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Abstract—Wireless sensor networks have been widely used for ambient data collection in diverse environments. While in many such
networks the nodes are randomly deployed in massive quantity, there is a broad range of applications advocating manual deployment.
A typical example is structure health monitoring, where the sensors have to be placed at critical locations to fulfill civil engineering
requirements. The raw data collected by the sensors can then be forwarded to a remote base station (the sink) through a series of
relay nodes. In the wireless communication context, the operation time of a battery-limited relay node depends on its traffic volume and
communication range. Hence, although not bounded by the civil-engineering-like requirements, the locations of the relay nodes have
to be carefully planned to achieve the maximum network lifetime. The deployment has to not only ensure connectivity between the data
sources and the sink, but also accommodate the heterogeneous traffic flows from different sources and the dominating many-to-one
traffic pattern. Inspired by the uniqueness of such application scenarios, in this paper, we present an in-depth study on the traffic-aware
relay node deployment problem. We develop optimal solutions for the simple case of one source node, both with single and multiple
traffic flows. We show however that the general form of the deployment problem is difficult, and the existing only connectivity-guaranteed
solutions cannot be directly applied here. We then transform our problem into a generalized version of the Euclidean Steiner Minimum
Tree problem (ESMT). Nevertheless, we face further challenges as its solution is in continuous space and may yield fractional numbers
of relay nodes, where simple rounding of the solution can lead to poor performance. We thus develop algorithms for discrete relay node
assignment, together with local adjustments that yield high-quality practical solutions. Our solution has been evaluated through both
numerical analysis and ns-2 simulations and compared with state-of-the-art approaches. The results show that for all test cases where
the continuous space optimal solution can be computed within acceptable timeframes, the network lifetime achieved by our solution
is very close to the upper bound of the optimal solution (the difference is less than 13.5%). Moreover, it achieves up to 6 to 14 times
improvement over the existing traffic-oblivious strategies.

Index Terms—Wireless sensor networks, data collection, deployment, traffic-aware, relay node.
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1 INTRODUCTION

W IRELESS sensor networks have been widely used for
ambient data collection in diverse environments. Ex-

amples include target-tracking [5] on battlefield and forest
fire detection [16] in a wild environment, to name but a
few. In many such networks, the sensor nodes are randomly
deployed in massive quantities, and each node may act both
as a data collector and a traffic relay. This is also a com-
mon assumption made in many existing works on modeling
and protocol optimization, and the focus thus has been put
on optimizing topology control [19][22][11][12] and routing
design [21][4][13][3] with the given network topologies.

In contrast to this, we notice that there is another broad
range of application scenarios that require manual node de-
ployment. One example is the TsingMa Bridge [10] in Hong
Kong, which is equipped with a large number of accelerom-
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eters, thermometers and strain sensors to monitor its working
conditions. Another recent project, in which we are partici-
pating, is the Guangzhou New TV Tower [1] in Guangzhou,
China, which is to be attached with similar sensors for real-
time monitoring and analyzing. In these systems, the sensors
are deployed at critical locations to fulfill civil engineering
requirements. Raw data are needed and the traffic volume or
data rate from each sensor is in general predetermined, e.g.,
the typical sampling rate of an accelerometer is 100Hz. Given
the extensive dimensions of the structures, relay nodes have to
be placed to bridge the sensors and the data collection sink.

In the wireless communication scenario, the lifetime of a re-
lay node is severely limited by its battery power, and the power
consumption in turn closely depends on the communication
distance and traffic volume. As such, although not bounded
by the civil-engineering-like requirements, the locations of the
relay nodes have to be carefully planned to achieve the best
network performance.

Inspired by the uniqueness of these applications, in this
paper, we present an in-depth study on the traffic-aware relay
node deployment problem. There have been previous studies
on relay node deployment for wireless networks [27][17], most
of which however focused on maintaining network connec-
tivity. Given the heterogenous traffic flows and the many-
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to-one traffic pattern, directly applying these algorithms will
only give suboptimal results. For an illustration, consider a
set of sensor nodes and a data sink with given locations and
traffic volumes, as shown in Fig. 1. If only connectivity is
considered, the deployment scheme in Fig. 1(a) maximizes
the network lifetime, i.e., each of the 1

3 of the relay nodes
are deployed on the sections of (s1, v), (s2, v) and (v, s0).
We can see, however, given the traffic pattern, the deployment
scheme that moves some relay nodes from less traffic intensive
section (s2, v) to heavily-loaded (v, s0) will achieve better
performance, as shown in Fig. 1(b).

Facing the distinct traffic-aware demand, we first develop
optimal solutions for the simple case of one source node,
both with single and multiple traffic flows. We show that
the general form of the deployment problem however is quite
difficult. Indeed, even without traffic considerations, the relay
node deployment problem is already NP-hard with heuristics
being developed [27]. Unfortunately, our analysis shows that
their approaches are far from optimized in our scenario. To
this end, we show that the general problem can be transformed
into a generalized Euclidian Steiner Minimum Tree problem
(ESMT) and develop a hybrid algorithm that successfully
returns optimal results with all test cases that can be verified
within acceptable timeframes. Nevertheless, we face further
challenges as the solution of ESMT is in the continuous
domain and may yield fractional numbers of relay nodes. We
show that a simple rounding of the solution may result in
significant degradation of the performance. We then develop
algorithms for discrete relay node assignment, together with
local adjustments that yield high-quality practical solutions.

Our solutions have been evaluated using both numerical
analysis and ns-2 simulations. We show that for all test cases
where the continuous space optimal solution can be computed
within acceptable timeframes, the network lifetime achieved
by our solution is very close to the upper bound of the
optimal solution (the difference is less than 13.5%). Moreover,
the performance of our scheme is 14 times better than a
straightforward relay node deployment that places the relay
nodes in straight line to connect each source and the sink
separately. Our scheme also outperforms by 6 times than the
state-of-the-art algorithm considering connectivity only.

The remaining part of the paper proceeds as follows.
Section 2 presents the related work. We outline the system
models and the problem description in Section 3. Section 4
proposes solutions to several case studies which can be used as
building blocks for the general problem. In Section 5, we study
the general problem in-depth by first developing solutions in
continuous space and then focusing on discrete deployment.
We evaluate our solution by both numerical results and ns-2
simulations in Section 6. Finally Section 7 concludes our paper
and gives directions of future work.

