IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO.5, MAY 2008 1

A Dynamic Skip List-Based Overlay for
On-Demand Media Streaming with
VCR Interactions

Dan Wang, Student Member, IEEE, and Jiangchuan Liu, Member, IEEE

Abstract—Media distribution through application-layer overlay networks has received considerable attention recently, owing to its
flexibility and readily deployable nature. On-demand streaming with asynchronous requests and, in general, with VCR-like interactions
nevertheless remains a challenging task in overlay networks. In this paper, we introduce the Dynamic Skip List (DSL), a novel
randomized and distributed structure that inherently accommodates dynamic and asynchronous clients. We establish the theoretical
foundations of the DSL and demonstrate a practical DSL-based streaming overlay. In this overlay, the costs for typical operations,
including join, leave, fast-forward, rewind, and random seek, are all sublinear to the client population. The model also seamlessly
integrates a smart data scheduling algorithm using linear network coding, yielding fast and robust downloading from multiple suppliers.
Our simulation results show that the DSL-based overlay is highly scalable. It delivers reasonably smooth playback with diverse client
interactivities while keeping the computation and bandwidth overheads low.

Index Terms—Distributed systems, peer-to-peer networks, video on-demand streaming.

1 INTRODUCTION

HE widespread penetration of broadband access has

made the Internet of today a popular vehicle for real-
time media distribution. Scalable streaming to a large client
population, however, remains a challenging task due to
limited server capacity and, to date, weak IP multicast
support. Recently, overlay streaming has emerged as a
promising solution to this problem [4], [6]. In a peer-to-peer
overlay network, each node receives media data from
certain neighboring nodes; the data are cached in its local
buffer and then relayed to other neighbors, eventually
realizing a multicast distribution. All these operations are
implemented in the application layer, which means that the
system is highly flexible and readily deployable.

A key challenge in an overlay streaming system is to
construct a data distribution structure among the collabora-
tive nodes. This structure should be capable of accommodat-
ing the autonomous nodes thatjoin or leave the overlay at will
or even crash without notification. The problem is further
complicated when introducing on-demand playback re-
quests and, more general, such VCR interactions as pause/
resume, random seek, fast-forward, and rewind. These services,
though attractive to clients and content providers alike, call
for an additional indexing structure to locate the expected
data segments with asynchronous playback offsets. This is

e D. Wang is with the School of Computing Science, Simon Fraser
University, Burnaby, British Columbia, Canada, V5A 1S6 and the
Department of Computing, The Hong Kong Polytechnic University, Hung
Hom, Kowloon, Hong Kong. E-mail: danw@cs.sfu.ca.

o |. Liu is with the School of Computing Science, Simon Fraser University,
Burnaby, British Columbia, Canada, V5A 156. E-mail: jcliu@cs.sfu.ca.

Manuscript received 21 June 2006, revised 12 Apr. 2007; accepted 20 June
2007; published online 25 July 2008.

Recommended for acceptance by P. Mohapatra.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0163-0606.
Digital Object Identifier no. 10.1109/TPDS.2007.70748.

1045-9219/08/$25.00 © 2008 IEEE

difficult to achieve through a centralized entity, because VCR
operations are more frequently invoked than node joining or
leaving and often persist for a long duration. As a result, the
VCR operations have seldom been incorporated in existing
overlay streaming systems.

In summary, the on-demand streaming overlay is expect-
ing a distributed, scalable, and robust structure for asynchro-
nous client requests and VCR interactions. To this end, we
propose the Dynamic Skip List (DSL), a novel data structure
that effectively realizes the above demands. A DSL is a
randomized structure consisting of a set of layers. Each new
node, with its playback offset as a key, first joins a base layer
and then randomly and independently promotes itself to
upper layers. Logical links to its neighbors in each layer are set
up during this promotion process, which can then be used to
quickly locate nodes with the expected keys through a fast
skipping operation. We stress the following salient features of
a DSL: 1) its probabilistic nature eliminates costly rebalancing
operations after nodes join or leave, making it a highly
efficient and adaptive structure, 2) both the search cost and
the state information kept at a node are sublinear (constant or
logarithmic) to the DSL size, suggesting good scalability, and
3) its parallel logical links have inherent power to support
multipeer collaboration in an overlay network. We also
present a linear network-coding-based algorithm for data
scheduling, which yields optimal data downloading from the
multiple peers in the DSL.

We go on to demonstrate a practical overlay network
that seamlessly integrates indexing and data distribution
through a DSL and discuss the key issues involved in
realizing this DSL-based overlay. The performance of the
DSL-based streaming overlay has been examined under
different network and client configurations. The prelimin-
ary results show that it achieves a reasonably stable
streaming rate with a low control overhead. It scales well

Published by the IEEE Computer Society

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO.5,

and accommodates highly dynamic client behaviors with
limited buffer spaces. More importantly, it effectively
supports diverse VCR operations at reasonably low costs,
which is difficult to achieve in existing systems.

The remainder of this paper is organized as follows:
Section 2 presents the background of our work and reviews
the related work. The system model is described in
Section 3, together with an overview of the DSL. In
Section 4, we discuss the construction and maintenance of
the DSL-based overlay, as well as its support for VCR
operations. We further explore the multisupplier data
scheduling in Section 5. The performance of the DSL-based
streaming overlay is examined in Section 6. Section 7
concludes the paper and offers some future research
directions.

2 BACKGROUND AND RELATED WORK

Over the last decade, many proposals for multichannel on-
demand broadcasting have been put forward [17]. They
have explored the temporal locality of client requests,
allowing a media server to accommodate concurrent client
requests through batching, patching, or periodic broad-
casting. Although VCR interactions could be implemented
in some of these protocols, they will consume significant
server or network resources [2], [20], [21]. Moreover, these
protocols rely on underlying broadcast or multicast
channels, preferably in the network layer. The deployment
of IP multicast over the Internet, however, remains
restricted, due to a range of practical and political issues
such as the lack of incentives to carry multicast traffic.

