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Abstract—Data gathering in sensor networks is required to
be efficient, adaptable and robust. Recently, compressiveessing

sink forwards it to the sensor nodes. Once the responses from
the sensor nodes come back, the sink sends the query results

(CS) based data gathering shows promise in meeting theseback to the user.

requirements. Existing CS-based data gathering solutionsequire

that a transform that best sparsifies the sensor readings shutd be

used in order to reduce the amount of data traffic in the netwok

as much as possible. As a result, it is very likely that diffeent

transforms have to be determined for varied sensor networks
which seriously affects the adaptability of CS-based schees. In

addition, the existing schemes result in significant errorswhen

the sampling rate of sensor data is low (equivalent to the cas
of high packet loss rate) because CS inherently requires tha
the number of measurements should exceed a certain threstubl
This paper presents STCDG, an efficient data gathering scheen
based on matrix completion. STCDG takes advantage of the low
rank feature instead of sparsity, thereby avoiding the prollem of

having to be customized for specific sensor networks. Besislewe
exploit the presence of the short-term stability feature insensor
data, which further narrows down the set of feasible reading and

reduces the recovery errors significantly. Furthermore, STDG

avoids the optimization problem involving empty columns byfirst

removing the empty columns and only recovering the non-empt
columns, then filling the empty columns using an optimizatia

technique based on temporal stability. Our experimental rsults

indicate that STCDG outperforms the state-of-the-art datagath-

ering algorithms in terms of recovery error, power consumpton,

lifespan, and network capacity.

Index Terms—Wireless sensor networks, data gathering, ma-
trix completion, compressive sensing.

I. INTRODUCTION

Efficiency and adaptability are two very important issues in
data gathering. With the traditional data gathering apghoa
[19], the sink receives one data packet from each sensor node
in the typical scenario mentioned previously, leading targé
amount of traffic. We call this approach “Centralized Exant”
this paper. As the sensor nodes are often battery-powdred, t
intensity of data traffic has a serious impact on the lifesplan
WSNSs. If the amount of the resulting traffic can be reduced, th
lifespan of the whole network will be significantly prolordye
Recently, Compressive Data Gathering (CDG), a state-®f-th
art data gathering algorithm based on compressive sensing
(CS), has been proposed to extend the lifetime of WSNSs in
this manner [17]. Utilizing the sparsity of sensor readjngs
CDG only needs fewer data packets than Centralized Exact
to acquire a snapshot at a high level of accuracy. However,
to reduce the amount of traffic as much as possible, CDG
requires that a transform that best sparsifies sensor gsadin
should be used. As a result, it is very likely that different
transforms have to be determined for varied sensor networks
which affects the adaptability of CDG seriously. Furtherejo
CDG assigns the recovered data to different sensor nodes
according to a predefined order, implicitly assuming that th
ordering for data reconstruction is fixed all the time. That
could be invalid in practice. In our research, we found that

Wireless sensor networks (WSNs) are expected to be udlf@l ordering for data reconstruction should be reshuffled at

in many applications such as forest fire detection and habifacertain rate over time. Efficient Data Gathering Approach
monitoring. Data gathering is one of the classical problésns (EDCA) is another innovative data gathering scheme [6].
be tackled in WSNs. Typically, a data gathering sensor netwdt takes advantage of the low-rank feature to achieve both
consists of a sink and many sensor nodes. The sink serlgs$ traffic and high-level accuracy. However, EDCA does
as a gateway to connect the sensor network and the Interf@t consider the possible empty columns in the data matrix.
Over the Internet, users can query the network by sending Bfctically, when the sampling rate is extremely low (or the

inquiry packet to the sink. After receiving a user query, thacket loss rate is very high), the existence of empty cotimn
will become a high probability, seriously reducing the nesxy

_ { Spon , accuracy of EDCA. Finally, for both CDG and EDCA, a low
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STCDG is much more adaptable since it is independent of sfie-the theoretical foundation for most DSC algorithms. It
cific sensor networks. In addition, to achieve the same lefselindicates that when correlated readings are encoded selyara
accuracy, STCDG only requires a smaller fraction of thesenghe resulting compression can be as efficient as the traditio
readings than both CDG and EDCA. Furthermore, STCD&mpression when the readings are encoded jointly, as long
avoids the optimization problem involving empty columns bgs the separately encoded messages are decoded jointly. De-
first removing the empty columns and only recovering th&pite the significant improvement, DSC still has some seriou
non-empty columns, then filling the empty columns using groblems. First of all, DSC algorithms usually lead to very
optimization technique based on temporal stability. Oyreex high time and space complexity. Secondly, DSC only works
imental results indicate that STCDG outperforms Centealiz well when the correlation among neighboring sensors does no
Exact, CDG, and EDCA. In detail, the contributions of thishange over time.

paper are listed as follows.

« We set up a sensor network testbed. Through an in-deptfcompressive Sensing (CS) is a method for finding sparse
analysis of the testbed traces, we conclude that WSHRelutions to underdetermined linear systems [9]. It hagdeal
exhibit the low-rank and short-term stability features. completely different approach to distributed data comgioes

« We propose an efficient data gathering scheme basedidn"WSNs. Compared with traditional DSC, CS-based data
matrix completion, STCDG, that utilizes the low-rankEOmpression moves most computation from sensor nodes to
and short-term stability features in WSNs to achievé@e sink, which makes it a good fit for in-network data
both reduced data traffic and high level of recover§uppression and compression. Over the past years, a variety
accuracy. Our experimental results indicate that STCD@ CS-based methods have been devised to solve the data
outperforms Centralized Exact, CDG, and EDCA in term@athering problem in WSNs [14], [15], [16]. Haupt al.
of recovery errors, energy consumption, and lifespan. summarizes the potential of applying CS to the data gatherin

« We analyze the network capacity of STCDG theoreticallgroblem in multi-hop WSNs [14]. Duarte al. exploited both
and validate the analysis results through ns-2 simulatiofdtra- and inter-signal sparsity to lower the samplingaatnd

« We prove that TDMA-based scheduling for STCDG is aRroposed two joint sparsity models for distributed compeels
NP_Comp|ete prob|em' Furthermore, we devise aTDMAﬁenSing [10] Wuet al. focused on the soil moisture data
based scheduling algorithm that minimizes the number g@llection using compressive sensing [25]. They defined a
required time slots when STCDG is used in WSNs.  pair of well-designed measurement matrix and representati

The rest of this paper is organized as follows. Section lﬁasis in order to achieve incoherence and sparsity at the sam

discusses the related work and Section Il describes trislet!!™e- Wange? al'_ d?wsbed a m?ého_d to rrleC(I)_ver the m|s|5|r_lg
of STCDG. The experimental results based on two testbed d pfa more precisely by considering the linear correlation

sets are presented in Section IV. Finally, Section V coresud etween the data from different nodes [24]. Zheertgql.
this paper. discussed the energy and latency performance of varied data

collection algorithms using compressive sensing [28].0Bar
et al. studied joint sparsity models and joint data recovery
methods based on CS [4]. However, multi-hop communication

In data gathering sensor networks, in-network data swwas not taken into consideration. As mentioned previously,
pression and compression are the major methods to reduce et al. proposed CS-based CDG to reduce communication
the amount of data traffic, ultimately leading to low powetost and prolong network lifespan [17], [18]. Despite that
consumption and long lifespan. The spacial and tempo@DG leads to significantly less traffic and longer lifetimarth
correlation of sensor readings are the foundation of th&tiexi Centralized Exact, there is still much room for improvement
data suppression and compression techniques.