2 BACKGROUND AND RELATED WORK

It is known that the energy of a sensor node is mainly con-
sumed by the wireless communication, which is proportional
to the data rate and the communication distance [6]. Since the
latter is adjustable, many studies have explored this property
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Fig. 1: An example of relay node deployment: (a) connectivity-only
scheme; (b) traffic-aware scheme. s1, s2 are sources with data rate
of 0.6 and 0.3. s0 is the sink. Given N relay nodes, by scheme (a)
which only considers connectivity, nodes relaying the traffic from v
to s0 will die much earlier than those relaying from s1 and s2 to v,
while by strategically deploying more nodes on section (v, s0) (from
less busy section (s2, v)), the network lifetime is prolonged.

to achieve topology control with given node deployment.
In [19], an optimization problem is formulated to minimize
the maximum power used for each individual node while
maintaining the network connectivity. There are many follow-
up efforts in this direction [22][11][12]. Another common goal
is power aware routing [21]. Given the traffic load, an integer
programming can be formulated to minimize the maximum
node energy consumption [4], where the data routes and the
corresponding power levels are identified. Followup studies
with different objectives or constraints can be found in [13][3].
They generally assumed that the network node deployment is
given, which often follows a random distribution.

Relay node deployment for WSNs has been studied in
various contexts [27][17][24][7]. The connectivity problem for
relay node deployment was first formulated in [14], and shown
to be NP-hard. An approximation algorithm was then proposed
based on steinerization, which assigns all relay nodes with
roughly the same distance on each edge. This problem was
generalized to k-connectivity in [2], which is also named as the
survivability problem for k ≥ 2. Later [17] further extended
the problem by considering the constraint that relay nodes
can only be placed at some given locations. On the other
hand, there are several works [24][7] explicitly considering
relay node placement to prolong network lifetime, e.g., [24]
focuses on massive random relay node deployment and [7]
stresses on using energy provisioning and giving each relay
node different energy budget to achieve better performance.
Our work, different from aforementioned, explicitly considers
the unique traffic pattern in WSNs for data collection.

3 PROBLEM STATEMENT

We consider a wireless sensor network that consists of source
nodes (or S-nodes in short) and relay nodes (or R-nodes in
short). S-nodes sense the ambient environment and forward
the data, through R-nodes, to a remote base station for further
processing. The locations of S-nodes and the base station are
given according to application requirements. The data rates of
S-nodes are also known, but may be different for different
S-node depending on the specific type of data sensed. In
addition, when aggregated together, these data rates would not
exceed the wireless communication capacity, i.e., there is no
bottleneck in the network.
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Fig. 2: An illustration of deployment for single
source single flow and its generalization.
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Fig. 3: An illustration of two deployment schemes
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Fig. 4: An example for multi-
source with multi-traffic flows.

Given these application-specific conditions, the network
lifetime thus closely depends on the geographical deploy-
ment of the R-nodes, as illustrated in Fig. 1. Let S =
{s1, s2, ..., sM} denote the set of locations of M S-nodes and
s0 be the location of the base station. Let the data rate from
si be γi. Define traffic path pi = x0x1 . . . xli as a sequence
of R-nodes which participate in relaying the traffic flow from
si. Similar to [24][7], we consider the problem how to deploy
a given number of R-nodes so as to maximize the network
lifetime, which is defined as the lifetime of the first depleted
relay node. The problem thus can be formulated as follows:

Traffic-Aware Deployment Problem: Given N , the to-
tal number of R-nodes to be deployed, where N ≥
M , find the geographical locations for R-nodes F =
{f1, f2, . . . , fN}, together with their respective communica-
tion ranges R = {r1, r2, . . . , rN} and traffic paths for S-nodes
P = {p1, p2, . . . , pM}, so as to minimize the energy consump-
tion of the R-nodes. Specifically, given that all the relay nodes
have the same residual energy initially, the network lifetime is
critically bounded by the nodes with the highest energy costs.
Thus we are interested in minimizing the maximum energy
consumption among the R-nodes, i.e.,

min max
1≤i≤N

∑

i∈pj ,j=1..M

γj [Erecv + Esend(ri)] .

Notice that the summation here indicates that an R-node
can undertake combined traffic flows of multiple sources
if it is chosen in these paths. For ease of exposition, we
summarize the notations used here and throughout the paper
in Appendix A. Denote Rmax is the maximum communica-
tion range of an R-node. The deployment should satisfy the
following constraints:
(1) Communication range,

∀r ∈ R, r ≤ Rmax;

(2) Forwarding path connectivity,

∀p = x0x1 . . . xl ∈ P, fxi−1fxi ≤ rxi−1 , i = 1 . . . l;

(3) S-nodes and sink connectivity,

∀s ∈ S, ∃p = x0x1 . . . xl ∈ P, fx0 = s, fxl
s0 ≤ rxl

.

To simplify exposition, we associate each S-node with an R-
node at the same location (as shown in Constraint 3), which
guarantees S-nodes are only involved in local short range
communications with marginal costs and the network lifetime

thus depends on R-nodes.
Our formulation is not restricted by specific energy models

for wireless communications. For illustration purpose, the
following popular energy consumption model for packet
transmission [18] will be used in this paper:

Esend(r) = arα + b ,

which can also be normalized as

Esend(r) = rα + c ,

where α is generally greater than 1 with typical values between
2 and 6, and c is a small constant comparing with rα. The
energy consumption for packet receiving is given by1

Erecv = c .

Finally, it is worth noting that our network model can be eas-
ily extended to a hierarchial structure where each S-node rep-
resents a cluster of geographically-close sources [7][20][23].
Our analysis and optimization below will still apply as long
as the many-to-one pattern holds and the inter-cluster commu-
nications dominate the energy consumption, which is the case
for most applications.

4 TRAFFIC-AWARE R-NODE DEPLOYMENT:
THE SINGLE SOURCE CASE

In this section, we study the relay deployment problem of two
basic cases with single source, and derive optimal solutions.
These results will serve as building blocks for solving the
general problem in the next section.

4.1 The Single Source Single Traffic Flow Case

We begin with the basic case of single source single traffic
flow. An illustration is shown in Fig. 2, where L is the distance
between the S-node s1 (with traffic rate γ1) and the sink s0.
We need to deploy N R-nodes between them. Obviously, N
should satisfy L

N ≤ Rmax for a feasible solution. Let the
distance between the i-th R-node and its next R-node/sink be
ri, i = 1, . . . , N , the energy cost for the i-th R-node is

γ1[Erecv + Esend(ri)] = 2γ1c + γ1r
α
i .