Recently, application-layer solutions have received much
attention, owing to their readily deployable nature and the
massive buffering capacity at state-of-the-art personal
computers (PCs). Our work is partially motivated by the
studies on live media streaming through application-layer
overlay networks. Originating from IP multicast, the
proponents of such systems often advocate a tree structure
out of the overlay nodes; for example, NICE [4], SpreadIt
[9], and ZIGZAG [30]. Constructing and maintaining an
efficient distribution tree among the overlay nodes is a key
issue for these systems. To address the unbalanced load or
vulnerability of a tree, enhancements have also been
proposed. Examples of this include building a mesh-based
tree (Narada and its extensions [6] and Bullet [18]),
maintaining multiple distribution trees (Split-Stream [5])
or gossip partners (CoolStreaming [36]), and leveraging
layered coding (PALS [27]) or multiple-description coding
(CoopNet [24]). Our DSL-based overlay also supports
multipeer data downloading, yet our target is on-demand
streaming, which calls for different solutions for asynchro-
nous requests and more complex VCR operations.

Several pioneering works on peer-to-peer on-demand
streaming (for example, [8], [10], [12], and [15]) are closely
related to our proposal. In this scenario, the video data
provided by some seeding nodes are spread among nodes
of asynchronous demands, and one or more nodes can
collectively supply the buffered data to a new demand.
These systems do not rely on dedicated IP multicast
channels, and many of them do not maintain an explicit
structure among the autonomous nodes. The asynchronous

MAY 2008

requests are accommodated through a search in the initial
joining process, which can be time consuming. CollectCast
[15] and oStream [8] suggest using a centralized server to
record the playback progress of all the nodes. Although the
server is no longer required to distribute the video stream to
every client, the demand for it to maintain the indexing
information can still be high in a large overlay. It becomes a
bottleneck when frequent VCR operations are introduced.
To solve this problem, P2VoD [10] and TAG [37] logically
organize the nodes into a linear or tree structure. With the
playback offset being an indexing key, these structures
assist random seek in a distributed manner. However, a
linear structure is not capable of assisting asynchronous
accesses in sublinear time; on the other hand, a tree
structure requires complicated rebalancing operations after
client joining, leaving, or seeking. Moreover, neither of
them well supports fast-forward and rewind. These issues
are addressed in our proposed DSL structure.

Yin et al. [34] proposed TrustStream, a novel architecture
for secured media streaming distribution. Their main focus
is on preventing unauthorized clients from receiving the
media content. To address the scalability issue, they also
adopted a multilayered architecture, with cluster headers
being elected for a different layer. Content delivery for
cluster headers is based on a multicast tree, whereas peer-
to-peer content sharing is used within clusters. Our DSL
differs from TrustStream in that we focus on VCR
interactions in peer-to-peer media distribution, and the
layers in the DSL enable efficient jumping for such
interactions.

Finally, it is worth noting that the basic skip list and its
extensions have recently been applied to practical network
applications [3], [13]. Specifically, Harvey et al. [13] have
shown a scalable peer-to-peer network using SkipNet, a
generalization of the skip list. Their focus is mainly on file
indexing service, as well as content and path locality. The
objective and, hence, solutions are different from the on-
demand streaming applications targeted in our study.

3 DyNAmMIC SKIP LIST

We consider an overlay streaming system consisting of a
content server and a set of clients. Each client is an
application-layer overlay node with a size-limited buffer.
The media file in the server is partitioned into equal-length
segments and distributed to the clients upon demand. A
client node will cache the received data and may supply it
to other nodes from its local buffer. The clients can join or
leave the overlay at will; they could even crash without
notification. Their playback requests are generally asyn-
chronous with different starting offsets. In addition, various
VCR operations are to be supported, including pause and
resume, random seek, fast-forward, and rewind.

Given the data asynchronicity in the overlay, commu-
nications cannot be set up directly between any node pairs,
particularly considering the limited buffer size. A key
challenge is thus to construct a data distribution structure
that enables the clients to collaborate asynchronously. The
VCR interactions also call for an indexing structure so that a
client can efficiently locate suppliers of the expected data
segments.

WANG AND LIU: A DYNAMIC SKIP LIST-BASED OVERLAY FOR ON-DEMAND MEDIA STREAMING WITH VCR INTERACTIONS 3

TABLE 1
List of Notations

[[Notation [[Definition I

N Overlay size (number of clients)

L Top layer boundary

v Fast-forward or rewind speed

B Client buffer size

t Playback time of a data segment

T Connection time to another client

n Number of segments to be retrieve from a supplier

d Average difference of playback offsets between two clients
S Number of suppliers in multi-supplier scenario

b Available bandwidth of supplier j

C; Original data segments

fi Combined data segments using network coding

w The cardinality of f;

(the number of different original data segments it includes)

ms Number of segments retrieved from a supplier s

Bi Linear coding coefficient

q Finite field size

We now introduce the DSL, which enables both types of
function and effectively balances the speeds and costs. In
this section, we first establish the theoretical foundation of
the DSL; its use in the asynchronous streaming overlay will
be detailed in the following two sections. Some major
notations used in this paper are summarized in Table 1.

3.1 Overview of Skip List

We first give an overview of a basic skip list. A skip list is an
ordered list of keys with additional parallel links. The key in
a skip list can be any sortable property of an object, for
example, its time, size, or weight. Given that here, we are
interested in supporting VCR interactions in a VoD overlay,
the playback offset of each node is a natural choice for its
key. Assume that there are N keys in the list, indexed from
1to N. The (i x 2')th key, i = 1,2,---,1=0,1,---, will have
links to the ((i —1) x 2))th and the ((i + 1) x 2))th keys,
respectively. This translates to a layered structure, as shown
in Fig. 1, where the link distance between two neighboring
nodes in layer [is 2'.

In this layered representation, a single key in the list is
mapped into multiple logical nodes along the same column.
Since the parallel links in higher layers skip geometrically
more than those in lower layers, a key search can be started
from the highest layer so as to quickly skip unnecessary
parts and then progressively move to lower layers until it
hits a logical node having the key. The complexity of this
top-down search is O(log N) [25].