Traditional Source Coding is an in-network data compres- Matrix completion is a technique that takes advantage of the
sion method that takes advantage of the spacial correlationlow-rank feature to recover the missing entries in a ma#jx [
the encoding side [26], [13], [8]. To achieve the best corspre]22]. As an extension of compressive sensing, it has beesh use
sion performance, it usually requires the coordinatiorenfs®r in various research areas. Keshawdnal. compared three
nodes. Yooret al. proposed the Clustered AGgregation (CAG)ecovery methods based on low-rank matrix completion with
method that divides a sensor network into clusters accgrdinoisy observations [15]. Based on nuclear norm minimizatio
to sensor readings [26]. With the clusters, only one reagaérg Zhang et al. presented a novel approach to estimating the
cluster is forwarded to the sink and the overall error id stimissing values in traffic matrices [27]. We also proposed an
less than a predefined threshold. However, traditionalcsouefficient data recovery method for data gathering based on
coding has several limitations. For example, its composssimatrix completion in 2010 [6]. However, the proposed method
efficiency heavily depends on the routing protocol used @ tlonly utilizes the low-rank feature of the data matrix. Insthi
network. However, the joint optimization of compressiom anpaper, we present an innovative recovery algorithm for data
routing has been proved to be NP-hard [8]. gathering that takes advantage of both the low-rank and-shor

Distributed Source Coding (DSC) is an improvement oveéerm stability features in WSNs. To our knowledge, this is
Source Coding in the sense that it attempts to reduce tihe first data gathering algorithm based on matrix compietio
complexity at the sensor nodes and make use of the spathat makes full use of the low-rank and short-term stability
correlation at the sink [7]. The Slepian-Wolf theorem [23features.

II. RELATED WORK
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I1l. THE STCDG SHEME data was collected from 54 sensors at the Intel Berkeley Re-
In this section, we describe our approach to efficient dat§ach Lab between February 28, 2004 and April 5, 2004 [2].

gathering in WSNs. Because our approach utilizes the meRis set of data contains four different traces that cowadp

trix completion technique inspired by compressive sensifig t€mperature, humidity, light, and voltage, respecfivéb

and takes advantage of the low-rank and short-term Smb"&onfirm the low-rank and short-term stability features &nés

features resulting from the spatialitemporal correlation N the first set of data, we set up a sensor network testbed

WSNSs, the proposed mechanism is named Spatio-TempdFaf two-story residential building located in Charlotigtg

Compressive Data Gathering (STCDG). The details of STCO@2nada. This testbed consists of 1 sink (corresponding to
are presented as follows. sensor node No. 1) and 24 sensor nodes. The sensor location

and floor plan details are included in Fig. 1. The second set
o of data was collected from this testbed during the period
A. Preliminaries of August 24, 2012 to August 27, 2012. It also includes
In our research, we consider a sensor network consistifayir traces corresponding to temperature, light, humjdind
of N nodes. Each node is assigned an integerrilDwhich voltage, respectively. We found that, for the traces under
is in the range of 1 taV. We assume that all the readingsnvestigation, the data matri¥X always exhibits both the
generated by sensor nodes are positive real numbers. We &werank and short-term stability features. The detailof
assume that time is divided into equal-sized time slotshwiexperimental results are presented as follows.
the Centralized Exact algorithm, during each time slotrgve
5 [22] -
nll

sensor node probes the environment and forwards the readi
BEDROOM BEDROOM
STORAGH H\HQ @

to the sink through a multi-hop path. As a resudt,readings
can be collected at the sink for each time slot. Fotime
slots, N x T readings can be gathered. These readings ca
be organized into aiv x 7 matrix X (X € RV*T), where
the row and column number correspond to the node ID an}

Slmyl. STORAGEf| STORAGE
L/
In our research, when an entry Xi is missing, we use zero E
as a placeholder to replace the entry. In addition, weBise 3 ) @ o©
denote this modified matrix. Note thA&tis the matrix available FIRST FLOOR SECOND FLOOR
at the sink when STCDG is used to collect the readings.

time slot number respectively.
Furthermore, we define a specidl x T matrix, ), using Fig. 1. Sensor location details

With STCDG, each sensor node only forwards its readin
to the sink according to a preset probability (i.e., a prese
sampling ratio). As a result, only a fraction of the readingg
from each node are transmitted to the sink, leading to atyarie|[4
of different benefits such as reduced traffic and prolonge
lifespan. Of course, this also leaves some entrie¥ iampty.

BEDROOM D

'

Eq. (1):
) ) ) To check whether the data matriX has a good low-rank
Qn,t) = { 0, if X(n,1)is unavailable. (1) approximation, we used singular value decomposition (SVD)
1, otherwise. Specifically, X, an N x T matrix, can be decomposed using

wheret is the sequence number of the time slot within th8VD according to Eg. (3):
T-slot time window. Obviously, we have: X — sy’ 3)

B=X.xQ (2)  whereU is anN x N unitary matrix,V is a7 x T unitary

where .+ represents a scalar product (or dot product) of w&alrx, andx is a NV x T" diagonal matrix with the diagonal
matrices. NamelyB(n, t) = X (n,£)Q(n, ). elements (i.e. the singular values), oo, - - - , o,. organized in
Using the matrix completion technique inspired by compre&-decreasing order (heredenotes the rank ok). The metric
sive sensing, STCDG attempts to recover the missing entrfd@t we used to determine wheth&r has a good low-rank
efficiently. Namely, STCDG tries to use the incomplete da@PProximation is the fraction of the nuclear form capturgd b
matrix B to generate an approximation matri¥, each entry the top d singular values. Formally, the fraction is defined

of which is sufficiently close to the corresponding entryXn using Eq. (4):
quantitatively. ¢ o ¢ o
g(d) = El:iil — Z:‘—l _ (4)
- | X 1] 2 i1 0
B. Low rank and short-term stability whereao; is thei-th largest single value anf ||.. denotes the

To deeply understand the low-rank and short-term stabilitpuclear norm of a matrix.
features in WSNs, we thoroughly analyzed two sets of dataThe fraction of the nuclear norm captured by tbpingular
from two independent sensor network testbeds. The firstfsetvalues in the case of the testbed traces are presented i.Fig.
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1

We found that the top 5 singular values capt82&; —99% of

the nuclear norm. These results indicate that the dataxmatri
has a good low-rank approximation in all the scenarios und 0.8}
investigation.