1. In the communication model, c is a small constant to represent the basic
costs when the transceiver circuit works. Since receiving does not include the
extra costs of generating signals that travel distantly, Erecv is thus set to c.
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Since
∑N

i=1 ri = L, it is easy to see that the solution to
minmax1≤i≤N (2γ1c + γ1r

α
i ) is ri = L

N , for i = 1, 2, . . . , N ,
and the minimum of the maximum energy consumption among
the R-nodes is 2γ1c+ γ1( L

N )α. This result can be generalized
as follows:

Theorem 1: The optimal solution for single source single
traffic flow is to start from the source and evenly deploy the
R-nodes with an in-between distance of L

N . The energy con-
sumption for each R-node is Esingle(L,N, γ) = γ[2c+( L

N )α].
Proof: A detailed proof can be found in Appendix B.

4.2 The Single Source Multi Traffic Flow Case
Next, we consider the case where multiple traffic flows arrive
at one location and need to be relayed to another. Given N
R-nodes and K traffic flows, we need to decide whether to
merge these flows or to relay them separately by assigning ni

R-nodes to the i-th flow, as long as
∑K

i=1 ni = N . We first
consider the case of two flows, which is illustrated in Fig. 3.

If the traffic flows are relayed separately, according to
Theorem 1, the energy consumption of one R-node for the
i-th traffic flow is Esingle(L, ni, γi), for i = 1, 2. Similar to
the idea used in the previous subsection, it is easy to see that
the R-nodes should be assigned such that

Esingle(L, n1, γ1) = Esingle(L, n2, γ2) .

Consequently,

γ1[2c + (
L

n1
)α] = γ2[2c + (

L

n2
)α] .

Typically, we have ( L
ni

)α À c [8] for i = 1, 2 and thus

γ1(
L

n1
)α ≈ γ2(

L

n2
)α ,

which follows
α
√

γ1L

n1
=

α
√

γ2L

n2
=

L( α
√

γ1 + α
√

γ2)
n1 + n2

=
L

N
( α
√

γ1 + α
√

γ2) .

We then have the energy consumption of an R-node as

Esepararte ≈ (
L

N
)α( α

√
γ1 + α

√
γ2)α .

On the other hand, if the traffic flows are merged, the energy
consumption of one R-node becomes

Emerge = Esingle(L,N, (γ1 + γ2)) ≈ (γ1 + γ2)(
L

N
)α .

Clearly, we have

Eseparate = (
L

N
)α( α

√
γ1 + α

√
γ2)α

≥ (
L

N
)α[( α

√
γ1)α + ( α

√
γ2)α] = Emerge ,

which shows that merging these two flows leads to the
minimum energy cost on an R-node. This result can be easily
generalized as follows:

Theorem 2: The optimal solution to single source multi
traffic flow is to merge all flows into one and apply the optimal
scheme of single source with single traffic flow.

Proof: A detailed proof can be found in Appendix B.

5 TRAFFIC-AWARE R-NODE DEPLOYMENT:
THE GENERAL CASE

We now address the general form of the deployment problem,
i.e., the multi source multi traffic flow case.

5.1 Theoretical Solution in Continuous Space

We first translate it into a graph equivalence. Define directed
graph G = (V,E), where V = {v0, v1, . . . , vM , vM+1, . . .},
E = {e1, e2, . . .}. Let vi = si for i = 0, 1, . . . , M . Here,
vertices vj , j ≥ M + 1, are called merge vertices whose
function will be explained later. Let e1, e2, . . . denote the edges
that connect the vertices in V , where traffic flows can only pass
an edge along its direction. The choice of vj , j ≥ M + 1 and
ei are to be determined later. Let λei

be the sum of average
data rates of the traffic flows passing through edge ei. Let
Lei

be the length of the edge ei, nei
be the number of the

R-nodes assigned on edge ei and Eei
be the maximum energy

consumption of an R-node on edge ei.
As an example, Fig. 4 shows a simple case of two sources

s1 and s2 with the base station s0. By definition, we have v0 =
s0, v1 = s1 and v2 = s2. Apparently, one deployment strategy
is to place the R-nodes along e1 and e2, and the traffic flows
can then be relayed to s0 along these two edges separately.
Alternatively, we can also find a merge vertex v3 and deploy
R-nodes along e′1, e′2 and e′3; the traffic flows then can be
relayed from s1 and s2 via e′1 and e′2, merged at v3, and arrive
at s0 via e′3. Surely there can be other relay node deployment
schemes with merge vertices being placed at different locations
or using different graph topologies, but the network lifetime
of each scheme is always bounded by the edge containing the
R-node with the maximum energy cost. Note that each edge
is directed from a start point to an end point, which is exactly
the cases we have discussed in last section. Thus depending
on whether one or multiple flows are relayed by an edge, we
can apply Theorems 1 or 2 and have

Eei = Esingle(Lei , nei , λei) = λei [2c+(
Lei

nei

)α] ≈ λei(
Lei

nei

)α.

To achieve minmaxei∈E Eei , we need Ee1 = Ee2 = . . .,
which follows

α
√

λe1Le1

ne1

=
α
√

λe2Le2

ne2

= . . . =

∑
ei∈E ( α

√
λeiLei)∑

ei∈E ni
(1)

Given that
∑

ei∈E ni = N , the remaining task thus be-
comes finding the appropriate graph topology that achieves
min

∑
ei∈E ( α

√
λeiLei). Once found, the edge directions and

data rates can be easily determined2. The R-node number on
each edge can be computed by Eq. (1) and the deployment then
follows Theorem 1. We thus have the following observation:

Observation 1: The optimal solution to the general problem
of multi source multi traffic flow is equivalent to minimizing
the total weighted length of the edges that connect all the
sources and the sink (allowing a set of merge vertices), where
the weight on an edge ei is α

√
λei .

2. A detailed discussion on deriving the optimal edge directions and data
rates of a given graph toplogy can be found in [25]
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Algorithm RnodeAssignment()
1: for ei ∈ E, do nei ← 1; N ← N − |E|;
2: while N > 0, do
3: find ei ∈ E such that ei has the largest energy

cost Eei = Esingle(Lei , nei , λei);
4: nei ← nei + 1; N ← N − 1;
5: end while;
6: return nei for all ei ∈ E;

Fig. 5: The algorithm for discrete R-node assignment on edges.