A skip list can also be constructed in a random fashion
[25]: each key is first inserted into the base layer (layer 0) and
then randomly promotes itself to the upper layer with
probability 1. If successful, the key will leave a logical node
copy in the previous layer and try to promote itself again in
the new layer until it fails or a MaxLayer is met. Assuming it
stops at layer [, it will then connect to all the neighbors from
layer 0 through layer [. It is known that in expectation, this
randomized version has the same search performance as the
deterministic version when the MaxLayer is set to log(NV).

3.2 Dynamic Skip List

Compared to other typical indexing structures such as an
AVL tree or a B+ tree, a randomized skip list is significantly

Fig. 1. A regular skip list of 16 nodes. The number in each node
represents the key of this node.

easier to implement and generally faster. More importantly,
its probabilistic nature eliminates the need for costly
rebalancing operations after each key insertion, making it
an attractive solution for distributed applications. Applying
the basic skip list in a streaming overlay with dynamic and
interactive clients, however, is not straightforward. First,
the number of keys in a skip list has to be predefined and so
does the value of the MaxLayer. Second, higher layer nodes
in a skip list often encounter significantly more hits than
others; for example, the highest layer node can be accessed
for each search operation and is thus vulnerable. Third, the
random promotion could generate unbalanced layers
(especially in the higher layers), which is to say, layers
with far more or less logical nodes than might be expected.
This greatly reduces the maintenance and search efficiency.

Our DSL addresses these limitations by allowing an
adaptive setting for the list size and effectively compressing
unbalanced layers. A DSL is built in a similar way to a
regular randomized skip list (RSL), but there is no
MaxLayer limit; a newly inserted key will stop promoting
itself only when it fails. As such, the size of the DSL does
not have to be predefined.

Lemma 1. Let Y; denote the number of logical nodes in layer I.
The expected number of logical nodes in layer I, E(Y)), is 3.

Proof. Let indicator random variable Y;' denote whether the
ith key has a corresponding logical node in layer [
According to the promotion process, we have Pr[Y; =

1] =4 and Pr[Y/ =0] =1 — . It follows that
. 1 1 1
and, hence, B(Y}) = Y1, B(Y]) = . O

Lemma 2. For all layers | < L, the probability for Y, <
EY) x (1=%) is OF), and Y, > E(Y)) x (1+4) is
O(%)ﬁ, where L = log(ﬁ), C is a positive constant,
e = (&)’ log, 2, and e+ = (1)’ log, 4.

Proof. From Chernoff’s Inequality [23], we have

1 ,
Pr [Yl < E(Y)) x (1 - E)} < e POV,

In layer L, since E(Y,) = 2 = log N, we have

(12 _
2 1\ o) loe2 1\
o~ EOLG? _ - los NG _ N) :O<N) _

The case for ¥;> E(Y)) x (1+4) can be proved
similarly. O

H @) f
: ® d
Top Layer
D 2; . 90 D
() :

Fig. 2. A DSL of 16 nodes. The number in each node represents the key
of this node.

Intuitively, Lemma 2 suggests that the number of nodes
in a low layer is generally closer to the expected value, and
we refer to such a layer as a balanced layer. The layers above
L= log(log %) might be unbalanced owing to excessive
promotions. Fig. 2 shows an example. Here, starting from
layer 5, there is only one logical node in each layer. This
means that unnecessary neighbor information has to be
maintained, which reduces the search efficiency.

To solve this problem, we compress all the layers above
L into a single top layer. The following lemma gives the new
node distribution:

Lemma 3. The number of layers in a DSL after compression is
log(l%), and the expected number of logical nodes in the top
layer 1s 21og N.

Proof. In DSL, all the nodes above L = log() are merged
into the top layer, and their expected number is
> BE(Y) =2log N. O

Since the number of logical nodes in the top layer is
bounded by O(log N), this small set of nodes can be easily
monitored by a single entity such as the content server in an
overlay network. It is worth noting, however, that IV is not
fixed in this dynamic list, nor has it to be known a priori.
Assuming that Y} is the number of logical nodes observed
from layer [, N can be estimated as follows:

Lemma 4. Y;2' is an unbiased estimator of N (the total number of
keys in a DSL).

Proof. From Lemma 1, we know that E(Y;) =2 or
E(2' x Y;) = N. Hence, Y;2' is unbiased in estimating
N [14]. 0

3.3 Mapping between DSL and Asynchronous
Overlay

The mapping between a DSL and a streaming overlay with
asynchronous clients is straightforward: The playback offset
of a client serves as its key in the DSL, and all logical nodes
associated with this key map to the client node in the overlay.
The key is updated over time according to the playback
progress. Since the playing speed is identical for all the
normal clients, their relative playback distances and, hence,
the DSL structure will not change over time, unless a client
joins, leaves, or crashes or a VCR operation is invoked.

The client also maintains the logical links in the DSL, and
the content server needs to keep track of all the logical
nodes in the top layer. To this end, the server periodically
checks the size of a randomly selected layer, estimates the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO.5, MAY 2008

overlay size N from Lemma 4, and then accordingly
releases or merges layers to ensure that there are O(log N)
logical nodes in the top layer. From the previous discus-
sions, it is easy to show that each overlay node in the
system, including the server, maintains at most O(log N)
extra information.

4 DSL-BASED OVERLAY CONSTRUCTION,
MAINTENANCE, AND VCR OPERATIONS

In this section, we detail the construction and maintenance
of a DSL-based overlay. We also discuss the practical issues
toward supporting all the typical VCR operations.

4.1 Join Operation

We assume that the content server persists all the time,
serving as an anchor node in the overlay. When a new client
is to join the overlay, it first contacts the content server,
which redirects the client to a top-layer node with the
closest key. The new client then performs a top-down
search to insert itself into the base layer and chooses the left
neighbor (which has an earlier playback time) as its
supplier in the overlay. It goes on to conduct the bottom-
up random promotion and set up its links to the
corresponding neighbors in each layer. Note that the top-
down search takes O(log(oa +)) time, and the potential
neighbors across all the layers can be recorded in this
process. As such, we can make the following observation on
the cost for a joining operation:

Theorem 5. The expected message cost for a client join is
O(log (i3))-

Proof. In the join algorithm, the expected number of logical
nodes that the newly joined client should contact is
constant in each layer. Since the total number of layers is
O(log (15 N)) the expected message cost is also bounded

bY O(IOg(log N)) O

In practice, there could be multiple nodes that are
eligible to supply data to a newly joined client, and the
suppliers may also have heterogeneous bandwidth con-
straints. We will discuss this general scenario in the next
section and present an efficient multisupplier searching and
scheduling algorithm.