- 061 -~ = Intel Temperature
o Intel Humidity
A 0al - —o— - Intel Light
' — & — Intel Voltage
-+ ¢+ House Temperature
0.2 —— House Humidity
- —4A— - House Light
= o8 0 - % Intel Temperature — + — House Voltage
= A g Intel Humidity 0 : : : :
e 0.7+ /‘ 4 - —0— " Intel |_|ght | 0.2 0.6 1 2 3
1, — = — Intel Voltage H
-\ ¢+ House Temperature
0.62{ —*— House Humidity 7 Fig. 3. Fraction captured by thie(n, t) satisfyingh(n,t) < H
+—4A— - House Light
— + — House Voltage
0-5l s 0 15 C. STCDG details
d After finding that the data matriX exhibits the low-rank
and short-term stability features, we devised an innogativ
Fig. 2. Fraction captured by tap singular values data gathering scheme, STCDG, that takes advantage of these

features to recoveK using partial sensor readings. This leads
To study the short-term stability of, we calculated the gap to a variety of benefits, including low power consumption,

between each pair of adjacent readings for each sensor ntsug lifespan, and large network capacity. The details ef th
and compared the difference between each pair of adjacgreposed scheme are described as follows.
gaps. Specifically, the gap between each pair of adjacéew Rank: Candes:t al.’s recent work on matrix completion
readings is equal tgap(n,t) = (X(n,t) — X(n,t — 1)), has proved that it is highly possible to recover a low-rank
wherel < n < N and2 < t < T. Consequently, the matrix using a subset of its entries [5]. In our research, the
difference between each pair of adjacent gaps is equalr@sovery problem can be formulated as the following rank
dif(n,t) = (X (n,t+1)— X (n,t))— (X (n,t)— X (n,t—1))) minimization problem:
=X(n,t+1)+X(n,t—1)—2-X(n,t), Whergl <n<N minimize  rank(),
and2 < ¢ < T — 1. The smaller the resultingi f(n, ), the subject to A(X) = B, (6)
stabler the sensor readings for nadaround the time slot.

To compare the short-term stability feature of varied tsacevhere rank(-) denotes the rank of a matrixA(-) is a
we calculated the normalized difference for each entrykin known affine transformation, anfi is the transformed matrix

using Eq. (5): obtained by the sink when STCDG is used. However, solving
this rank minimization problem is often impractical beaaus
\dif(n,t)| it is NP-hard. The time gomplexity pf exis_ting solutions i_s
h(n,t) = hean aan at least doubly exponential in the dimension of the matrix.
gap We solved this optimization problem using the nuclear norm
_ Xt D+ X(n,t - 1) - 2- X(n, 1)) (5) heuristic [5]. Furthermore, in our research, we used a fipeci
T T Sicwenacr e (XWX D) o : ’ afpeci
S sy type of affine transformation: scalar product operation.aAs
1<n<N2<t<T-1 result, the previous problem can be changed to the following
o o nuclear norm minimization problem:
where|-| represents the absolute value of a quantitydenotes minimize || X, 7)
a node ID, andt’ is the sequence number of a time slot. subjectto X.xQ = B.

Furthermore, we defing(H) as the cumulative distribution  There have been a few effective solutions to the nuclear
function of {(n, 1)}, whereH is in the range of 0 to 2. For @ orm minimization problem [22]. Our approach attempts to
small H, if the resultingf(H ) is large, then we can concludesin g 4 suitableX whose rank is- to satisfy X = LRT, where
that, overall, the sensor readings do not change much in the;nq r are N x » and T x » matrices respectively. Since
short term. _ - there could be more than one pair bfand R that meet this
Fig. 3 includes the fraction captured by the:, t) quantities - condition, we try to find a pair of. and R so that| L% +
that are less thaf. The results indicate that, for the testbeq R||2. is minimal (note that| - || » denotes the Frobenius norm
traces, wherf is equal to 0.6, the resulting fractiof(#/) is  of a matrix). Then we can arrive at the following minimizatio
in the range ofl6% ~ 84%; when H is set to 0.8, the fraction problem:
f(H) is always greater than 58%. Overall, all the traces under minimize || L||% + || R||%, ®)
investigation exhibit the feature of short-term stability subject to (LR™).+Q = B.
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Furthermore, because the real data malfixs not exactly columns in the matrix3 will be completely empty, ultimately
low-rank, looking for a low-rank solution that strictly &sftes leading to catastrophic recovery errors. To avoid the serio
the sampling equatiofLR™). x Q = B might not work well. errors, when there are some empty columnsBinSTCDG
So we introduced a regularization paramefewhich allows first ignores the empty columns and only recovers the non-
a tunable tradeoff between a precise fit to the collected da&ampty columns, then uses the short-term stability featare t
and the goal of achieving low rank. This led to the followindill the empty columns. Of course, when there does not exist
optimization problem: any empty-column inB, the previous solution is enough.

L Specifically, we assume thaB has K empty columns,
minimize||(LE"). « Q = Bllz + C(ILIIE + IRIF) - (9) which implies thatB hasT — K non-empty columns. When
Short-Term Stability: As mentioned previously, the datak # 0, STCDG first generates aN x (1" — K) matrix B’
matrix also exhibits the feature of short-term stabilitp TWhich contains the non-empty columnsih The sequence of
further reduce the recovery error, we introduced anothar cdhe non-empty columns id3 is preserved in3’. Obviously,
straint about short-term stabilitf( LRT)ST||2. Note that this there is a correspondence between the non-empty columns in
constraint is the sum of afli f (n, t) values forX . Minimizing B and the columns it’. Using the solution corresponding to
this quantity guarantees that the short-term stabilityieais Notation (10), STCDG can arrive at a recovered data matrix
preserved. Finally, we arrived at the following minimizati X', Which hasN rows and(T" — K)) columns. Then STCDG

problem: generates & x T matrix X" that also hadd empty columns
o " ) ) ) and T — K non-empty columns. Thél empty columns in
minimize[|(LR"). * Q@ — B % + C([[L]% + [ Rl %) X" correspond to theé¥ empty columns inB. In addition,

(10)

the T' — K non-empty columns inX”” come fromX’, but
they are placed in the proper locationsXi according to the

wheren is another tuning parameter as= Toeplitz(0, 1, correspondence between the non-empty columr and the
-2, 1), which denotes the Toeplitz matrix with central diagb columns inB’. After this, each entry in the empty columns of

given by ones, the first upper diagonal given by negative twog . is fijed with a placeholder “0”. Finally, STCDG uses the
and the second upper diagonal given by ones. In defaihn short-term stability feature to fill the empty columns X’.

be defined using Eq. (11): Formally, the filling problem is converted into the followan

+nll(LRT)ST %,

1 -2 1 0 0 minimization problem. This problem can be solved using
0 1 -2 1 0 semidefinite programming (SDP) easily.
S=]10 0 1 =2 0 (11)
minimize|\X—X”|\%+|\XST||2F. (12)
o o o o0 - 1

TxT
In this final solution, the tuning paramete¢sand 7 al- In_summary, Notat.ion (10) is used to geqerate .the recovered
low a tradeoff among the optimization targets: satisfying]atrlx When there is no empty column i while N‘?ta'
the sampling equation, maintaining the low-rank feature a1°" (12) is adopted to construct the recovered matrix when
b /e -
achieving short-term stability. Since the sensor readimgs there are some empty columns. We UE€' to denote the ma

ceived by the sink are always 100% precise while real WS téx gﬁnerated by either. Nofcation (ﬁO) or Notationd_(lz).fuot
often exhibit the low-rank and short-term stability feasir that the non-emply entries I8 are the precise readings from

approximately, we assigned a weight of “1” to the first terrﬁfnsor nodes.d_Genera!Iy gpeﬁking, they adre mc?;e precise tha
in Notation (10) and se¢ — 7 = 0.1. the corresponding entries in the recovered maXiX. Hence,

