/texts and it has
been widely used in such domains as clinical notes summarization,
legal claim identification [22, 25], etc.

Within the IE paradigm, two typical tasks are name entity recogni-
tion and relation extraction. For example, for the sentence “Michelle
Obama is very supportive of her husband, BarackObama", thewords
“Michelle Obama" and “Barack Obama" are detected as named enti-
ties and classified into a public figure class, and the relation between
"Barack Obama" and "Michelle Obama" is classified into a spouse
class. We argue that IE nicely fits our problem. IE provides concrete
steps to follow on building entity recognition and building relation
extraction. More importantly, it provides an organized perspective
on the challenges and solutions to refer to, e.g., corpus denoise,
coreference resolution, model transfer, etc., as we discuss next.

2.3 Challenges
There is no current system for P1 and P2. To show design challenges,
we develop Cloze-Infant, a system that directly follows the IE tasks
on building entity recognition and building relation extraction.

https://github.com/fangger4396/Specification-File/blob/main/metadata_specification_file.md
https://github.com/fangger4396/Specification-File/blob/main/metadata_specification_file.md
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Figure 5: The number of
correctly constructed Brick
triples for building A

Figure 6: The number of ob-
served and unobserved words
in building B

Figure 7: The constituents of
unobserved words in build-
ing A and B

Figure 8: The words refer to
the same entity class in build-
ing A and B

Figure 9: The number of
shared words and additional
words in building A

Figure 10: Ambiguity words
represents different entities
in building A and B

Cloze-Infant: We develop a first system with a building entity
recognition (BEntity) model and a building relation extraction (BRe-
lation) model, both based on the Bag of Word (BoW) model [23]
commonly used for text analysis.

We evaluate Cloze-Infant in two buildings. Building𝐴 has 12,260
Brick triples of 135 different classes and building 𝐵 has 4,535 triples
of 59 classes. The target building is 𝐴. Our accuracy metric is: for
each Brick triple, it is correctly constructed if all (entity, relation,
entity) are consistent with the ground truth.

Figure 5 shows an overall result. Of the 12,260 triples, Cloze-
Infant can correctly classify 9,086 if its ML models are trained using
the metadata of both the source building and the target building
(P3), i.e., the accuracy of 74.1%. Yet if they are trained with source
building only (P1), the accuracy is only 13.5%. As a matter of fact,
for the systems designed for P3, since they can have labeled data
of the target building, their designs seek the assistance of labeled
data. For example, they label the most informative metadata of the
target building and this improves the performance.

We now investigate the detailed challenges for P1 and P2. Figure
6 shows that 52.8% of the words in building 𝐵 are not observed
in building 𝐴, i.e., the metadata distribution of 𝐴 and 𝐵 differs.
This leads to low learning accuracy when there is no labeled data
of the target building 𝐴. Fortunately, we also note that building
entities and relations are intrinsically the same; only the “text"
representation differs, e.g.,𝐶𝑃 ,𝐶𝐻𝑃 all refer to chillers even though
𝐶𝑃 is used in Building𝐴 and𝐶𝐻𝑃 is used in Building 𝐵. We analyze
the metadata of six buildings. We see that there can be shared
knowledge, e.g., a pool of text segments refer to a chiller entity, and
such knowledge can be learned.

We observe three challenges to learning shared knowledge. We
still use the results of Building𝐴 and 𝐵 for simplicity in presentation.

2.3.1 Challenges to learn shared knowledge:

Challenge 1.1 Joint knowledge: There are two learning tasks,
building entity recognition and building relation extraction. There
is joint knowledge both at the intra-task level and inter-task level.
For intra-tasks, metadata needs to be processed in each learning
task, and there is joint knowledge among the words and among the
characters. For example, “CH”, “CP”, and “CHP” can represent a
chiller at the word level; and they have similar constituents at the
character level. For inter-tasks, there is joint knowledge between
the building entity recognition and the building relation extraction.
For example, if we know that WKGO-BF-CP01 is a chiller, we can
predict its associated relation classes with higher accuracy.