4.2 Leave Operation and Failure Recovery

A client that is scheduled to leave the overlay should first
notify its neighbors in the DSL such that they can reconnect
with each other to form new neighborships.

Theorem 6. The expected message cost for a graceful client
departure is O(1).

Proof. For a client whose highest corresponding logical node
isinlayer /, a graceful departure requires O(l) messages to
notify all neighbors in layer 0 through 1. Since the expected
number of nodes in layer [is 5;, the average number of
messages for a departure is

2//

log N

=92 —
N

v)
1 N 1-(
N Z,ﬁ T i w—

which is O(1). O

D=

log (b 1ylog (%)
0

WANG AND LIU: A DYNAMIC SKIP LIST-BASED OVERLAY FOR ON-DEMAND MEDIA STREAMING WITH VCR INTERACTIONS 5

Intuitively, this constant amortized cost holds because
the number of nodes with O(log N) neighbors is quite small.
Most of the nodes have far fewer neighbors in the DSL and,
hence, lower costs. A similar argument suggests that
although the maximum extra information kept at a client
node is O(log N), the average is O(1) only.

Every client also periodically exchanges echo messages
with its neighbors in the DSL, enabling an abrupt client
failure to be easily detected. The parallel links in the DSL
then help the affected neighbors perform local repairs. As
an example, in Fig. 2, when the node with key 65 fails, all its
neighbors, 56, 87, and 90, will detect the failure. Starting
from the link between 56 and 90 in layer 2, the three nodes
will detect each other’s existence in layers 1 and 0 and form
new neighborships. This is a variation of the search
operation, and the cost is, again, at most O(log V).

4.3 VCR-Like Interactions

Since the cost for a leave and then rejoin with a new
playback offset is only O(1) + O(log(log 7)) = O(log N), this
combination can be used to implement most typical VCR
operations.

4.3.1 Pause and Resume

The client can simply stop playback but may still stay in the
overlay, accepting and supplying data at the normal speed.
If the pause time is very long and its buffer overflows, it can
temporarily leave the overlay. Once the resume command is
given, it can rejoin with the original offset.

4.3.2 Random Seek

The client can simply leave and then rejoin the overlay with
the new offset after seeking.

4.3.3 Fast-Forward and Rewind

Assuming that the fast-forward or rewind speed is v, these
two operations can be realized by playing one segment out
of v segments [33]. This can be implemented through leave
and then rejoin as well. However, since a fast-forward or
rewind movement generally consists of a long series of such
jump operations, more efficient solutions are expected.

Given that an overlay node has a size-limited buffer,
after jumping v—1 segments, the fast-forwarding or
rewinding client will either stay with its current supplier
or move to a new one if the expected segment is not within
the current supplier’s buffer. The key issue of a jump
operation is thus to locate the suppliers with the expected
segments in time. We note that the DSL structure provides
effective support toward this operation through its hor-
izontal links, which enable a client to skip unnecessary
nodes (and, hence, segments) at a fairly stable speed. We
now present a simple analysis of the cost of the jump
operations for fast-forward and determine the layers that
the node should follow. The analysis and operations also
apply to rewind movements after a symmetric transform.

We assume that the playback offsets of two consecutive
nodes in the overlay differ by d segments on the average,
and the client can retrieve n data segments from its supplier
with VCR speed v. Then, following lemma gives the nodes
to be skipped:

Lemma 7. The number of logical nodes to be skipped ahead is
ne-l) for each jump operation.

Proof. Assume that the current playback offset of the client
is j; after playing n segments at speed v, the next segment
to be retrieved will be j 4 nv. Meanwhile, the playback
offsets of all normal-speed (1x) nodes are advanced by
n segments. Since the average difference between two
consecutive nodes is d, we need to skip ““ nodes in
the jump operation. ad

Theorem 8. Each jump operation for fast-forward needs
O(1) time.

Proof. The average distance between two nodes in a DSL
layer log(’” Yy is "(%1) Hence, following the horizon-
tal links in this layer each jump operation needs only
O(1) time to skip “0-Y 1) nodes. O

The above theorem suggests that the cost for a jump
operation is independent of the overlay size or the fast-
forwarding/rewinding speed. Such performance can be
difficult to achieve with linear or tree structures, because
there are no logical links for efficient skipping nodes at
regular distances.

In practice, log("*- l)) might not be an integer. In this
case, the client can temporarily move along higher or lower
layer links or adaptively set n, that is, stay for a longer or
shorter period with the current supplier, to achieve an
average speed of v. We now derive the range for n, the
number of segments to be retrieved from a supplier at a
fast-forwarding speed v, and the maximum fast-forwarding
speed that the overlay can support.

We consider the following physical constraints, which
are adapted from [26]: B, the buffer size of each client; T,
the connection time from one client to the other; and ¢, the
playing time for each data segment. We also assume that
the downloading time of each segment is smaller than ¢,
which is a basic requirement for continuous streaming.

Lemma 9. For fast-forwarding speed v, the number of data

segments that a supplier can provide is at most nt = %.

Proof. n't consists of two parts: the firstis n; = %, which are
the segments already in the supplier’s buffer, and the
second are the data segments that are downloaded while
playing the n; data segments. We now focus on the
second part. Since the supplier advances its playback at a
normal 1x speed, once the n; segments have been played,
another n; segments will be downloaded as long as the
downloading speed is faster than the playing speed.
Therefore, the total number of segments that a supplier
can provide is n* = B+ (1) + (1)? + .- + (1)), where
I denotes the number of 1terat10ns, £=1,0rI=|log, B

It follows that n™ = 5(5 B” A spec1a1 case is v =1 (Ix

speed or normal playback), where the number of data

segments that can be retrieved from the supplier is
unlimited; that is, the client can always stay with their

current supplier(s). O

On the other hand, since after playing n data segments,
the client must connect to the next supplier to ensure

continuous playback, we have nt > 7', and the range of n is

B(B
thus [{’ Z)(B 5)]

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5,

Theorem 10. The maximum speed that the system can provide is

no higher than 2=T5
Proof. The proof can be seen directly from % <n< i%:;)
for a valid n. a

Nevertheless, a speed of no more than 32x can be easily
achieved even in a small to medium DSL overlay (say, less
than 500 nodes), and, as investigated in [33], a higher speed
is rarely perceived as useful by users, nor is it supported in
most commercial VHS or DVD players.