H H " 1
The final solution is a convex optimization problem thatthese entries i should be replaced by the corresponding

could be solved using the alternating least squares proee ntries inB in order to reduce the recover error. Formally, the
proposed by Zhangt al. [27]. Specifically, I and R are inal approximation matrixX’ can be calculated using Eq. (13):

first initialized randomly. Then we fix one of and R, and

make the other one the optimization variable. In this manner X=X"-X"%Q+B. (13)
the problem is converted to a standard linear least squares
problem. After this, we swap the roles df and R, and In sensor networks, there could be some abnormal readings

continue alternating towards a solution till convergemceur when there is a short-term change in the environment (eeg. th
research, STCDG often converges after a moderate numlight in a room is turned on for a short period of time at night)
of iterations and results in an acceptable recovery errfoe TIf these readings are not forwarded the sink, the recovery
details of the performance of STCDG will be presented ierror will be significantly enlarged. Thus, abnormal reggin
Section V. should be forwarded to the sink regardless of the sampling
Empty Columns: As mentioned previously, with STCDG, ratio. To maintain the preset sampling ratio in the long term
each sensor node only forwards its readings to the siaker forwarding an abnormal reading, the sensor suspésds i
according to a preset probability. Consequently, it is fidss normal forwarding operations until the preset samplingorat
that the sink receives no readings during some time sloteeln allows it again. Note that the suspending rule only applies t
case that the sampling ratio is low, it is very likely that ®smnormal readings, abnormal readings are always forwarded to
empty columns will exist. When this event takes place, sontiee sink immediately.
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IV. NETWORK ANALYSIS OF STCDG wheren 4, is the number of nodes irl, and ay is such a

In this section, we analyze the network capacity of STCD&“a”_ﬂty that lim g = ¢,  is positive but arbitrarily smgll.
under protocol model and discuss the TDMA-based schedulingUsing Lemma 1, we analyzed the network capacity of

algorithm for STCDG. The details are described as followsSTCDG when it is used to collect sensor readings in WSNSs.
The theoretical result is summarized in Theorem 1.

Theorem1: A uniformly deployed network using STCDG
can achieve a network capacity af> %% with

In the application of data gathering, many sensor nodgfyh probability asN — oo, where P is the sampling ratio
forward their readings to the single sink node. Namely, i STCDG and is arbitrarily close to 0.
many-to-one communication model is used. In this section, Proof: Consider a transmission source that is at least
we present the network capacity of STCDG under the mang, + §) from the border of the experimental field. For this
to-one model. Formally, network capacity is defined usingource, the area of interference is a circle with the radiusk
Definition 1. to (2r + §). The source is located at the center of the circle.

Definition 1: The network capacityA in a data gathering According to Lemma 1, the number of interfering neighbors,
sensor network is the achievable rate at whighbits of data 5, is limited by the following inequality with high probabtyi:
from each sensor node is received by the sink during Hséot NA NA
time window. ZLCH) o N <ny < ——CrH0) L fowN  (15)

To further discuss the network capacity of STCDG, A A
we have the following assumptions. First of all, the sens¥¥e use a grapldz;(V1, £1) to denote the network consisting
network consists ofV static sensor nodes, each of whiclef the ni interfering nodes in the circle, wheig represents
is equipped with one omni-directional antenna. The sendfg set of nodes and, is the set of edges corresponding
nodes share a single-frequency radio channel. As a reseyt, tt0 the communication links. Obviously, the highest degree o
cannot transmit and receive at the same time. Secondly, this graph isn; — 1. It is known in graph theory that the
sensor nodes are deployed with a uniform distribution ovepromaticity of such a graph is upper bounded by the highest
an experimental field of ared. For simplicity, we assume degree plus one, namely; —1+1 = n;. Hence, there exists
that the sink is located at the center of the field. Thirdl Schedule of at most< n, time slots that would allow all
all the nodes have the same communication capacitjy’of nodes to transmit at least once during this schedule. Theref
bits/slot. Namely, each sensor can transmit or receive at m1€ transmission rate of each node is:

W bits per time slot. Fourthly, the protocol model is used as _w (16)

the interference model. We usgeto denote the transmission T

range of sensor nodes. The transmission from ngd® v, On the other hand, the nodes one hop away from the sink
is successful under the protocol model if and only if th@hich can communicate with sink directly are the roots of the
following condition is satisfied: subtrees. The number of these nodes,is also bounded with
high probability according to Lemma 1:

A. Network capacity under protocol model

[lv; — vl <rand |lv; — vkl >r+d5,6>0  (14)
NA, NA,
where ||-|| denotes the distance between two nodes and 1~ VavNsn < ——++vVayN  (17)

represents any other node node in the network. Finally, Wfote that the root of the routing tree has subtrees and

assume that the routing protocol uses a tree structure i total number of readings received by the sinkNg
forward the readings to the sink. Specifically, the sink no%h

) : X X en STCDG is used. Therefore, the number of readings from
is the root of the routing tree and it has several child nodees

ch subtree is equal ' P/n,. Thus, the achievable network
Each of the child nodes leads a subtree. Since the sensos nocc‘ijl1 9 /n2

are uniformly deployed, for simplicity, the state-of-thg-data ?Jacny/\ satisfies the following condition:
collection schemes based on compressive sensing (edpecial w _ NPA (18)
Luo et al.’s CDG [17]) assume that all subtrees are roughly of l n2
the same size. In addition, they assume that the number of @mbining Notation (15), (17), and (18), we have:
measurements from each subtree is approximately equatto th
total number of required measurements divided by the number) — W ne > W W NTAT — VonN
of subtrees all the time. To compare STCDG with these recent NP I = NPm — NP W +vanN (19)
data collection schemes, we also use these two assumptions 1% mr? — /e
in our experiments. = ﬁm
Marco et al. presented the following lemma in 2003 [21].
In the lemmaA,. is used to denote the area of a circle with the
radius equal to.. Obviously, 4, = 7r2. The circle is located
inside the experimental field.
Lemmal: In a randomly deployed network witN nodes,

[ ]
Theorem?2: A uniformly deployed sensor network using
STCDG can achieve a network capacity gain ¢f over the
baseline transmission (i.e. Centralizd Exact), wherés the
sampling ratio in STCDG.