Challenge 1.2 Corpus noises: Building metadata often con-
tains building-specific information, i.e., each building can have its
own specific information. From the viewpoint of shared knowledge,
these become “noise". Figure 7 shows that for the unobserved data
in Figure 6, 23.4% of the data are the name of a location, e.g., WKGO:
this is specific for building 𝐵; and 22.0% of the data are equipment
ID, e.g., RM3001: this is also specific for building 𝐵. In total, there
are 45.4% of observed data is not knowledge worth sharing.

Challenge 1.3 Entity coreference: A building entity can have
diverse metadata references; for example, a chiller can be referred
to as 𝐶𝑃 , 𝐶𝐻𝑃 , 𝐶𝐻 , 𝐶ℎ𝑖𝑙𝑙𝑒𝑟 , etc. A basic BoW model cannot easily
classify such metadata into the chiller entity class. Figure 8 show a
few coreference examples of building 𝐴 and 𝐵. Note that there are
even three or four coreferences of the same entity in two buildings,
e.g., flow sensor has been referred to as flow, flowrate, and airflow.
As can be imaged, the amount of coreference increases significantly
when the number of buildings increases.

To learn the additional knowledge of a target building, we lever-
age the specification files that widely exist in buildings. They have
information of a target building. We observe three more challenges.

2.3.2 Challenges to learn additional knowledge of a target building:
Challenge 2.1 Learned knowledge transfer:We need to learn

the building entity recognition model and the building relation
extraction model for the target building. In addition to integrating
new knowledge of the target building, we also need to transfer the
knowledge learned from source buildings.

Challenge 2.2 Learning additional knowledge: A target
building has specific entities and specific texts. These are not noise,
since we need to serve targeted applications to this building. On
the contrary, they provide useful knowledge. Figure 9 shows that
48.2% of words in building 𝐴 can be additional to building 𝐵. It is
difficult to learn such additional knowledge of the target building
directly due to the lack of labeled metadata from the target building.
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Figure 11: The Cloze system

With the metadata specification file, how the additional knowledge
should be learned is yet to be developed.

Challenge 2.3 Ambiguity in the learned knowledge: When
we preserve the shared knowledge from the source buildings and
integrate new knowledge from the target building, ambiguity arises.
For example, in the target building 𝐴, there can be a new chiller
entity class, i.e., a water cooling chiller entity class and text 𝐶𝐻
in 𝐴 refers to a water cooling chiller. In the learned knowledge,
𝐶𝐻 refers to a chiller entity class. The knowledge that 𝐶𝐻 is a
chiller can benefit the classification of 𝐶𝐻 into the water cooling
chiller, yet ambiguity should be solved finally. Figure 10 shows
many ambiguity examples of building 𝐴 and 𝐵.

In summary, there are many challenges in IE. This section an-
alyzes the existence of the specific challenges we face in building
metadata through specific examples and quantitative measurement.

3 THE CLOZE SYSTEM
3.1 System Overview
Figure 11 shows the modular design of the Cloze system. Cloze
first tokenizes the metadata into word tokens (not shown). Cloze
has the BEntity and BRelation models and the modules to solve the
challenges. Cloze can solve both P1 and P2.

The core of Cloze is to train two models (blue): the BEntity
model and the BRelation model. We develop the two models based
on the Bi-LSTMmodel, a text analysis neural network model widely
used in machine translation and sentiment analysis [33]. Other text
analysis models include Conditional Random Fields (CRF) [20] and
Hidden Markov Models (HMM) [16]. CRF is suitable for character-
level text analysis and HMM is suitable for scenarios where adjacent
texts have dependencies. We choose the Bi-LSTM since: (1) building
metadata are meaningful both in the forward order and in the
backward order. For example, both “WCC-CP-01” and “01-CP-WCC”
can be used to represent a chiller; and (2) we need joint training of
the entity recognition task and relation extraction task. Therefore,
we need a model that can perform well in both tasks. Bi-LSTM fits
both (1) and (2). We develop the detailed structures of the BEntity
and BRelation models in §3.2.