The above problem is a generalized version of the Euclidian
Steiner Minimum Tree problem3, which is NP-hard [26]. A
heuristic is proposed in [25], which first constructs a graph
topology by adding non-merge vertices one by one and then
use a backtrack algorithm to optimize each size-5 component
on the constructed graph topology. In the construction, non-
merge vertices can be added by two ordering schemes: 1)
Min-Min, where each added vertex minimizes the increased
total weighted edge length (similar to the minimum spanning
tree construction, but complicated due to creating a merge
vertex at each step), and 2) Max-Min, where each added
vertex maximizes the minimum of the increased total weighted
edge length. For each of the orderings an algorithm has been
designed [25]. Unfortunately, no bounds were found for these
two algorithms, and when M increases over 10, either one
may return sub-optimal results.

Interestingly enough, our analysis shows that the sub-
optimal results by different orderings are often stuck at differ-
ent local optimums, even though they are designed to avoid
being stuck too early before the size-5 component optimization
stage. This motivates us to implement a hybrid algorithm
that uses both orderings complementarily to bypass local
optimums. Specifically, we start by adding non-merge vertices
in one ordering, then switch to the other after k vertices
have been added, where k is enumerated from 1 to M − 1.
Appendix C shows the details of the hybrid algorithm. During
our performance evaluation, we find that this hybrid algorithm
successfully returns optimal results on all those test cases
(M ≤ 15) that can be verified within acceptable timeframes.

5.2 Practical Solution on Discrete Node Deployment
So far we have a solution for finding the graph topology,
i.e., the location of the merge vertices, which minimize the
maximum energy cost on an R-node. However, directly solving
Eq. (1) may yield a fractional number of R-nodes being
assigned to an edge. Our experience shows that a naive
rounding to the closest integers can suffer from up to 40%
performance degradation. To build a practical solution, in this
section, we develop algorithms for optimal discrete R-node
assignment and merge vertices adjustments.

3. Note that although the edge weights are determined by the interconnec-
tion of the graph topology, the graph topology and the edge lengths are in turn
determined by the locations of the merge points, which may be chosen from
anywhere within the sensing field. In particular, our problem is exactly like
the Euclidean Steiner tree problem, where the locations of the Steiner points
have to be first chosen from the continuous plane, and then the edge weights
(i.e. the length of the edge in the case of the Euclidean Steiner tree problem)
can be determined. It is different from the Steiner tree problem, where all
possible discrete locations of Steiner points have been given and the problem
is to determine the interconnection network/tree topology that may use some
of these given discrete locations.

5.2.1 Optimal Discrete R-node Assignment
We develop a greedy algorithm (see Fig. 5) for the discrete R-
node assignment problem, which assign each edge an integer
number of R-nodes. It starts from the assignment with one
R-node on each edge (line 1), which by Theorem 1, should
be placed at the start point of each edge. Then we add other
R-nodes one by one to the edge with the maximum energy
consumption (line 3-4). This algorithm is optimal, as shown
by the following:

Theorem 3: Given the graph topology and any feasible R-
node number, the RnodeAssignment() algorithm generates the
optimal R-node assignment to the edges of the given graph
topology such that the maximum energy costs among the edges
are minimized.

Proof: A detailed proof can be found in Appendix B.

5.2.2 Merge Vertex Adjustment
Next we adjust the merge vertices to further balance the energy
consumption among different edges. For example, if there is
an edge that is short enough; then even deploying one R-node
can lead to waste, i.e., when the network gets depleted, the
residual energy of this R-node is still high. To this end, we
develop two algorithms to balance the energy consumption on
different edge and avoid such situations. We omit their details
here due to space limitation. A full description of these two
algorithms can be found in Appendix D.

In next section, we will show that our solution, which
considers both theoretical optimality and practical issues,
has achieved excellent performance with good efficiency and
balanced energy consumption.

6 PERFORMANCE EVALUATION

We evaluate our solution by both numerical analysis and ns-2
simulations. In this section, we present the numerical analysis
and leave the ns-2 simulations in Appendix F. We adopt
similar configurations from [9][27][17] in our evaluation.
Specifically, we deploy 5 to 25 S-nodes by uniform distribution
in a field of 5000m× 5000m with the sink positioned at the
center. The normalized data rate of each S-node is randomly
picked from (0, 1]. For each number of S-nodes, 10 topologies
are generated. Each point in the figures thus represents the
average with an error bar showing the standard deviation.

For comparison, we implemented three other approaches,
namely Direct-Connection, Connectivity-Only and Half-
Traffic-Aware. Direct-Connection connects each S-node with
the sink by a dedicated data path (an edge) where R-nodes
are deployed by our algorithm in Section 5.2. It is the
most straightforward approach and serves as a base-line.
Connectivity-Only is chosen from a series of state-of-the-
art schemes proposed in [15][27], which optimize the sys-
tem performance by considering connectivity only. For better
performance, we use the 1-connectivity version (i.e., there is
at least one data path from each S-node to the sink) and
further enhance it with a better approximation for Euclidean
steiner minimum tree [25] (instead of minimum spanning
tree) to construct the graph topology. The Half-Traffic-Aware
approach uses the same graph topology as Connectivity-Only
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(d) Full-Traffic-Aware

Fig. 6: An illustration of different deployment approaches and their residual energy distributions at the end of the network lifetime of each
approach. The sink is denoted by the small square at the center. S-nodes are denoted by small circles. R-nodes are denoted by small diamond
dots. Each approach uses the same number of R-nodes (230). Residual energy is demonstrated in different color scale, where redder and
darker color denotes higher residual energy while greener and lighter color denotes lower residual energy. A color scale reference is shown
at the bottom right corner of each deployment.

but assigns R-nodes by our algorithm proposed in Section 5.2.
It is used as a reference to help understand the impacts of the
graph topology (by comparing with our solution) as well as
the discrete R-node assignment algorithm (by comparing with
Connectivity-Only). Fig. 6 illustrates how the three approaches
and our solution deploy R-nodes by a test case of 15 S-nodes in
our evaluation. Our solution is labeled by Full-Traffic-Aware.