NA, NA, Proof: When Centralized Exact is used in the data gath-
Pmb{ 1~ VoenN<sna < —= 4y O‘NN} —1 erﬁ‘nsgj\ﬁﬁo?ﬁ, the total number of readings received by the
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sink is V and thus the number of readings from each subtréme slot. MNIS contains the maximum number of nodes that
is equal toN/ns. As a result, the achievable network capacitgan transmit data simultaneously without collision durarge
N o= %% Note that the achievable capacity of STCDG ifime slot. Basically, the nodes in MNIS are far enough from
)\=%%. So STCDG can achieve a capacity gainf(af: % each other so that no simultaneous transmissions willdmlli
over baseline transmission. B In addition, because it is the maximum set, adding one more
node to it will lead to some collision.
. To acquire a snapshot, a number of time slots are required.
B. TDMA-based scheduling for STCDG Since tr?ere is onl?/ one common wireless channel in the
TDMA-based scheduling algorithms that minimize the nunhetwork, the sink can receive at most one packet during
ber of time slots have been proved to be NP-complete [3ach time slot. To make the data collection delay as short
[11]. In this section, we prove that TDMA-based schedulings possible, our scheduling algorithm attempts to establis
for STCDG is an NP-complete problem. We also present anschedule with which a packet is sent to the sink during
efficient TDMA-based scheduling algorithm for STCDG.  each time slot whenever possible. During each time slot, the
Theorem3: TDMA-based scheduling for STCDG is anrandomly-selected node that can send its packet to the sink
NP-complete problem. using the least number of time slots is called the"start fJoin
Proof: The problem is clearly in NP since an assignOnce the start point for a time slot is selected, it is schediul
ment can be verified in polynomial time. To prove that thto send a packet to the sink (or to its parent if it is not
scheduling problem for STCDG is NP-complete, we caa neighbor of the sink) during that slot. Note that, during
transform the problem to a scheduling problem for baselinkee time slot, other nodes that have been randomly selected
transmission, which has been proved to be NP-complete [S8hould also forward their packets to their parents as long as
[11]. Specifically, we use&7s (12, E3) to denote the routing these transmissions do not result in collision. Actuallyy o
tree used for baseline transmission, wheseconsists of the algorithm is used to find the MNIS for the time slot (note
N nodes andFs includes the edges in the routing tree. Withhat the MNIS always contains the start point). When the
STCDG, only part of the nodes in the routing tree forwarMNIS for the slot is finalized, all the nodes in the MNIS
their readings to the sink during each snapshot. Weldiseo can send their packets during the same slot without caflisio
denote the set of nodes that are randomly selected to forw&@dce the data transmissions scheduled for the current time
their data during the-th snapshot, where is in the range slot is completed, the data collection tree is updated and a
of 1 to 7. Note thatT" is polynomial of N. Without loss new MNIS is generated for the next time slot. This process
of generality, we assume th&t ~ O(N). To forward the goes on until all the readings from the randomly selected
data from the nodes itD; to the sink, part of the original nodes for the current snapshot have been received by the sink
routing tree is required. We us@’,(V/, E!) to denote the The performance of this scheduling algorithm is discussed i
partial routing tree. ObvioushyD; C V;/ C V, and E] C E,. Section V-E.
Let B, = V/\ D}. Note thatB; contains the bridge nodes that
help establish a path from the nodesij to the sink. Let V. IMPLEMENTATION AND EVALUATION
t; be a schedule fo7,(V/, E!) in the scenario of baseline
transmission. Apparently, can also be used as a schedule In our research, we implemented the proposed data gath-
for the nodes inD; in the case of STCDG. Of course, thisering scheme STCDG using MATLAB. Our implementation
might lead to some empty time slots because not all nodesisncomposed of three phases. During the initialization phas
V! need to send a packet. To improve the performance of titee sink broadcasts a fixed probability to the sensor nodes
schedule, we can trim the empty time slots before using it in the network. In our research, this probability is called
STCDG. Grandhamt al. proved that the upper bound of thethe sampling ratio The sampling ratio is in the range of
required time slots in the case of baseline transmissiGVis 5% to 90%. Note that 1(— sampling ratiQ indicates the
[12]. Note that we can us@ (V) operations to trim the empty dumping ratio of all sensor readings. In the second phase,
time slots if necessary. As a result, it take$V') operations each node forwards their readings to the sink according to
to generate the schedule fbY,.. To producel’ schedules (note the preset sampling ratio. In the final phase, after cohecti
that we assumed thdt ~ O(N) previously), we need(N?) the randomly-selected readings overl'aslot time window,
operations at most. This indicates that the transformat@m the sink recovers the missing readings using the method
be completed in polynomial time. Therefore, the schedulirgummarized in Section 11I-C.
problem for STCDG is NP-complete. u After implementing STCDG, we carried out extensive ex-
In our research, we also devised a collision-free TDMAperiments to evaluate its performance. First of all, we get u
based scheduling algorithm for STCDG. The algorithm only sensor network testbed in a two-story residential buildin
uses interference information to minimize the number d@f Charlottetown, Canada and collected the sensing reading
required time slots. As mentioned previously, protocol elodfrom August 24, 2012 to August 27, 2012. Then the gathered
is used as the interference model in this paper. data and the traces from the Intel Berkeley Research Lab
Specifically, we use&(V, E') to denote the network under[2] were used to evaluate the performance of STCDG from
investigation.V' consists of thelV nodes andE includes all the perspectives of recovery error, power consumption, and
the edges in the network. In our research, we defined tlifespan. Furthermore, through ns-2 simulations [1], wa-an
concept of Maximum Non-Interference Set (MNIS) for eaclyzed the network capacity of STCDG in practical scenarios
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and studied the performance of the TDMA-based scheduliByg Recovery Performance

algorithm presented in Section IV-B. Using the Intel Temperature/Light and House Tempera-
To compare the recovery performance of STCDG to th@fre/Light traces, we studied the recovery performance of
of the existing schemes quantitatively, we use the follgwincpg, EDCA, and STCDG thoroughly. For CDG, the random
two definitions in this paper. The error matixis defined as projection used in our experiments is the same as the one
the difference between the original matrix and the reccd/ergdopted by Lua:t al. [17]; the transform used in our research
matrix. Formally,E is defined using Eq. (20): is wavelet transform.
E=X_X (20) The detailed experimental r_e_sults are included in Fig. 4 to
7. Overall, the recovery capability ranking is STCDG, EDCA,
Furthermore, we define the concept of Normalized Meahd CDG. Namely, to achieve the same NMAE, CDG needs

Absolute Error (NMAE) using Eq. (21): a lower dumping ratio (i.e. higher sampling ratio) than EDCA
S oo [EG, 1) and STCDG requires the highest dumping ratio (i.e. the lbwes
NMAE = Z2290:0) = sampling ratio). Specifically, for the Intel Temperaturact,
25,060 =0 X ()] (21) DG, EDCA, and STCDG can achieve very low NMAE (less
1<i<Nand1<j<T than 0.02) until the their dumping ratios reach 60%, 85%, and
Note that NMAE only takes the recovery errors about théL% respectively. After these critical ratios, the perfanoe
missing entries inX into consideration. of all the schemes under investigation deteriorates qyickl

For CDG, the sampling ratio is defined as the ratio of thENiS indicates that when they are used for data gathering in
number of measurements that the sink intends to recaive, YWSNSs, the dumping ratios should not exceed these critical
to the number of nodes in the network]. For comparison values. The details of the experimental results in this ease

purposes, the range of the sampling ratio for CDG is also Symmarized in Fig. 4. We belie_ve that the reason why STCDG
to 5% to 90%. and EDCA outperform CDG is that CDG requires that the

sensor readings should be sparse enough while the real-worl
networks cannot always meet this requirement. In a small-
to-medium scale sensor network where sensor nodes are not
In our research, we used two sets of testbed traces dénsely deployed, it is likely that the resulting sparsitynbt

evaluate the performance of STCDG. The first set contaipgy enough. When this takes place, CDG will requires a low
the real-world traces collected at Intel Berkeley Rese&sth  qumping ratio in order to recover the missing data succtgsfu

in 2004. It involves 54 sensor nodes deployed in the singlgifferent than CDG, EDCA only requires the low-rank feature
floor lab. The details of the sensor location information akgnile STCDG needs both the low-rank and short-term stabilit

available in [2]. features. These requirements are more easily to meet in real
To evaluate the recovery performance of STCDG thoyorid sensor networks.

oughly, we set up a sensor network testbed in a two-story
residential building located in Charlottetown, CanadaeTh 1
sensor location and floor plan details are included in Fig. :
Specifically, this testbed involves 25 TelosB sensors degalo
on the two floors in the building. Among the 25 sensors, sens= 06f
No. 1 is used as the sink and does not sense the environm<§ 04l
The remaining 24 sensors are deployed in such a manner t
there exists at least 1 sensor in each independent room ¢
there are multiple sensors in each large room (e.g. livimgro
or kitchen). From this testbed, we collected the second fset
testbed traces from August 24, 2012 to August 27, 2012.