5 MULTISUPPLIER DATA SCHEDULING

In a DSL overlay, iteratively searching its neighbors along the
base layer links, a client can easily locate others with
overlapped buffers, and all of them can be potential suppliers.
In this section, we generalize the model of data delivery to this
multisupplier scenario, which is clearly more efficient and
robust for heterogeneous and dynamic clients. However, a
scheduling algorithm is necessary in order to retrieve the
expected segments without duplication.

5.1 Network-Coding-Based Data Scheduling

The scheduling problem can be formalized as follows: given
an expected set of data segments to be retrieved in a
window of size w and S suppliers, each with a subset of the
segments and available bandwidth b;, j=1,2,---,5, we
need to find an assignment A= {(i,j)} for retrieving
segment i from supplier j such that the finishing time for
the last segment is minimized.

The problem closely resembles the parallel machine
scheduling problem, which is known to be NP-hard [7]. It is
particularly complicated given the highly heterogeneous
bandwidth from different suppliers. On the other hand, we
are aware that an overlay node, unlike conventional
network nodes, can actively manipulate the data in its
buffer and naturally realize network coding, which was first
proposed in some theoretical studies [1], [16], [19], [38].
Following these works, many practical systems based on
network coding have been built and evaluated recently [11],
[28]. In particular, it has been shown [29] that network
coding can be supported in hardware with negligible
overhead. Intuitively, network coding allows a node to
retrieve fractionized segments or jobs in the parallel
machine scheduling context. Given such a relaxation, we
now show that provided that the node finds a set of
suppliers whose total available bandwidth is no less than
the streaming rate, an optimal scheduling algorithm exists.

We focus here on linear network coding for its simplicity
and efficiency. We denote the original data segments as
1,¢2,-, ¢y A random linear coding on {¢;} is a vector
fi=>"0i x ¢, fori € (1---w), where the coefficient vector 3;
is randomly generated in a finite field F; of size g. We refer to
fi as combined data segments, which also span a range of w. If
all f; are linearly independent, once a node has a subset of f;
that spans range w, it can recover all the w original segments
by solving a set of linear equations.

Applying network coding in the overlay nodes, we can
make the following observation:

MAY 2008

Algorithm Greedy Scheduling
m = the number of segments received;
mg = the number of segments decoded;
do
if (any parts of f; --- f;m can be decoded)
Decode and update m;
if (supplier s is idle) and
(s has data not included in ¢; - - - ¢my)
Request fp,4+1 from s;
while m < w.

Fig. 3. A network-coding-based greedy scheduling algorithm.

Lemma 11. For any assignment without using network coding,
there is a corresponding assignment using network coding
with a shorter or equal finishing time.

Proof. Let A be an arbitrary assignment without using
network coding. Let m, be the number of data segments
retrieved from supplier s. We construct a corresponding
assignment A’ using network coding, where exactly m;
combined segments are retrieved from supplier s. The
downloading times for the two assignments are thus
identical, and after decomposition, assignment A’ pro-
vides all the segments as did A. O

This leads to a network-coding-based greedy scheduling
algorithm, as shown in Fig. 3.

The greedy algorithm continuously examines whether
the retrieved data segments can be decoded during the
downloading process. Whenever the subset of segments is
decomposable, they are decoded immediately. When a
supplier idles, the node will check whether it has data of
interest, that is, useful data segments that have not been
downloaded yet, and if so, it will retrieve them accordingly.

Theorem 12. The greedy scheduling algorithm with linear
network coding is optimal in downloading time.

Proof. It is easy to show that the greedy algorithm
downloads w combined data segments in 4¢ time, where
b=>7,b;,and cis the size of a segment. Assuming that
the coefficients are linearly independent (we discuss this
later in this section), the w original data segments can be
fully recovered from these combined data segments.

On the other hand, the total downloading bandwidth
across all the suppliers is at most b= ,b;. The
minimum downloading time for w data segments is thus
4¢ for any scheduling algorithm. It follows that the
greedy algorithm with linear network coding is
optimal. 0

5.2 Practical Considerations

Clearly, the scheduling algorithm guarantees playback
continuity only if the total bandwidth from all the suppliers
is greater than the streaming rate, which is a basic
requirement for any streaming application. The clients also
need to exchange such extra information as coefficients,
segment availability, and segment requests. We note that
their volume is two or more orders of magnitude lower than
that of the media data and also that they can be
piggybacked by the data segments. Our experimental

WANG AND LIU: A DYNAMIC SKIP LIST-BASED OVERLAY FOR ON-DEMAND MEDIA STREAMING WITH VCR INTERACTIONS 7

TABLE 2
Probability of Linear Independency as a Function
of Finite Field Size (q)

[[¢ | Probability | ¢ [Probability [¢ [Probability [
2T T 0.288788 25 1 0.967773 29 0.998043
22 | 0.688538 26 1 0.984131 270°170.999022
23 1 0.859406 27 1 0.992126 21T 170.999511
241 0.933595 28| 0.996078 2127170.999756

results show that the extra bandwidth required for such
data is far less than 1 percent, which can be negligible in
practice. The remaining major practical concerns are the
computation overhead of network coding and the linear
dependency of coefficients.

5.2.1 Computation Overhead

This is an important concern when realizing any active
operations in a network node. Compared to existing channel
coding schemes, the network coding in our system is simply a
set of linear operations with well-known fast algorithms. In
addition, coding and decoding are on a segment basis, and for
k segments, the operation required is the inversion of a k x k
matrix, which requires O(k?*) time only. More importantly, we
only need to decode a very small part of the media stream
each time [28], [32]. As an example, for a buffer of 15 Mbytes
and a segment of 128 Kbytes, even if all the data segments are
combined, we have k£2100. In our experiments, the
computation time is less than 1 ms in a typical Pentium IV
2.8-GHz PC.