Three metrics are used for evaluation. The first one is the
network lifetime, defined as the lifetime of the first depleted R-
node. In practice, this usually requests to dispatch a technician
to replace the battery of this R-node. As sending a technician is
costly, it is usually preferred that all the batteries are replaced.
Thus, the first depleted node can serve as a good indicator
for the end of the network lifetime. The second metric is
the residual energy, defined as the residual energy of all R-
nodes at the end of the network lifetime. Since all batteries are
expected to be replaced at the same time, lower residual energy
indicates less energy wastes on the removed batteries. The
third metric is the energy efficiency, defined as the amount of
traffic relayed to the sink by per unit energy cost. We consider
this metric on purpose as we want to evaluate whether our
solution extends the network lifetime at the expense of energy
inefficiencies, as the phenomenon discussed in [18].

We set α = 4 [18] and Rmax = 500m. The initial energy
for each node is set to E = Tmin · 108, where Tmin is the
minimum network lifetime requested by the application and
is set to 1000. The formulas used for our numerical analysis
can be found in Appendix E. In the following subsections, we
investigate the impacts of different number of R-nodes and
S-nodes, respectively.

6.1 Impact of R-node Number Selection
We first set the number of S-node to 25 and compute the
numerical results to analyze how the performance of different
solutions changes with the number of R-nodes. Given that the
field is 5000m× 5000m with Rmax = 500m, for the Direct-
Connection scheme, the average of the minimum integer
number of R-nodes required to work properly (i.e., at least the
basic connectivity is guaranteed) is 100 with the upper bound
of the minimum integer number as high as 200 (i.e., averagely
around 4 R-nodes and maximally 8 R-nodes for one S-node).
As will be discussed later that Direct-Connection always needs

a higher minimum number of R-nodes than other schemes, the
numerical analysis is thus set to start from 200 R-nodes, with
the range from 200 to 500.

Fig. 7 shows the results of the network lifetime with
different number of R-nodes. Interestingly enough, when the
number of R-nodes is equal to or greater than 250, the trends
of all solutions keep quite steady and are not very sensitive
to the changes of the R-node number (note the results are
normalized by the Direct-Connection scheme, which flattens
the slope of each solution). On the other hand, when the
number of R-nodes is less than 250, the performance of Full-
Traffic-Aware and Half-Traffic-Aware seem to drop a little. To
investigate how these two schemes perform when the number
of R-nodes is more comparable to the number of S-nodes,
we temporarily relax the communication range constraint for
Direct-Connection and further conduct numerical analysis with
the number of R-nodes ranged from 80 to 200. The results
are shown in Fig. 8. It can be seen that there are some small
fluctuations in the figure. This is because as the number of R-
nodes decreases, the marginal effects of the random topology
variations and that only an integer number of R-nodes can
be used on each edge of a graph topology may become
more observable. Even though, the trends of Full-Traffic-
Aware and Half-Traffic-Aware are still relatively stable with
the performance only slightly decreased. Also, in Figs. 7 and 8,
while Half-Traffic-Aware performs roughly up to 11 times
of Direct-Connection and 5 times of Connectivity-Only, Full-
Traffic-Aware further raises the gain up to 15 times and 7
times, respectively, which is 40% higher than Half-Traffic-
Aware. This demonstrates the importance of considering the
traffic patterns during both graph topology selection (finding
merge vertices) and node deployment stages (discrete R-node
assignment and merge vertex adjustments).

Fig. 9 shows the results of the total residual energy with
different number of R-nodes (note the value is the lower the
better). It is not surprising that the Direct-Connection, Half-
Traffic-Aware and our Full-Traffic-Aware solution have much
less total residual energy than Connectivity-Only, since the
energy consumption of the former three schemes is more
balanced by assigning more R-nodes to the edges with higher
traffic volumes. This also explains that the residual energy
of Connectivity-Only increases much faster than the other
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Fig. 7: Normalized network life-
time with different number of R-
nodes by numerical analysis.
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Fig. 8: Normalized network life-
time with the number of R-nodes
≤ 200 by numerical analysis.
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Fig. 9: Normalized residual en-
ergy with different number of R-
nodes by numerical analysis.
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Fig. 10: Normalized energy ef-
ficiency with different number of
R-nodes by numerical analysis.
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Fig. 11: Normalized network
lifetime with different number of
S-nodes by numerical analysis.
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Fig. 12: Normalized residual
energy with different number of
S-nodes by numerical analysis.
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Fig. 13: Normalized energy ef-
ficiency with different number of
S-nodes by numerical analysis.

three solutions. In addition, as Half-Traffic-Aware uses traffic-
blind graph topologies as Connectivity-Only, it runs the second
higher. This also matches the residual energy distributions
illustrated in Fig. 6, where Direct-Connection and our solution
have more balanced distributions than Half-Traffic-Aware.

Fig. 10 shows the energy efficiencies of different deploy-
ment strategies with different number of R-nodes. It follows
a similar trend to the network lifetime with one exception
that Connectivity-Only has much better energy efficiency than
Direct-Connection. This is because for the Connectivity-Only,
most of R-nodes have not yet spent much energy when the
first R-node dies. Nevertheless, our Full-Traffic-Aware solution
delivers about 15 times of the traffic than Direct-Connection
with the same mount of energy consumed, which shows that
the extension of the network lifetime by our solution is not at
the expense of energy inefficiencies.

It is worth noting that while selecting different R-node
number has only marginal impacts on the performance com-
parison, there does exist a minimum requirement on R-node
number to guarantee the WSN system working well. The
required minimum R-node number varies with the given S-
node number, their locations and data rates, and the used
deployment strategy. During our numerical analysis, we find
that the Direct-Connection scheme always needs a higher
minimum R-node number than the other three schemes. We
thus derive an upper bound on the minimum R-node number
required by Direct-Connection for a given S-node number and
their locations and data rates (see Appendix E). We compute
this bound for each test case and use the results as the default
R-node number in the remaining of this section.

6.2 Scalability with S-node Number
We next investigate how our solution performs with different
number of S-nodes. We also compute the results of the

theoretical solution by Eq. 1 proposed in Section 5.1, which
serve as a bound to evaluate our practical solution on discrete
R-node deployment. It is also worth noting that for all test
cases (M ≤ 15) that can be verified within acceptable
timeframes, our hybrid algorithm successfully returns optimal
graph topologies. In these cases the theoretical solution actu-
ally serves as the upper bound of the optimal solution.