In both data sets, each packet from the sensor nodes cont&igss. Recovery errors: Intel temperature
multiple types of sensing information: temperature, hutpid
light, and voltage. In our research, we used the temperature
and light data to compare STCDG with other data collectio 1
schemes. Specifically, we chose the temperature/lighedrac |
gathered on March 1, 2004 from the first trace set (we ce
them the Intel Temperature and Intel Light trace respelglive g 061
and those collected on August 25, 2012 from the second <Z 0.4}
(we call them the House Temperature and House Light tra
respectively). In all of these traces, the sink receivespauiket R R
from each sensor node once every thirty seconds. This leads 0 N = L — :

0. 0.6 0.7 0.8 0.9 095

2880 packets from each sensor node everyday. Furthermc Dumping ratio (1 - sampling ratio)
T was set to 120 in our experiments. Thus, for the Intel
Temperature/Light tracesX is a 54 x 120 matrix. For the Fig. 5. Recovery errors: Intel light
House Temperature/Light tracek, is a 25x 120 matrix.

A. Testbed configuration

| —e—CDG —+ EDCA —4— STCDG|

0.81

0.2}

0.5 0.6 0.7 0.8 09 0.95
Dumping ratio (1 — sampling ratio)

— ‘ ‘ ——
—— CDG —+— EDCA —4— STCDG| )

L 4
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1 S coé — EDCA‘ + STCDé| further assume that each packet consists of 64 bits. Amang th
08 64 bits, 32 bits are used to store the temperature informatio
“@ o 16 bits are assigned for node ID, and the remaining 16 bits are
= reserved for time stamp. Consequently, the transmission an
= o. reception of a packet consume 2 units and 0.8 units of power
0.2 respectively.
In our research, we used the Intel Temperature trace to
N e e s T 07 o8 ooogs evaluate the power consumption and Iif(_espan performan_ce of
Dumping ratio (1 - sampling ratio) STCDG. We first calculated the total units of power required
by Centralized Exact, CDG, and STCDG in the case of
Fig. 6. Recovery errors: house temperature Intel Temperature. The details of the total power consuompti
results are included in Fig. 8. The total power consumption
12 : ‘ ‘ ‘ ‘ ‘ of Centralized Exact stays unchanged in all experimental
L —e— CDG —+— EDCA —4— STCDG| i0s b | i ¢ ded
scenarios because all sensor readings are forwarded tmkhe s
o 08 For CDG and STCDG, as the dumping ratio increases, the total
Eo.e power consumption goes down. This is because the higher
Z 5 the dumping ratio, the smaller the number of packets to be
forwarded to the sink. Note that Centralized Exact outpento
0.2 CDG in terms of total power consumption when the dumping
Y T o5 02 o5 06 07 os o909s [ratioisless than 70%. The reason behind this phenomenon is
Dumping ratio (1 - sampling ratio) that, with Centralized Exact, the sensor nodes far fromfe t
sink only need to transmit few packets during each snapshot
Fig. 7. Recovery errors: house light (in the extreme case, each leaf node in the routing tree only

needs to transmit one packet containing its own reading);
. . . with CDG, every node needs to transniif packets. When
For the Intel Light trace, the recovery capability rankirfg Ohe dumping ratio is low enough (i.e. the sampling ratio is

CDG, EDCA, and STCDG stays unchanged. However, all trﬁei} h enough), CDG requires more packet transmissions than

schemes under investigation perform worse than in the OcaseC(gntralized Exact. Different than CDG, STCDG outperforms

Inte| Temperature. We believe that the reason lies in the fa(?DG and Centralized Exact in all experimental scenarios.
that the spacial and temporal correlation of the light regsli

tends to be looser than that of the temperature readings. For ‘ ‘ ‘ ‘ ‘ ‘ ‘
example, the temperature readings from different roomd tei1s 17| | —=— Centralized Exact —@— CDG —4— STCDG| .
to go up/down simultaneously. However, the light readirgs c
be affected by individual sources (e.g. the light in a room i g
turned on/off at night while the lights in other rooms stay of ; 10°0
all the time). The details of the experimental results irs thi £
scenario are included in Fig. 5. =
In the case of House Temperature/Light, the performan(E 10°k ‘ ‘ ‘ ‘ ‘ ‘ ‘
tendency of CDG, EDCA, and STCDG is similar to that in 0.2 03 0.4 05 0.6 0.7 0.8 0.90.95
the scenario of Intel Temperature/Light. The only differeis Dumping ratio (1-sampling ratio)
that all the schemes under investigation require lower dogp _
ratios (higher sampling ratios) to achieve the same level gf 8 Tot@! power consumption

NMAE. The details of the experimental results in these Cases;  \wsNs. the lifetime of the first sensor node that runs out

are presented in Fig. 6 to 7. We believe that the reasg . . .
. . . of power determines the lifespan of the network. In this pape
behind the difference is that the smaller number of sensor ) . . ; .
we use “relative lifespan” to quantify the performance of

nodes in _the residential building have a n_ggatlve Impact LrcDG. To calculate the relative lifespan of a data gatigerin
the sparsity, low-rank and short-term stability featurettod ) . .
. scheme, we first find out the node that consumes the highest
sensor readings. o )
number of power units in the case of Centralized Exact.
) ) This node is usually a neighbor of the sink. The number
C. Power consumption and lifespan of power units consumed by this node is denoted)Mas
The power consumption model adopted in our study iEhen for a given dumping ratio, we find out the node that
similar to that used by Mainwaringt al. [20]. Specifically, consumes the highest number of power units in the case of
we assume that the transmission of 32 bits consumes 1 wmbther data gathering scheme (i.e. CDG or STCDG). We use
of power and the reception of 32 bits uses 0.4 unit of poweV/,,,, to denote the number of power units consumed by this
Although multiple types of sensing information could be-fornode. Finally, the relative lifespan is defined as the rafio o
warded to the sink using one packet, without loss of gertgrali(1/M,,,q,) to (1/Mp).
we assume that only the temperature data is required and thushe lifespan results of Centralized Exact, CDG, and
each packet only includes the temperature information. VBECDG are summarized in Fig. 9. We noticed that, as the

ump
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results indicate that STCDG outperforms both CentralizeL:L
Exact and CDG significantly in terms of power usage. Not
that the performance of EDCA is not included in Fig. 9.

This is because, in this paper, the power consumption al %

dumping ratio increases, the relative lifespan of both CD( L] L
and STCDG go up in all experimental scenarios. Howeve _]“JJ
CDG increases at a much faster rate than STCDG. The , f
- L]
|
L=

lifespan of a data gathering scheme is only affected by tf

number of packets to be transmitted. For a given dumpir .
ratio, EDCA and STCDG lead to the same number of packe* ’ [ —1 :LI I I jrl ﬂ -

to be transmitted, resulting in the same power consumptidn a [T T ] ‘
lifespan performance. For clarity, only the results of ST&D — 1l I 1 RR 1

oo
oo

=

are included.