5.2.2 Linear Dependency

For a small set of suppliers, if the coefficients are
independently and randomly generated at each node as in
our implementation, their dependency can be extremely
low [22]. This is verified in Table 2, which shows the
probability of linear independency as a function of the finite
field size for four suppliers. In our experiments, we chose
q=2%, and the performance of the scheduling algorithm
was rarely affected by linear dependency.

6 PERFORMANCE EVALUATION

In this section, we present our performance evaluation for
the DSL-based overlay. Although the results remain
preliminary, they have reaffirmed the salient features of
the DSL-based overlay: good scalability and low overhead
with VCR operations.

6.1 Network Configuration

We use the GT-ITM [35] topology generator to produce
networks for our simulation. In this section, we present
representative results based on the following settings: The
network consisted of four transit domains, each with five
transit nodes, and a transit node is connected to six stub
domains, each with eight stub nodes. We then add 16 stub
nodes to produce a 1,000-node network. The default
bandwidth settings between two stub nodes, a transit and
a stub node, and two transit nodes are 512 Kbps, 1 Mbps,
and 1.5 Mbps, respectively. Such bandwidths are only

upper bounds, and the available bandwidth might be lower
and vary over time, as discussed in the following section.

The overlay streaming system was built on top of this
underlying network topology. We placed the content server
and clients on randomly selected network nodes. For each
sample result presented in this section, we repeated the
placement and simulation 10 times to mitigate the effect of
randomness. The streaming rate was 256 Kbps, and the
length of the stream was 150 minutes, both of which are
typical for Internet-based video delivery. The default size of
the client-side buffer was 15 Mbytes, which can be easily
accommodated in state-of-the-art PCs. We also investigated
the impact of different buffer sizes in the experiments.

6.2 Cross Traffic and Client Dynamics

To emulate a dynamic network environment, we injected
cross traffic to the network. The flows of the cross traffic
were randomly placed between node pairs, using the
shortest path routing. Each flow followed an ON/OFF
model, and the traffic intensity during the ON period was
distributed from 20 percent to 80 percent of the bottleneck-
link bandwidth between the two nodes. The total volume of
the cross traffic varied in the experiments, and its impact
will be discussed in the following sections. Each client also
changed its status following an ON/OFF model: it actively
participated in the overlay during an ON period and left
during an OFF period. Both ON and OFF periods were
exponentially distributed with an average of 900 seconds,
which was & of the total stream length.

6.3 Control Overhead

We first investigated the control overhead for the DSL
overlay construction and maintenance. We were interested
in both global and local effects, that is, the average cost per
operation and the maximum cost that a client could incur.
The costs were measured in the number of messages
exchanged, reflecting both the bandwidth consumption and
the execution time of an operation.

6.3.1 Overhead for Join Operation

Fig. 4 depicts the average message cost per join operation
for different DSL overlay sizes. To better understand the
benefit of DSL, we have also plotted the results obtained
using an RSL for overlay construction. It can be seen that for
the join operation, the overheads for DSL and the RSL are
reasonably close, both following a logarithmic function of
the overlay size. DSL is slightly better, owing to the top
layer compression.

However, the message distribution among the overlay
nodes can be quite different for the two structures. Fig. 5a
depicts the total message cost per node, summed over
1,000 join operations. For the RSL, the message distribution
ishighly skewed: about 90 percent of the messages are at eight
nodes, which corresponds to the high-layer logical nodes in
the RSL. In particular, over 5,000 messages are ata singlenode
(ID:408). Such overloaded nodes can be quite vulnerable, and
VCR operations will further aggravate this problem. On the
contrary, as shown in Fig. 5b, the distribution in the DSL is
much more uniform, which suggests better scalability and
stability. There are other deficiencies of the RSL, such as the
weak support to overlays of dynamic sizes. Hence, in the

120 . . —]
110 |)L 4
100 | §
o :
80 F .
70 F .
60 | 1

5 0 1 L 1 1 1
0 200 400 600 800 1000

Number of Nodes

Number of Messages

Fig. 4. The maximum number of messages per join operation for RSL
and DSL.

following experiments, we focus on the DSL-based overlay
only.

6.3.2 Overhead for Leave and Failure Recovery

Fig. 6 shows the message cost per leave operation for
different overlay sizes. It can be seen that the average cost is
almost flat, which is consistent with our analysis in
Section 4. We also recorded the maximum cost, which is
logarithmically related to the overlay size. Intuitively, the
maximum cost occurs when a node in the highest layer of
DSL leaves; such a node maintains O(log V) neighboring
links, and all of them have to be reconnected afterward.
To investigate the cost for failure recovery, we randomly
failed 10 percent, 20 percent, and 30 percent of nodes in the
overlay. Fig. 7 presents the average message cost per failure

6000 . . ——
5000 - h .
4000 - .
3000 .
2000 .

Number of Messages

1000 - b

400 600 800
Node ID
(a)

0 200

600 .
500 - .
400 + [] fooo
300 -

Number of Messages

200+ ||

100 “‘H‘ AR
400 600 800

Fig. 5. Message distribution among the overlay nodes for 1,000 join
operations. (a) RSL. (b) DSL.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO.5, MAY 2008

60 T T T T T
55 L Viax um C oS _
50 .
45 + .) .
w0r -
35 7 .
30 .
25 .
20 - .
15 + .
10 1 1 1 1 1

0 200 400 600 800 1000

Number of Nodes

Number of Messages

Fig. 6. Message cost (max and average) per leave operation for different
DSL overlay sizes.

recovery for different overlay sizes. Again, the costs are
reasonably constant across different failure rates and
overlay sizes. These results suggest that a DSL overlay is
stable and scalable in terms of control overhead.

6.4 Streaming Quality

In the second set of experiments, we examined the
streaming quality of the DSL overlay. Given that playback
continuity is critical for real-time media streaming, we
adopted a Segment Missing Rate (SMR) as the major
criterion for evaluating the streaming quality. A data
segment is considered missing if it is not available to client
till the play-out time, and the SMR for the whole system is
the average ratio of the missed segments across all the
participating clients during the simulation period.