Fig. 11 shows the results of the network lifetime with
different number of S-nodes. It is clear to see that our Full-
Traffic-Aware scheme is very close to the theoretical solution
with the difference less than 13.5%, and it performs much
better than the other solutions. As the number of S-nodes
increases, the lifetime of both Half- and Full-Traffic-Aware in-
crease faster and is much higher than that of Direct-Connection
and Connectivity-Only. One interesting observation is that
the lifetime of Connectivity-Only first rises and then drops
slightly. A close investigation reveals the reason behind is that
the energy hole phenomenon [18] becomes more significant
when the number of S-nodes increases. Fig. 6 shows the
residual energy distributions of four deployment strategies on
a test case of 15 S-nodes used in our evaluation. The energy
hole problem can be clearly seen in Fig. 6b, where R-nodes
close to the sink are depleted while most of other R-nodes
still have more than 75% of the energy. As the number of S-
nodes increases, more traffic will accumulate close to the sink.
This dramatically reduces the lifetime if the deployment is not
aware of such traffic accumulations, e.g., the Connectivity-
Only scheme. On the other hand, the other two schemes
and our solution successfully avoid this problem by using
algorithms that result in deploying more R-nodes close to the
sink, as illustrated in Fig. 6a, Fig. 6c and Fig. 6d. In addition,
there are still several edges with the residual energy more than
50% of the initial energy in Fig. 6c. This is because Half-
Traffic-Aware uses the same graph topology as Connectivity-
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Only, which is computed without traffic-awareness.
Fig. 12 shows the results of the total residual energy with

different number of S-nodes. As the number of S-nodes
increases, all the five schemes follow a similar trend and
are not very sensitive to the S-node number. As expected,
the theoretical solution has the lowest residual energy, which
is followed by Direct-Connection and our Full-Traffic-Aware
solution. Half-Traffic-Aware runs the forth due to its traffic-
blind graph topology selection and Connectivity-Only per-
forms even worse due to lacking of traffic-awareness in both
graph topology selection and node deployment stages.

Fig. 13 shows the energy efficiencies of different deploy-
ment strategies with different number of S-nodes. As in
the analysis on the impact of different R-node number, the
energy efficiency also follows a similar trend to the network
lifetime with the exception that Connectivity-Only has much
better energy efficiency than Direct-Connection. Besides, our
Full-Traffic-Aware solution performs almost the same as the
theoretical solution.

7 CONCLUSION AND FUTURE WORK

In this paper, we presented an in-depth study on the traffic-
aware relay node deployment problem. We developed optimal
solutions for the case of one source node, both with single and
multiple traffic flows. We showed however that the general
problem is difficult, and existing connectivity-guaranteed only
solutions cannot be directly applied here. We then transformed
our problem into a generalized version of the Euclidean Steiner
Minimum Tree problem (ESMT) and proposed a hybrid algo-
rithm. To further improve the performance, we also developed
algorithms for discrete relay node assignment and further
adjustments. We evaluated our solution by both numerical
results and ns-2 simulations and observed that for all test cases
where the continuous space optimal solution can be computed
within acceptable timeframes, our solution is very close to the
upper bound of the optimal solution. Moreover, our solution
has an up to 14 and 6 times of improvement of the network
lifetime than the Direct-Connection scheme and a state-of-the-
art Connectivity-Only algorithm, respectively.

Next, we would like to conduct some real experiments to
evaluate our traffic-aware strategy. We also plan to consider
more practical issues, especially deployment in 3-D space
like a building, and deployment where R-nodes can only be
placed within some feasible areas. We are also interested
in investigating solutions of exploiting multiple base stations
when the total traffic amount exceeds the capacity of one base
station. Yet another direction is to consider survivability within
our design to support fault-tolerance.
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APPENDIX A
LIST OF NOTATIONS

Notation Description
M Number of given S-nodes.
N Number of given R-nodes.

Rmax Maximum communication range of R-nodes.
α Exponent parameter in communication

model.
c Small constant specified by physical features

of transceiver in communication model.
s0 Location of remote data sink.
si Location of S-node i.
γi Average data rate of S-node i.
fi Location of R-node i.
xy Distance between node x and y.
ri Communication range of R-node i.

Esubscript Energy cost of an R-node under the situation
described by the subscript.

V Vertex set in constructed graph G(V, E).
E Edge set in constructed graph G(V,E).
vi Vertex i in V . vi = si for 0 ≤ i ≤ M ;

otherwise vi is a merge vertex.
ei Edge i in E, which is directed and traffic

flows can only pass it following its direction.
Lei Length of ei.
λei Total data rate of traffic flows passing ei.
nei

Number of R-nodes assigned on ei.
Eei Maximum energy cost of one R-node on ei.
E Initial energy budget on one R-node.
T Network lifetime.

APPENDIX B
PROOFS OF THEOREMS

B.1 Proof of Theorem 1
Theorem 1: The optimal solution for single source single

traffic flow is to start from the source and evenly deploy the
R-nodes with an in-between distance of L

N . The energy con-
sumption for each R-node is Esingle(L,N, γ) = γ[2c+( L

N )α].
Proof: It is easy to prove the theorem by contradiction.

Assume in the optimal solution, ∃ri 6= L
N , then there must

exist one, say rj , which is greater than L
N . Then for this

R-node, its energy cost is greater than the one given by
the theorem, which contradicts with the assumption at the
beginning and thus proves the theorem.

B.2 Proof of Theorem 2
Theorem 2: The optimal solution to single source multi

traffic flow is to merge all flows into one and apply the optimal
scheme of single source with single traffic flow.

Proof: By the discussion in Section 4.2, the situations for
two traffic flows that either merge or separate completely have
been proved.

For other situations of two traffic flows (i.e., two flows
partially merge/seperate), the theorem can be proved by
contradiction. Assume that the optimal solution better than
merging two flows completely exists. Then it is easy to divide

the whole flow paths into segments such that within any
segment, the two flows either completely merge or separate.
By the proof for the situations of completely merging or
separating, in each segment where the two flows separate
completely, the two flows can be merged together without
sacrificing the network lifetime until the two flows in all
segments are merged completely. This contradicts with that
the assumed optimal solution is better than merging two flows
completely and completes the proof for two traffic flows.