30

| —=— Centralized Exact —8— CDG —4#— STCDG|

N
)]
T

N
o
T

=
o
T

Relative lifespan
=
o

ok O
R T

P 0.3 0.4 05 0.6 0.7 0.8 0.9 095 Fig. 10. The routing tree for the grid topology
Dumping ratio (1-sampling ratio)

Fi

g. 9. Relative lifespan subtree can be recovered using 55 random measurements in
the case of CDG. For Centralized Exact, all the readings from
the sensor nodes are forwarded to the sink.
In our research, we define the input interval as the gap
between the timepoint when sensor nodes start to colleitt the
In Section IV-B, we analyzed the network capacity ofeadings for a snapshot to the timepoint when they begin to
STCDG theoretically. The analysis was based on schedutgather the readings for the next snapshot. The output itirv
medium access control (MAC). Practically, the cost of sehedefined as the period from the moment when the last packet
uled MAC is relatively high in terms of computation andf a snapshot is received by the sink to the moment when
communication overhead. In our research, we also studig@ sink receives the last packet of the next snapshot. In our
the network capacity of STCDG in a more practical scenargxperiments, we tune the input interval and study how output
through ns-2 simulations. Specifically, IEEE 802.11 wagdusénterval behaves accordingly. At the beginning of each inpu
as the MAC protocol. The data rate of the transmission lirikterval, a packet is generated by each sensor node thatishou
was 2Mbps and the payload size of each packet was 20 byesnd a reading to the sink. In the case of STCDG, the nodes
The topology used in our simulations was similar to thahat are not randomly selected do not need to generate any
adopted by Lucet al. [17]. In detail, we considered a sensopackets. Generally speaking, the longer the input intethal
grid with 1089 nodes organized into 33 rows and 33 columrienger the output interval. As the input interval decreagies
The node at the center of the grid plays the role of the sink. Tbutput interval goes down. However, if the input interval is
distance between adjacent nodes in the same row or colunm achievable, the output interval will start to go up as the
is 14 meters. The transmission and interference range of thput interval decreases due to the phenomenon of congestio
sensor nodes are 15 meters and 25 meters respectively. collapse. The output interval corresponding to this tugnin
With the grid topology, a routing tree needs to be establisheoint (i.e. the minimum output interval) can be used to infer
before packets can be forwarded to the sink. Fig. 10 includié® network capacity.
a typical routing tree for the grid topology. The routingetre  Our output interval results are included in Fig. 11. For
has 4 subtrees, each of which contains a similar number @éntralized Exact, the minimum output interval, 9.54 seson
nodes. The performance of the data gathering schemes urglar snapshot, is achieved when the input interval is 6.40
investigation varies sightly for different routing tredns.our seconds per snapshot. In the case of CDG, the minimum
experiments, we generated 10 different routing trees nahgo output interval, 4.72 seconds per snapshot, appears when th
repeated the simulations with these trees, and calculaid input interval is equal to 4.50 seconds per snapshot. This
average performance results. indicates that CDG can roughly achieve a capacity gain of 2 in
In the simulations, the sampling ratio is fixed at 20% fothe experimental scenario. For STCDG, the minimum output
both CDG and STCDG. This leads to roughly 220 meanterval, 2.02 seconds per snapshot, can be achieved when
surements for CDG and 220 randomly selected readings foput interval is set to 1.60 seconds per snapshot. This snean
STCDG. Furthermore, we assume that the data from eablat STCDG leads to a capacity gain of 4.7 in the experimental

D. Network capacity
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scenario. The reason why STCDG achieves a higher capadfyCDG and STCDG. The reasons behind these phenomena
gain than CDG is that, with STCDG, the nodes far from thare twofold. First of all, both CDG and STCDG require
sink only need to forward few packets per snapshot (in tlleat only part of the sensor nodes send their packets to the
extreme case, each leaf node in the routing tree only needsittk (due to the 20% sampling ratio) while, with Centralized
send one packet per snapshot); with CDG, all nodes need&xact, all nodes should forward their packets. Secondiheat
send M packets to the sink. Namely, more traffic has to bsame sampling ratio, CDG leads to more transmissions than
forwarded to the sink in the case of CDG, resulting in lowe3TCDG.

network capacity. Note that the network capacity results of
EDCA are not included in Fig. 11 because they are the same

the results of STCDG due to the reason mentioned previousg 2000

| | —=— centralized Exact —8— CDG —4— STCDG]|

®
2@ 1500
25 : : : : : £
| —=— Centralized Exact —8— CDG —4— STCDG | 5 1000
§ 201 é
) 500
E 2 .\.’/././. 2
5 ) ! ‘ ‘
10f , 0
% 0 961 1089 1225 1369 1521 1681
© &l i Number of nodes
0 : : : : : Fig. 12. Number of time slots required for one snapshot
0 2 4 6 8 10

Input interval

Fig. 11. Output interval
VI. CONCLUSIONS

In this paper, we propose an efficient data gathering mech-
) ) ] anism for WSNs, STCDG. It takes advantage of the low-
~ We proposed a TDMA-based scheduling algorithm in Segsnk and short-term stability features in WSNs to reduce the
tion IV-B. The algorithm can actually be used by all theynount of traffic in WSNs and improve the recovery accuracy,
data gathering schemes under investigation. In this S&ctiQiimately leading to prolonged lifespan and lowered power
we evaluate the performance of these data cpllecuon _SmerESnsumption. In addition, STCDG avoids the optimization
when the proposed TDMA-based scheduling algorithm g qhjem involving empty columns by first removing the empty
used to guide packet transmission. The metric adopted [Qfjymns and recovering the non-empty columns, then filling
comparison purposes is the number of time slots required;p, empty columns using an optimization technique based on
gather one snapshot. _ _ temporal stability. Our experimental results show that BGC

The topology used is similar to the one used in Section V"Butperforms Centralized Exact, CDG, and EDCA in terms
Specifically, we used a grid topology with a large amount Qff yecovery error, power consumption, lifespan, and networ
sensors whose transmissiqn and interference range are-15 @@acity. Our future work will involve an in-depth analysis
ters and 25 meters respectively. The distance betweenedjagyt the spatial and temporal correlation in WSNs in order to
nodes in the same row or column is 14 meters. The NUMREFher reduce the number of samples required for effective

of the sensor nodes varies from>331=961 to 4%41=1681. (ata recovery. The routing and topology information caw als
These nodes are deployed at the grid intersections and e tilized to reduce data traffic in WSNS.

scale of the grids is in the range 8f rows x 31 columnsto
41 rows x 41 columns
In our experiments, the sampling ratio is fixed at 20% for ACKNOWLEDGMENT
both CDG and STCDG. The node at the center of the grid
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E. Performance of TDMA-based scheduling



IEEE TRANSACTION ON WIRELESS COMMUNICATIONS

(1]
(2]
(31

(4]

(5]

(6]

(7]

(8]

El

[20]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

ns-2, http://www.isi.edu/nsnam/ns/.

Sensor data from intel berkeley research labp2g)

http://db.Ics.mit.edu/labdata/labdata.html.

E. Arikan. Some complexity results about packet radidwoeks
(Corresp.). IEEE Transactions on Information Theor80(4):681-685,
Jul 1984.