Cloze has three modules (red) addressing the three challenges
to learning the shared knowledge of source buildings (P1): (1) a
corpus denoise module for removing the noisy words that hamper
learning (§3.3), (2) a coreference resolution module for detecting
the metadata that refers to the same entity class (§3.4), and (3) a

multi-task learning module to joint train the BEntity and BRelation
models (§3.5).

Cloze has three modules (green) addressing the three challenges
for transferring the shared knowledge of the source buildings and
learning the additional knowledge of the target building: (1) new
BEntity and BRelation models designed to transfer the shared
knowledge of the source building §3.6; (2) an additional knowl-
edge learning and disambiguity module to learn new knowledge
and discharge ambiguity using the specification file (§3.7); and (3)
a multi-task fine-tuning module to integrate new knowledge (§3.8).

Cloze in Execution: The execution process of Cloze follows
a regular ML process. There is a training phase and an inference
phase. In the training phase of P1, the Cloze system trains the
BEntitymodel and the BRelationmodel by themetadata from source
buildings. In the training phase of P2, the Cloze system trains the
new BEntity model and the new BRelation model by the metadata
from source buildings as well as the composed metadata of the
target building that are generated from the specification file. In the
inference phase, the BEntity and BRelation models are used to infer
the entity class of a piece of metadata and the relation class of a
metadata pair.

3.2 The BEntity and BRelation Model Structure
The BEntity and BRelation models are based on the Bi-LSTMmodel.
The special characteristic of our text analysis is that we need to
recognize the words both on a word level and on a character level.
Specifically, “CH”, “CP”, and “CHP” can represent a chiller at the
word level; and they have similar constituents at the character level
(see Challenge 1.1).

We develop our models to have the capability both to recognize
words and to capture the character features of how the words are
constructed by characters. The model structure of the BEntity is
shown in Figure 12. First, the character tokens of a word are trans-
formed into character embeddings. The Character Bi-LSTM layer
takes the character embeddings as inputs and outputs the character
representation of a word. Second, the character representation and
the word embeddings are concatenated. The word Bi-LSTM layer
takes the concatenation as inputs and outputs a word represen-
tation. Third, dense layers with sigmoid activation functions are
added to capture the non-linearity of the features. Fourth, we use
the softmax function as the activation function for the output layer.
It outputs the Brick entity class of the input metadata.
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Figure 12: The neural network structure of BEntity

The design of the BRelationmodel is similar to that of the BEntity
model. The difference is that the inputs of the BRelation model are
metadata pairs. As such, we design the character embedding layer
and the word embedding layer to be capable to embed metadata
pairs. We use the same word embedding layer and the character
embedding layer for both metadata in the pairs; this is effective in
learning better representations.

3.3 Corpus Denoise
Each source building can have its own specific information. From
the viewpoint of shared knowledge, these are “noise". We choose a
denoise approach in text analysis [19] where we detect infrequent
words in the metadata as “noise" and remove them.

Intrinsically, we need to define an appropriate frequency of the
words so as to remove the “noise" while maintaining the shared
knowledge. We observe two types of noisy words for building meta-
data: (1) the words that have low frequency in each source building.
For example, “Room3001” appears in a number of buildings. Though
its total number adds up, it only appears zero or very few times
in each building; and (2) the words that have a high frequency in
one source building but have a low overall frequency. For example,
“NW” is significant in the metadata of building “WKGO”, since it
represents the north wing of the building. However, it never appears
in other source buildings. We choose to use the term-frequency
(TF) score [5] to estimate the former and term-frequency-inverse-
document-frequency (TF-IDF) score [4] to estimate the latter.

The TF score of a word𝑤 , 𝑇𝐹𝑤 is:

𝑇𝐹𝑤 =

∑
𝑏∈𝐵 𝑓𝑤,𝑏∑

𝑏∈𝐵
∑

𝑤′∈𝑏 𝑓𝑤′,𝑏
(1)

Here, 𝐵 is the set of buildings and 𝑏 ∈ 𝐵. 𝑓𝑤,𝑏 is the word-counts of
𝑤 in 𝑏. Intuitively,𝑇𝐹𝑤 shows the total frequency of𝑤 in all words.