For the case of K traffic flows, the proof can be done
by complete induction. The basic case is two traffic flows,
which has been proved above. For the advance case of K
flows, we assume that the theorem holds for all cases from
2 to K − 1 flows and show it also holds for the case of
K flows. The proof is similar to the proof of the two-flow
case. First, it is easy to prove that merging all K traffic flows
completely is better than leaving them completely separated.
For the remaining situations, we use contradiction and assume
the optimal solution better than merging K flows completely
exists. Then it is easy to divide the whole flow paths into
segments such that within any segment, each pair of flows are
either completely merged or separated. Now in every section,
we consider each pair of completely merged flows as one
new flow until all remaining flows are completely separated.
Clearly the resulting flows in each section can be merged into
one without sacrificing the network lifetime (either due to
induction hypothesis or previously proved that merging all K
traffic flows completely is better than leaving them completely
separated) until all sections have only one flow left. This
contradicts with that the assumed optimal solution is better
than merging K flows completely and finishes the proof for
the theorem.

It is worth noting that Theorem 2 and its proof also indicate
that in the optimal solution, there is no need to split one
single flow into multiple flows, since as shown in the proof of
Theorem 2, merging the (split) multiple flows back into one
flow achieves the optimal result.

B.3 Proof of Theorem 3

Theorem 3: Given the graph topology and any feasible R-
node number, the RnodeAssignment() algorithm generates the
optimal R-node assignment to the edges of the given graph
topology such that the maximum energy costs among the edges
are minimized.

Proof: We prove it by induction on the number of given
R-nodes N . For basic case, we have N = |E|. The optimal
and only feasible assignment is nei = 1 for all ei ∈ E.

Now we assume that the assignment achieved by our algo-
rithm is optimal for case N = k with k ≥ |E| and consider
case N = k + 1. We show the optimality by contradiction.

Assume that there is a better assignment which has lower
maximum energy cost among the edges than our assignment.
Let ei be the edge that has the maximum energy cost in our
assignment, and ej be the edge that has the maximum energy
cost in the new optimal assignment. We add a “′” on the
notations used for the new optimal assignment. Then we have
Eei > E′ej

≥ E′ei
, which follows nei < n′ei

. This means that
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Fig. 14: An illustration of different orderings and 5-optimization used in the hybrid algorithm. The sink is denoted by the small square at
the center. S-nodes are denoted by small circles. Merge vertices are denoted by small stars. (a) shows the input of the illustration, where the
numerical label beside each S-node shows the data rate. (b) shows the first three steps by using Min-Min ordering, where the digit beside an
S-node shows in which step the node is added. (c) shows the first three steps by using Max-Min ordering, where the digit beside an S-node
shows in which step the node is added. (d) shows the pattern of the size-5 component used for optimization. (e) shows an intermediate graph
topology before a 5-optimization and (f) shows the result after the 5-optimization, where the positions of x, y and z have been optimized
within the size-5 component.

to make our assignment optimal, at least 1 R-node need to be
moved from some other edge, say ex to ei while still keeping
E−ex

≤ E′ej
< Eei . Note we use “E−/E+” to denote the energy

cost after an R-node is removed/added.
Now we consider by our R-node assignment algorithm,

which edge has been assigned the (k + 1)-th R-node from
case N = k to case N = k +1. We argue it must be ei under
the above situation. Otherwise, if it is some edge ey other than
ei, then instead of adding the (k +1)-th R-node to ey , we can
move the extra R-node from ex to ey . By doing this, ei now
have the maximum energy cost other than ey for case N = k
(note Eei > E−ex

and Eei ≥ E+
ey

due to case N = k+1), which
means case N = k can be further improved and contradicts
with that case N = k is optimal. Thus the (k + 1)-th R-
node must be assigned to ei. However, if now we move the
extra R-node from ex to ei instead of assigning the (k +1)-th
R-node, we get a better assignment for case N = k which
also contradicts with that case N = k is optimal. This shows
the assumption that an assignment better than ours for case
N = k + 1 exists is not correct. And together with the basic
case, the theorem is proved.

APPENDIX C
HYBRID ALGORITHM FOR GRAPH TOPOLOGY
MINIMIZING TOTAL WEIGHTED EDGE LENGTH

Our hybrid algorithm for computing the graph topology that
minimizes the total weighted edge length is based on con-

ducting 5-optimization with size-5 component. Fig. 14 shows
an example of the size-5 component and how to use it for
5-optimization. The size-5 component is a steiner-tree-like
structure containing 5 outer vertices (a, b, c, d and e as
illustrated in Fig. 14) and 3 inner vertices (x, y and z as
illustrated in Fig. 14). During a 5-optimization, the pattern
of the size-5 component is matched iteratively on a graph
topology and the 3 inner vertices are optimized within the
component as they are merge vertices while 4 of the 5 outer
vertices are deemed as non-merge vertices with the remaining
one serving as the sink. Fig. 15 shows our hybrid algorithm
that uses both Min-Min and Max-Min orderings (see Fig. 14b
and Fig. 14c) complementarily to bypass local optimums and
minimizes the total weighted edge length.

APPENDIX D
MERGE VERTEX ADJUSTMENT ALGORITHMS

We also adjust the merge vertices to further balance the energy
consumption among different edges. For example, if there is
an edge that is short enough; then even deploying one R-node
can lead to waste, i.e., when the network gets depleted, the
residual energy of this R-node is still high. To this end, we
develop two algorithms to balance the energy consumption on
different edge and avoid such situations.

EnergyBalance() (Fig. 16) proceeds iteratively (the while
loop) to balance energy consumption among edges connecting
to each merge vertex. In each iteration (the for loop), it tries
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Algorithm MinWeightedLength()
1: Lmin ←∞;
2: V+ ← {v0}; E+ ← {}; V− ← {v0}; E− ← {};
3: for k = 1 . . . M − 1, do
4: for i = 1 . . . M , do
5: if i ≤ k,
6: update V+, E+ by adding one non-merge

vertex that minimizes the increased total
weighted length;

7: update V−, E− by adding one non-merge
vertex that maximizes the minimum
increased total weighted length;

8: else
9: update V+, E+ by adding one non-merge

vertex that maximizes the minimum
increased total weighted length;

10: update V−, E− by adding one non-merge
vertex that minimizes the increased total
weighted length;

11: end if
12: end for
13: conduct 5-optimization on (V+, E+) with each

size-5 component;
14: if the total weighted length < Lmin,
15: Lmin ← the total weighted length;
16: Vmin ← V+; Emin ← E+;
17: end if
18: conduct 5-optimization on (V−, E−) with each

size-5 component;
19: if the total weighted length < Lmin,
20: Lmin ← the total weighted length;
21: Vmin ← V−; Emin ← E−;
22: end if
23: end for
24: return Vmin and Emin;

Fig. 15: The hybrid algorithm for computing the graph topology that
minimizes the total weighted edge length.

to adjust the location of a merge vertex v by solving equations

λe1(
v1v

ne1

)α = λe2(
v2v

ne2

)α = λe3(
v3v

ne3

)α ,

where e1 = (v, v1), e2 = (v, v2) and e3 = (v, v3). It is
possible that v has more than three edges connecting to it.
In this case, we explore all 3-combinations that contain the
edge with the maximum energy consumption, and use the
solution that minimizes the maximum energy consumption
among these edges. Note that |E| is bounded by (2×M − 1)
[25], thus the computation complexity is polynomial and our
experience shows that the algorithm is fast in practice.