D. Baron, M. F. Duarte, S. Sarvotham, M. B. Wakin, and RB&@raniuk.

An information-theoretic approach to distributed compesksensing. In [28]

43rd Allerton Conference on Communication, Control, andnpating
pages 13-18, Sep 2005.

E. Candes and B. Recht. Exact matrix completion via crrygtimiza-
tion. Foundations of Computational Mathematic®(6):717-772, Jun.
2009.

J. Cheng, H. Jiang, X. Ma, L. Liu, L. Qian, C. Tian, and W.uLi
Efficient Data Collection with Sampling in WSNs: Making Usé o
Matrix Completion Techniques. IRroc. of IEEE GLOBECOMpages
1 -5, Dec 2010.

J. Chou, D. Petrovic, and K. Ramachandran. A distribitad adaptive
signal processing approach to reducing energy consumpii@ensor
networks. Proc. of IEEE INFOCOM 2(1):1054-1062, Mar 2009.

R. Cristescu, B. Beferull-Lozano, M. Vetterli, and R. wémhofer.
Network correlated data gathering with explicit commuti@a Np-
completeness and algorithmHEEEE/ACM Transactions on Networking
14(1):41 — 54, Feb. 2006.

D. Donoho. Compressed sensintEEE Transactions on Information
Theory 52(4):1289-1306, Apr 2006.

M. Duarte, S. Sarvotham, M. Wakin, D. Baron, and R. Barkn
Joint sparsity models for distributed compressed sensitmgOnline
Proceedings of the Workshop on Signal Processing with Adafparse
Structured Representations (SPARS)v 2005.

A. Ephremides and T. Truong. Scheduling broadcaststiihop radio
networks. IEEE Transactions on CommunicatiqQri38(4):456—460, Apr
1990.

S. Gandham, Y. Zhang, and Q. Huang. Distributed minirticde
convergecast scheduling in wireless sensor networkBrdo. of ICDCS
Jun. 2006.

H. Gupta, V. Navda, S. Das, and V. Chowdhary. Efficienthgeng

of correlated data in sensor networkACM Transactions on Senor

Networks 3(3):31-43, Mar. 2007.

J. Haupt, W. Bajwa, M. Rabbat, and R. Nowak. Compressstsiag
for networked data.|EEE Signal Processing Magazing5(2):92-101,
Mar 2008.

R. Keshavan, A. Montanari, and S. Oh. Low-rank matrixmgetion
with noisy observations: a quantitative comparisd®roc. of the 47th
annual Allerton conference on Communication, control, anthputing
pages 1216-1222, Sep 2009.

S. Lee, S. Patterm, M. Sathiamoorthy, B. Krishanamaclaad A. Or-
tega. Compressed sensing and routing in multi-hop netwotdSC
CENG Technical Repqgr2009.

C. Luo, F. Wu, J. Sun, and C. W. Chen. Compressive dateegag for
large-scale wireless sensor networksPhc. of IEEE/ACM MOBICOM
pages 145-156, Sep 2009.

C. Luo, F. Wu, J. Sun, and C. W. Chen. Efficient measurémel

generation and pervasive sparsity for compressive dategad. IEEE
Transactions on Wireless Communicatip®§L2):3728 —3738, Dec 2010.
S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W.ngo Tinydb:
an acquisitional query processing system for sensor nkswoACM
Transactions on Database Syster6(1):122-173, Mar 2005.

A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, ahdAnderson.
Wireless sensor networks for habitat monitoring. Rrmoceedings of
the 1st ACM international workshop on Wireless sensor nésvand
applications pages 88-97, Sep 2002.

D. Marco, E. Duarte-Melo, M. Liu, and D. Neuhoff. On theany-
to-one transport capacity of a dense wireless sensor netand the
compressibility of its data. IfProc. of IEEE IPSN pages 1-16, Apr
2003.

B. Recht, M. Fazel, and P. Parrilo. Guaranteed mininrank solutions
of linear matrix equations via nuclear norm minimizatioBociety for
Industrial and Applied Mathematics Revieb2(3):471-501, Aug 2010.
D. Slepian and J. Wolf. Noiseless coding of correlatatbrimation
sources.|[EEE Transactions on information Theqry9(4):471-480, Jul
1973.

J. Wang, S. Tang, B. Yin, and X.-Y. Li. Data gathering inreless
sensor networks through intelligent compressive sensimgProc. of
IEEE INFOCOM pages 603 —611, Mar 2012.

12

[25] X. Wu and M. Liu. In-situ soil moisture sensing: measusnt

scheduling and estimation using compressive sensing@rdo. of ACM
IPSN pages 1-12, Apr 2012.

S. Yoon and C. Shahabi. The clustered aggregation (tghnique
leveraging spatial and temporal correlations in wirelesser networks.
ACM Transactions on Senor Network¥1), Mar 2007.

Y. Zhang, M. Roughan, W. Willinger, and L. Qiu. Spat&naiporal
compressive sensing and internet traffic matricesCM SIGCOMM
Computer Communication Revie®9(4):267-278, Oct 2009.

H. Zheng, S. Xiao, X. Wang, and X. Tian. Energy and lajeanalysis
for in-network computation with compressive sensing inelgiss sensor
networks. InProc. of IEEE INFOCOM pages 2811-2815, Mar 2012.

Jie Cheng received the B.S. and M.S. degrees
from National University of Defense Technology,
and Ph.D. from Huazhong University of Science
and Technology in 2011. For now His research
concerns wireless networking, especially algorithms
and architectures for sensor networks.

Qiang Ye received his PhD degree in computer sci-
ence from University of Alberta. He is an associate
professor in the Department of Computer Science
and Information Technology at the University of
Prince Edward Island. His research interests lie in
the area of Communication Networks in general.
Specifically, he is interested in Wireless Sensor/Ad
Hoc Networks, Network Reliability and Security,

and Performance Evaluation.

Hongbo Jiang received the B.S. and M.S. degrees
from Huazhong University of Science and Tech-
nology, China. He received his Ph.D. from Case
Western Reserve University in 2008. After that he
joined the faculty of Huazhong University of Sci-
ence and Technology as an associate professor. His
research concerns computer networking, especially
algorithms and architectures for high-performance
networks and wireless networks. He is a member
of IEEE.

Dan Wang received the B. Sc degree from Peking

University, Beijing, China, in 2000, the M. Sc degree

from Case Western Reserve University, Cleveland,
Ohio, USA, in 2004, and the Ph. D. degree from

Simon Fraser University, Burnaby, B.C., Canada, in
2007; all in computer science. He is currently an

assistant professor at the Department of Computing,
The Hong Kong Polytechnic University. His research

interests include wireless sensor networks, Internet
routing, and peer-to-peer networks. He is a member
of the IEEE.



IEEE TRANSACTION ON WIRELESS COMMUNICATIONS

Chonggang Wang received his PhD degree in
computer science from Beijing University of Posts
and Telecommunications. He has conducted research
with NEC Laboratories America, AT&T Labs Re-
search, and University of Arkansas, and Hong Kong
University of Science and Technology. His research
interests include future Internet, machine-to-machine
(M2M) communications, and cognitive and wireless
networks. He has published more than 80 jour-
nal/conference articles and book chapters. He is a
senior member of the IEEE.

13