The TF-IDF score of a word𝑤 in building 𝑏, 𝑇𝐹𝐼𝐷𝐹𝑤,𝑏 is:

𝑇𝐹𝐼𝐷𝐹𝑤,𝑏 =
𝑓𝑤,𝑏∑

𝑤′∈𝑏 𝑓𝑤′,𝑏
× 𝑙𝑜𝑔( |𝐵 |

𝐵𝑤
) (2)

Here, |𝐵 | is the number of total buildings, 𝐵𝑤 is the number of
buildings that contains the word 𝑤 . Intuitively, 𝑇𝐹𝐼𝐷𝐹𝑤,𝑏 shows
the frequency of𝑤 in a specific building, with a logarithmic factor.

In our implementation, we follow the procedure in [19] to first
calculate the TF score and TF-IDF scores; and then detect and
remove the words according to pre-defined thresholds.

3.4 Coreference Resolution
Coreference resolution is heavily studied in NLP. There are ad-
vanced algorithms such as the Hobbs algorithm [15] and the center-
ing theory algorithm [29] that apply complex syntax and linguistic
analysis. Our scenario is much simpler. We develop a coreference
resolution algorithm where we first detect the words in the building
metadata that refer to the same entity class by a clustering-based
algorithm and then replace the words with their coreference.

Our clustering-based algorithm draws upon [9], where we calcu-
late the distance between words and cluster the words with small
distances. More specifically, we choose the edit distance between
two words as the metric of distance, and we iteratively merge the
cluster of words where the edit distances of the pairs are smaller
than a certain threshold, similar to the algorithm in [9].

We then replace the words referring to the same entity with
their coreference so that all these representations can be learned
by the BEntity model. We choose a data augmentation method to
construct new building metadata to replace a word in the metadata
with one of its coreference words. For example, for the metadata
“BF-CP01” (labeled as a chiller), we replace “CP” with “CH” and
generate a new metadata “BF-CH01‘” (also labeled as a chiller). By
training with the augmented labeled metadata, the BEntity model
can recognize that both “CH” and “CP” refer to a chiller.

3.5 Multi-task Learning
There is joint knowledge between the building entity recognition
learning task and the building relation extraction learning task, i.e.,
if the entity class of a piece of metadata is known, it helps to learn
the relation class, and vice versa.

We use multi-task learning to learn the joint knowledge between
tasks. We choose to share the parameters of the BEntity and BRe-
lation models. Specifically, we share the word embedding layer
and character embedding layer since these two layers of the two
models have the same structure. During the training process of the
two models, we copy the parameters of the word embedding layer
and character embedding layer of one model to the corresponding
layers of the other model in each iteration.

3.6 New BEntity and BRelation Model Structure
For the problem to serve a target building, we develop a new BEntity
and a new BRelation model. The new models need to preserve the
knowledge learned from source buildings and can be used to learn
new knowledge of a target building. We develop the new models by
extending the BEntity and BRelation models with additional neural
network layers so that the knowledge in the original models can
be transferred to the new models.

In Figure 13, we show the new BEntity model. We preserve all the
layers and the trained parameters of the BEntity model except that
we remove the output layer. We add an additional Bi-LSTM after
the BEntity model to learn the additional forward and backward
information from the newmetadata of a target building. We reshape
the output of the last dense layer of the original BEntity model to
convert the output into a sequence. Thus, this sequence can be used
as the input of the additional Bi-LSTM layer. We add a few more
dense layers to capture the non-linearity of the features. Finally, we
again use the softmax function as the activation function for the
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Figure 13: The structure of the new BEntity model

output layer. The design of the extended layers of the new BRelation
model is the same as that of the new BEntity model.