For comparison, we also simulated an existing on-
demand overlay streaming system, oStream [8], under the
same network and buffer settings. oStream employs a tree
structure, in which each client node caches played-out data
and relays to its children, which may have asynchronous
playback offsets. A centralized directory server is used to
maintain the global information of the overlay, which
facilitates client join or failure recovery. Details of oStream
can be found in [8].

We focused first of all on streaming quality with
asynchronous playback requests. The initial playback off-
sets of the requests were uniformly distributed between 0
and 150 minutes. To emulate local bandwidth fluctuations,
we randomly injected traffic to the network links such that
the available bandwidth at each link varied over time, yet

30 T T T T T T T T T
10%

25 +20% i

30% /=3

20 b
15

10

Number of Messages

5 -

0 1 1 I
100 200 300 400 500 600 700 800 9001000

Number of Nodes

Fig. 7. Message cost per failure recovery for different DSL overlay sizes.

WANG AND LIU: A DYNAMIC SKIP LIST-BASED OVERLAY FOR ON-DEMAND MEDIA STREAMING WITH VCR INTERACTIONS 9

0.5 T T T T T T T T T
045 ot .
04 1
035 1
03 .
025 4l | 1
0.2 A .
0.15 1 | LT
0.1 5 ‘ M
0.05 - ‘ 1

5 10 15 20 25 30 35 40 45
Time(x100 seconds)

SMR

Fig. 8. SMR for DSL and oStream with local bandwidth fluctuation.

the total available bandwidth of the network remained at
80 percent of the base setting (with no cross traffic).

Fig. 8 plots the segment loss rates (SMRs) for 1,000-node
DSL and oStream overlays during a 4,500-second simulation.
It can be seen that the loss rate of DSL is generally less than
0.1, which is not only lower than oStream but also more
stable. From a video decoding point of view, such a loss can
be effectively masked by interleaving or error-concealment
techniques [31]. On the other hand, the loss rate of 0Stream
greatly fluctuates over time, with a peak value as high as
0.35, resulting in poor video quality. This is mainly because
oStream relies on a specific tree structure for streaming, so
bandwidth reduction at an internal link of the tree,
particularly at those close to the root, could result in a
severe loss across many descendants.

We are also interested in the performance of individual
nodes. In Fig. 9, we plot the percentage of missing segments
for each node. We can see that 98 percent of nodes have an
SMR of less than 5 percent. The variance across 99 percent
of nodes is 14 percent of the total segments, which is
reasonably low. We do notice that there are a few nodes
suffering from higher average loss rates. By carefully
investigating our log files, we find that most of these nodes
join the overlay in its initial stage, and a large number of
losses occur during that period. In other words, in the initial
stage when the overlay is small, there can be higher quality
fluctuation. We notice that this is an intrinsic problem of
peer-to-peer communication and happens in many other
systems. A possible solution is to use a hybrid architecture,

0.99 -) e
0.98 - A E
097 | -
0.96 | -
0.95 - .
0.94 | -
0.93 I .
0.92 | n
0.91 [+ n

0.9 1 1 1
0 0.05 0.1 0.15 0.2

Loss (%)

Percentile

Fig. 9. Segment missing for each node in the DSL overlay.

0.5 T T T T T
045 R .
04 B
0.35 .
03 | .
025 | .
02 . b
0.15 A .
0.1 F .
0.05 | - :
o b —" 1 1 1 1 1

0 5 10 15 20 25 30

Bandwidth Reduction(%)

SMR

Fig. 10. SMR for DSL and oStream under global bandwidth reductions.

which provides stronger support from the server during the
initialization procedure.

We are also interested in the behavior of each node. In
Fig. 9, we plot the percentage of missing segments for each
node. We see that 98 percent of nodes have less than
5 percent of missing segments. The number of nodes who
suffered a larger loss is very small. By carefully investigat-
ing our log file, we find that these were the nodes that
joined the overlay earlier. We suggest that at the initial stage
where the overlay is small, there could be higher fluctua-
tion. We believe further improvement is possible and can be
an interesting future work.

It is known that not only do the available bandwidths of
local links vary over time, but also the overall available
bandwidth of a network changes hourly and daily due to
the rhythms of working and sleeping hours, and working
days and weekends. Hence, in the next experiment, we
compared the performance of DSL and oStream under
different global network bandwidths. Their segment loss
rates are depicted in Fig. 10, where the overall available
bandwidth of the network was gradually reduced from
100 percent to 70 percent of the base setting.

Not surprisingly, for both DSL and oStream, SMR
increases as the overall bandwidth decreases. However,
the DSL overlay is much less vulnerable to bandwidth
reductions, and the rate of increase of SMR is generally
lower than that of 0Stream, especially when the reduction is
over 20 percent. For example, for a reduction of 30 percent,
the SMR of oStream has reached 0.25, or 25 percent of the
segments have been lost or missed the playback deadline,
yet the SMR of DSL is still less than 0.1. We conjecture that
this is because o0Stream explores the available bandwidth at
a small subset of network links only, so bandwidth
reduction at an internal link of the tree could result in loss
multiplicity in all downstream nodes. On the other hand, a
node in DSL has multiple potential suppliers, and the
network coding makes effective use of their available
bandwidths. In our experiments, we have observed that
more than 95 percent of nodes in DSL have more than two
suppliers, and the loads are fairly shared among them.
Fig. 11 depicts the streaming quality as a function of node
failure percentage for DSL and oStream, reaffirming that
multisupplier scheduling with network coding greatly
enhances the robustness of the system.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,

0.5 T T T T T T T T T T
0.45 Ovteam .
04 + .
035 .
03 + g
0.25 ' .
02 + §
0.15 .
0.1 : .
005 F . — 8
0 I 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10

Percentage of Node Failure(%)

SMR

Fig. 11. SMR for DSL and oStream under different node failure rates.