AdjustMergeVertex() (Fig. 17) takes the graph topology
generated by the theoretical solution as an input. It first assigns
R-nodes and does energy balancing (line 1-3). Then in each
iteration (the while loop), it tries to combine each merge vertex
with its closest vertex and keeps the combination that yields
the largest reduction on the maximum energy cost among
edges. Also during each try, it reassigns R-nodes and re-
balance the energy consumption globally (line 9-10), so as
to bypass local optimums.

APPENDIX E
FORMULAS FOR NUMERICAL ANALYSIS
Given a practical solution with the graph topology and the
number of R-nodes on each edge, the network lifetime can be

Algorithm EnergyBalance()
1: Vmin ← V ; Emin ← maxei∈E Eei ;
2: while true, do
3: for each merge vertex v ∈ V , do
4: adjust v so as to balance Eei among all ei

connecting to v;
5: end for
6: if maxei∈E Eei < Emin,
7: Vmin ← V ; Emin ← maxei∈E Eei ;
8: else break;
9: end while;
10: return Vmin;

Fig. 16: The algorithm for balancing energy consumption among
different edges.

Algorithm AdjustMergeVertex()
1: nei , ei ∈ E ← RnodeAssignment();
2: Vmin ← EnergyBalance();
3: Emin ← E; Emin ← maxei∈E Eei ;
4: while true, do
5: Vtemp ← Vmin; Etemp ← Emin; Etemp ← Emin;
6: for each merge vertex v ∈ Vmin, do
7 : V ← Vmin; E ← Emin;
8: combine v with closest vertex for V and E;
9: nei , ei ∈ E ← RnodeAssignment();
10: V ← EnergyBalance();
11: if maxei∈E Eei < Etemp,
12: Vtemp ← V ; Etemp ← E;
13: Etemp ← maxei∈E Eei ;
14: end if
15: end for
16: if Etemp < Emin,
17: Vmin ← Vtemp; Emin ← Etemp; Emin ← Etemp;
18: else break;
19: end while;
20: return Vmin and Emin;

Fig. 17: The algorithm for merge vertex adjustment.

estimated as4

T = min
ei∈E

E
λei · (Lei

nei
)α

.

The total residual energy is

Eresidual =
∑

ei∈E

(
E− λei · (

Lei

nei

)α · T ) · nei .

And the energy efficiency is

T ·∑M
i=1 γi

N · E− Eresidual
=

∑M
i=1 γi∑

ei∈E λei · (Lei

nei
)α · nei

.

With the given parameter setting (the initial energy bud-
get E, required minimum network lifetime Tmin, maximum
communication range Rmax, the number of S-nodes M and
their locations si and data rates γi), the upper bound of the
minimum R-node number N for Direct-Connection can be

4. Following our analysis, we omit the small constant c here. In our ns-2
simulation, all the practical factors (e.g., c) are included.
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Fig. 18: Normalized network
lifetime with different number of
S-nodes by ns-2 simulations.
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Fig. 19: Normalized residual
energy with different number of
S-nodes by ns-2 simulations.
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Fig. 20: Normalized energy ef-
ficiency with different number of
S-nodes by ns-2 simulations.

derived by




( ∑M
i=1

α
√

γi · sis0

)
/N ≤ α

√
E

Tmin

ni =
⌈

N · α
√

γi · sis0∑M
j=1

α
√

γj · sis0

⌉

max
i=1...M

(
sis0

ni

)
≤ Rmax

N =
M∑

i=1

ni

APPENDIX F
SIMULATION RESULTS ON ns-2

To further evaluate our solution, we conducted extensive sim-
ulations on ns-2, which consider both sending and receiving
energy consumption, as well as wireless communication loss,
collisions and other practical issues. A simple protocol is
designed for data collection. The sink broadcasts a control
message to start data collection. Each S-node then senses
the environment at a predefined average rate and transmits
the sensed data. Data losses are handled by both end-to-end
and per-hop retransmissions. We modified the standard MAC
layer to support dynamically adjusting transmission range by
using different power. For consistency, we use the parameters
adopted from [18] as in previous sections, i.e., α = 4 and
c = 4500 for both sending and receiving.

Fig. 18, Fig. 19 and Fig. 20 show the results of network
lifetime, residual energy and energy efficiency with different

number of S-nodes, respectively. It is easy to see that our Full-
Traffic-Aware solution performs the best and achieves up to
7 times of the lifetime of Connectivity-Only and 15 times of
Direct-Connection when the number of S-nodes increases to
25. On the other hand, the residual energy of our Full-Traffic-
Aware solution stays almost as low as Direct-Connection
and is significantly less than the other two schemes, i.e.,
Connectivity-Only and Half-Traffic-Aware schemes. More-
over, Full-Traffic-Aware also has the best energy efficiency
and when the number of S-nodes achieves 25, the average
amount of traffic delivered by per unit energy cost through
our Full-Traffic-Aware solution is nearly 90% more than the
Connectivity-Only scheme and is about 15 times of the amount
through the Direct-Connection scheme.

Comparing with the results by numerical analysis, it is
easy to find that the simulation results match the numerical
analysis well, which validates the correctness and effectiveness
of our approach and analysis. By a careful comparison, we
find that the simulation results in general are slightly better
than those of the numerical analysis, where the results of the
total residual energy is the most obvious. A closer look reveals
that by the communication range control, the wireless losses
and collisions happen infrequently in all test cases. The only
hot-spot identified is the area closer to the sink in the Direct-
Connection scheme. Recall the example shown in Fig. 6a,
where the R-nodes in this area are very close to each other and
easy to cause collisions even under the communication range
control. This slightly degrades the performance of Direct-
Connection and also makes other schemes better after the
normalization.