3.7 Additional Knowledge Learning and
Disambiguity

The target building can have additional knowledge that does not
exist in the knowledge of the source buildings. For example, 𝐶𝑊𝑃

represents a condensing water pump, i.e., it falls into a Water Pump
entity class in Brick, yet it never appears in any of the source
buildings (in source buildings, 𝑃𝑢𝑚𝑝 , 𝑃𝑃 , etc. have been learned).
The target building can also introduce ambiguity. For example, 𝐶𝐻
represents a water cooling chiller in this target building; yet 𝐶𝐻
represents a chiller in source buildings.

To learn the additional knowledge from the target building, we
seek assistance from the metadata specification files. As said, how-
ever, it is difficult to directly convert the specification file into
Brick classes since the specification files of different buildings vary
greatly; many descriptions are arbitrarily written and the descrip-
tions in the specification files can mismatch Brick classes. For ex-
ample, the description of metadata 𝐶𝐻𝑊 𝐼𝑇 can be “Chilled Water
Inlet Temperature", whereas its correct Brick class should be Chilled
Water Supply Temperature Sensor class.

Nevertheless, the words in the descriptions of the specification
files can expose useful information in the metadata of the target
building. We thus use the specification file to compose labeled
metadata of the target building. This composed metadata with
labels can then be used in model training. There are two steps.

First, we classify the metadata into one of the three categories
under the root classes, Location, Equipment, and Points. A piece
of metadata can contain the words of multiple root classes. For ex-
ample, metadata BF-CP-TEMP contains Location (Basement Floor),
Equipment (Chiller), and Points (Temperature Sensor). We develop
priorities for these three root classes. From a high priority to a low
priority, they are the Point entity classes, the Equipment entity
classes, and the Location entity classes. We believe that these prior-
ities intrinsically reflect the common convention used in metadata
development. For example, metadata BF-CP-TEMP should be clas-
sified into one of the Brick Point entity classes, instead of one of
the Equipment entity classes or one of the Location entity classes.
We develop a standard text-matching algorithm to match the de-
scription of the metadata and one category of Brick entity classes
by traversing the Brick entity classes in the priority of the Point,
Equipment, and Location entity classes.

Second, with the category determined, we compose the labels for
the metadata, i.e., to label the Brick entity class. This is a maximum
matching problem in text mining. More specifically, for certain
metadata, we extract the set of words in the description of this
metadata and the set of words in the Brick entity classes where we
maximize the overlap between the two sets of words.

3.8 Multi-task Fine-tuning
Finally, we train (fine-tune) the new BEntity and BRelation models
by using the newly labeled metadata of the target building. These
labeled metadata provide the knowledge which can be learned into
the new BEntity and BRelation models. We still apply the multi-task
learning of the two models.

4 EVALUATION
In this section, we evaluate Cloze with real-world buildings. We
first present the methodology used for the evaluation and we then
present the evaluation results for P1, P2, as well as the contribution
from each of our design components.

4.1 Methodology
Datasets:We evaluate Cloze with six real-world buildings. Four are
office buildings and two are campus buildings. Their specifications
are shown in Table 1. The number of metadata varies from 479 to
6,964 while the number of Brick entity classes varies from 21 to
129. The building metadata are different in the length of words and
characters. Five buildings were based on a public dataset [2] and
building C is based on a private dataset that we are yet to obtain
the authority to publish this dataset.

Metrics: We evaluate the accuracy of the building metadata
model, i.e., whether the triple (entity, relation, entity) is correct.
This requires that both the entity classification and the relation
classification be correct. We evaluate two types of applications:
(1) universal applications across buildings (P1). We analyze the
literature and choose 11 universal applications, see Table 2. The
entity classification is correct if the metadata is correctly classified
into the universal Brick entity classes, i.e., the top two level entity
classes in the Brick hierarchy. The ground truths of the respective
applications are shown in Table 2; and (2) applications for a target
building (P2). The entity classification is correct if the metadata is
correctly classified into the regular Brick entity classes.

Experiment Setup: For P1, we conducted two sets of experi-
ments. Table 3 shows the experiment set up on the training datasets
and the testing datasets. We chose Building C and D for testing
since their metadata cover all 11 applications, yet other buildings
each miss some different applications. To simplify the presenta-
tion of our results, we only conduct the testing on Building C and
D. For P2, we conduct six sets of experiments. Table 4 shows the
experiment set up on the training datasets and the testing datasets.

For P1, we conduct data preprocessing on the training datasets
according to §3.3 (corpus denoise) and §3.4 (coreference resolution).
For P2, we conduct data preprocessing on the training datasets
according to §3.3, §3.4, and §3.7 where we use the specification file
to generate composed metadata.

Metadata SchemaWe evaluate Cloze using two Brick schema
versions, 1.0 and 1.2. The Brick schema 1.0 is an early Brick version
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Table 1: The building metadata datasets from six buildings

Building Property of Metadata Property of Brick Class Ground Truth

Num. of
Metadata

Num. of
Metadata
Pairs

Ave.
Words

Num. of
Entity
Class

Num. of
Relation
Class

Num. of
Type-1

Num. of
Type-2

A 6964 36485 13.7 56 11 - 43349
B 3868 8392 10.8 129 6 - 12260
C 1796 2739 11.9 49 10 645 4535
D 1410 2078 8.5 27 11 975 3488
E 690 5235 14.4 21 13 - 5925
F 479 718 6.9 33 10 - 1197

Table 2: Universal Building Applications

ID Building Applications Ground Truth
(1) Chiller Profiling [35] Chiller, Water Temperature Sensor,

Flow Sensor, Power Sensor,
(and their subclasses)

(2) FDD for Chillers [34]
(3) Load Forecasting [30]
(4) Energy Inefficiency Detection [27]
(5) Indoor Air Quality [32] Zone, Room, CO2 Sensor,

Temperature Sensor,
Flow Sensor, (and their subclasses)

(6) Building Integrated Control [24]
(7) Ventilation Prediction [28]
(8) FDD for AHU [18] AHU, VAV, Temperature Sensor,

Flow Sensor, Power Sensor,
(and their subclasses)

(9) FDD for VAV [31]
(10) Energy Consumption Prediction [3]
(11) Model Predictive Control [14]

released in 2017. As presented, Brick defines a set of entity classes
and a set of relation classes. In Brick 1.0, 2025 entity classes were
defined, including chiller, AHU, VAV, etc; and 12 relation classes
were defined, including hasPart, hasPoint, etc. It has been used in a
number of buildings, e.g., RICE, GHC, etc. The current version of the
Brick schema is Brick 1.2, which was released in 2021. As compared
to Brick 1.0, Brick 1.2 removed some classes redundantly defined in
Brick 1.0. For example, Brick 1.0 defined a Current Cooling Setpoint
class, an AHU class, and an AHU Current Cooling Setpoint class.
Brick 1.2 removed AHU Current Cooling Setpoint because AHU
Current Cooling Setpoint can be specified as a Current Cooling
Setpoint class of the AHU class. In Brick 1.2, the total number of
entity classes and relation classes is 1034 and 24 respectively. The
default version we use is Brick 1.2.

BaselinesWe implement Cloze and compare it to Scrabble [13], a
state-of-the-art building metadata model generation system. Scrab-
ble has two stages. First, it infers the Brick entity class of a piece of
metadata. This is done by an ML model developed based on condi-
tional random fields. Second, it infers the Brick relation class of a
pair of metadata by using a set of predefined rules. As said, Scrabble
falls into problem P3, i.e., its ML model is trained by the metadata of
source buildings and then retrained by a subset of the metadata of
the target building labeled by Brick experts. For a fair comparison,
we also implement Scrabble in a P1 mode with only labeled data
for source buildings and a P2 mode where we manually label a
fraction of metadata randomly selected from the target building.
We evaluated both 10% and 20% of labeled metadata, denoted as
Scrabble-10% and Scrabble-20%. The default setting for Scrabble in
our paper is 20%. We also show the performance of Cloze-infant
for benchmarking.

4.2 Evaluation for Universal Applications (P1)
Figure 14 (a) shows the performance of Cloze, Scrabble, and Cloze-
infant. We can see that the accuracy of Scrabble and Cloze-infant

Table 3: Experiment setup for P1

Experiment # Training Datasets Testing Dataset
1 Building A,B,D,E,F Building C
2 Building A,B,C,E,F Building D

Table 4: Experiment setup for P2

Experiment # Training Datasets Testing Dataset
1 Building B,C,D,E,F Building A
2 Building A,C,D,E,F Building B
3 Building A,B,D,E,F Building C
4 Building A,B,C,E,F Building D
5 Building A,B,C,D,F Building E
6 Building A,B,C,D,E Building F

(a) Brick Schema 1.2 (b) Brick Schema 1.0

Figure 14: Comparison of Cloze, Scrabble, Cloze-infant in P1

is much lower than Cloze. The accuracy of Cloze on Building 𝐶
is 90.54% and Building 𝐷 is 96.62% As a comparison, the accuracy
of Scrabble and Cloze-infant on Building 𝐶 is 42.19% and 3.4%,
respectively; and on Building 𝐷 is 69.55% and 46.77%, respectively.
This clearly shows that Cloze has the capability to effectively learn
the shared knowledge of source buildings.

Figure 14 (b) compares the performance of Cloze, Scrabble, and
Cloze-infant under Brick schema 1.0. We see that the accuracy of all
three systems is the same as the performance under Brick schema
1.2. This reflects Cloze can serve universal applications where only
general entity classes are required.

4.3 Evaluation for Regular Applications for a
Target Building (P2)

Figure 15 (a) shows the accuracy of Cloze, Scrabble, and Cloze-infant
for each building. We can see that Cloze outperforms Scrabble
and Cloze-infant on all six buildings. The accuracy of Cloze for
each of the six buildings are 91.14%, 90.68%, 90.32%, 96.29%, 90.35%,
91.93%. As a comparison, the accuracy of both Scrabble and Cloze-
infant are much lower. For example, the accuracy of Scrabble-10%,
Scrabble-20% and Cloze-infant is 80.07%, 78.17% and 41.15% for
building 𝐴 respectively. This clearly shows that Cloze is successful
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(a) Brick Schema 1.2 (b) Brick Schema 1.0

Figure 15: Comparison of Cloze, Scrabble, Cloze-infant in P2

Figure 16: Comparison of Cloze (P2) and Scrabble (P3)

Figure 17: Accuracy of the entity recognition task and rela-
tion extraction task of Cloze

in transferring the shared knowledge of the source buildings and
learning new knowledge in the target building.

Figure 15 (b) compares the accuracy of Cloze, Scrabble, and Cloze-
infant under Brick schema 1.0. We can see that Cloze again has a
good performance.More specifically, the accuracy of Cloze is 90.05%,
90.66%, 90.26%, 96.17%, 89.16%, 89.70%. Cloze outperforms Scrabble
and Cloze-infant, e.g., in Building 𝐴, the accuracy of Scrabble-10%,
Scrabble-20%, and Cloze-infant, is only 78.69%, 75.43% and 37.45%.
We see that the performance is slightly lower than that of Brick
schema 1.2. Recall that Brick schema 1.2 has a more concise list of
entity classes. Intuitively, this makes entity recognition and relation
extraction easier. The accuracy of Scrabble and Cloze-infant is less
than Cloze and also decreases.

We now compare Cloze directly with Scrabble where Scrabble is
trained with expert labeled metadata for the target building, i.e., P3.
More specifically, Scrabble labels the most informative metadata of
the target building. We follow the method developed in Scrabble
[13]. This method can select themetadata that can lead to the largest
reduction in the accuracy loss. Domain expertise can then label
these metadata. Figure 16 shows that the performance of Scrabble
increases greatly for all six buildings. For example, for building 𝐴,
the accuracy can be as high as 99.19%. This shows that Scrabble

Figure 18: Comparison of Cloze, Scrabble and Cloze-infant
under Macro-F1 score

indeed successfully selects the appropriate metadata of the target
building for domain experts to label; and then learns the knowledge.
In practice, if domain expertise in building metadata schema can be
sought, Scrabble provides a good performance. We also see that the
performance of Cloze is relatively comparable to Scrabble, with an
accuracy of 91.14% for building 𝐴. Cloze achieves such an accuracy
with a set of designs in information extraction of building metadata;
which substitutes for expert labeling.

We also compare Cloze, Scrabble, and Cloze-infant under the
Marco-F1 score [26]. Figure 18 shows that Cloze outperforms Scrab-
ble and Cloze-infant over all six buildings. As an example, in Build-
ing B, Cloze outperforms Scrabble and Cloze-infant for 30.86% and
63.47% respectively.

4.4 Component Analysis
We now study our designs on each individual component of our
system. We first study the performance of entity recognition (the
BEntity model) and relation extraction (the BRelation model). We
then study the performance of the four modules of Cloze to un-
derstand their contributions to the performance of the system. For
simplicity, our evaluation is based on P2, which has all modules.
More specifically, we develop Cloze-A: Cloze without corpus de-
noise; Cloze-B: Cloze without coreference resolution; Cloze-C:
Cloze without multi-task learning, i.e., we learn the BEntity and
BRelation models independently; and Cloze-D: Cloze without dis-
ambiguity. Note that the other two modules, i.e., the additional
knowledge learning and fine-tuning in §3 are compulsory.

Figure 17 shows the accuracy of the entity recognition task and
the relation extraction task in Cloze. We see that Cloze has a high
accuracy for both tasks in all six buildings. For example, in building
𝐴, the entity recognition task achieves an accuracy of 92.27% and
the relation extraction task achieves an accuracy of 90.96%. These
illustrate our designs for both tasks are successful.

Figure 19 shows the contributions of each component to the
performance of Cloze in six buildings. Figure 19 (a) shows the per-
formance of Cloze without corpus denoise (i.e., Cloze-A). We see
that the performance of Cloze decreases by 9%-12%. For example,
the accuracy of Cloze-A for building𝐴 is 82.12% while the accuracy
of Cloze is 91.14%. In other words, the contribution of corpus de-
noise is 9.02% for building 𝐴. Figure 19 (b) shows the performance
of Cloze without coreference resolution. The performance of Cloze
decreases by 16%-23%. For example, for building 𝐴, the accuracy of
Cloze-B is 75.78% which reveals that coreference resolution can in-
crease the accuracy by 15.36%. Figure 19 (c) shows the performance
of Cloze without multi-task learning. The performance of Cloze
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(a) Corpus Denoise (b) Coreference Resolution

(c) Multi-task Learning (d) Disambiguity

Figure 19: Component analysis for the individual modules
of Cloze
decreases by 11%-14%. For example, in building 𝐴, the accuracy of
Cloze-C is 77.28%; this reflects that multi-task learning can improve
the accuracy by 13.86%. Figure 19 (d) shows the performance of
Cloze without disambuiguity. We see that the performance of Cloze
decreases by 21%-25%. For example, for building 𝐴, the accuracy of
Cloze-D is 69.67%. It reflects that the contribution of disambiguity
is 21.47%. These show that each of our components is necessary and
our designs successfully improve the performance of our system.

5 CONCLUSION
In this paper, we developed Cloze, a system that can convert the
metadata of a building in an ad hoc convention into a building
metadata model that follows a standard building data schema, e.g.,
Brick. We show that the problem is intrinsically an information
extraction problem. Following the information extraction paradigm,
we analyzed with quantitative measurement a set of challenges that
building metadata specifically faces, e.g., corpus denoise, corefer-
ence resolution, ambiguity, etc. We developed a system Cloze with
a set of algorithm solutions. We evaluate Cloze using data from six
real-world buildings. Our evaluation showed that our designs were
successful in addressing the challenges.
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