6.5 Impact of VCR Interactions and Buffer Size

We also examined streaming quality with VCR interactions,
in particular, fast-forward and rewind. The current version
of oStream does not support these operations. To enable
comparison, we implemented an enhanced oStream, in
which a jump operation is realized by moving through
the links in the tree structure either in the direction of the
parent (for forwarding) or the descendant (for rewind). This
distributed search avoids repeated contacts with the server.
The latter is clearly nonscalable for frequent VCR opera-
tions in large overlays.

We first randomly picked up 10 percent of the clients to
perform fast-forward or rewind operations with 2x speed.
The duration of each VCR operation varied from 5 percent
of the stream length to 40 percent. Fig. 12 shows streaming
quality for the DSL and the enhanced oStream overlays.
Clearly, DSL outperforms oStream, and its quality is almost
independent of the duration of the VCR operations. On the
other hand, the quality of the enhanced oStream quickly
becomes worse as duration increases and is generally
unacceptable for a duration greater than 20 percent of the
stream length. Intuitively, for a tree overlay like 0Stream, the
node initiating fast-forwarding or rewinding may still find
the expected data segments in the buffers of its parent or
close ancestors, but such an inefficient linear search will
soon cause it to suffer from buffer outage.

As mentioned before, each jump can be implemented
through a random-seek operation as well, that is, leave and
then rejoin with the updated offset. To understand its
(in)effectiveness, we also plotted streaming quality in this
implementation. As shown in Fig. 12, its performance is

0.5 T T /I T T T T
045 | OotreamEnhe) .
04 DSL(Original) —*—
035 A
0.25 -
02 - .
0.15 - -
0.1 .
0.05 - .
0 1 1 1 1 1
10 15 20 25 30 35 40

Duration(%)

SMR

Fig. 12. SMR as a function of VCR duration for DSL and oStream.

VOL. 19, NO. 5, MAY 2008

200 T T T T T T T T T T
150 | b
100 b

50 F E

Number of Messages

0
200 300 400 500 600 700 800 900 1000
Number of Nodes

Fig. 13. Message cost per jump operation.

generally acceptable with short VCR durations but becomes
worse with increased duration. This is mainly because
random seek needs a much higher cost and, hence, longer
time to identify subsequent suppliers, and the lag accumu-
lates over time. Such costs are compared in Fig. 13.

Fig. 14 further demonstrates the impact of VCR speed.
Again, we can see that the streaming quality for the DSL
overlay is reasonably good at low and medium VCR speeds
(2x to 8x). There are more losses and larger variances for the
16x speed. As discussed in Section 3, at this speed, more
links in the higher layers could be accessed; some of these
layers are not well balanced, which leads to inaccurate
jumps and, hence, more segment losses. Nevertheless, a
speed greater than 16x is rarely useful in the opinion of a
viewer [33], and under high speeds, the quality of other
schemes is indeed much worse. Our experience is that when
the speed goes beyond 4x, the quality of the enhanced
oStream is already unacceptable.

The buffer size of each client is another key parameter in
application-layer overlay streaming. Although it would be
desirable if every overlay node were to cache the whole
video stream, it is often impractical given the large data
volume. The results of the previous experiments have
suggested that the default buffer size, 10 percent of the
video stream, is sufficient to achieve low segment loss rates
when only asynchronous requests are being made. In
Fig. 15, we further depict streaming quality with different
buffer sizes in the presence of VCR operations. In this 1,000-
node overlay, the default buffer size again worked reason-
ably well, and the improvement with larger buffer sizes is
marginal, particularly at low and medium speeds. It is also

0.5 T T T B T T
045 F i

SMR

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

4x —*—

30 35 40
Duration(%)

Fig. 14. SMR as a function of VCR speeds for a 1,000-node DSL

overlay.

0.5 T T T T T L T T
045 .
04 4x —x—
035 .
03 .
025 | E
02 1
0.15 | B
0.1 . .
0.05 * — 1
0 1 el R T =T i il

6 8 10 12 14 16 18 20 22

Normalized Buffer Size(%)

SMR

Fig. 15. SMR as a function of the buffer size for different fast-forwarding/
rewinding speeds.

worth noting that with the default setting, the computation
time for the network coding is less than 1 ms, which is
acceptable for real-time adaptation.

7 CoNcLUSION AND FUTURE WORK

In this paper, we introduced a novel data structure, DSL, for
on-demand overlay media streaming. A DSL is a rando-
mized and distributed structure, which inherently accom-
modates node dynamics and asynchronous requests. We
have shown that all typical VCR operations can be
implemented in this overlay with O(1) or O(log N) message
costs. We also discussed the practical issues involved in
realizing a DSL-based streaming overlay and presented an
optimal algorithm for multipeer data scheduling with linear
network coding.

The performance of the DSL-based overlay was exam-
ined under different network and client configurations, and
our preliminary results reaffirm its excellent scalability and
robustness. Its streaming quality is reasonably good with
asynchronous requests and frequent VCR operations,
whereas the latter has seldom been supported in existing
overlay systems.

As a future work, we are interested in investigating the
performance of the DSL-based streaming overlay with more
realistic network configurations and heterogeneous clients,
possibly using the PlanetLab testbed, and comparing it with
those overlay systems using advanced structures. We are
also interested in incorporating advanced video coding
algorithms; an example is the Multiple Description Coding
(MDC) [31], which is a good match to the DSL structure and
could further improve its robustness.

ACKNOWLEDGMENTS

J. Liu’'s work was supported in part by the Canadian
NSERC Discovery Grant 288325, an NSERC Research Tools
and Instruments Grant, a Canada Foundation for Innova-
tion (CFI) New Opportunities Grant, and an SFU Pre-
sident’s Research Grant.

REFERENCES

[1] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network Information
Flow,” IEEE Trans. Information Theory, vol. 46, pp. 1204-1216, July
2000.

(2]

(3]

(4

(5]

(o]

(7]
(8]

]

(10]

[11]
[12]

(13]

(14]

(15]

(16]

(7]

(18]

[19]

(20]

(21]

(22]

[23]

[24]

(23]

[20]

[27]

K. Almeroth and M.H. Ammar, “The Use of Multicast Delivery to
Provide a Scalable and Interactive Video-on-Demand Service,”
IEEE |. Selected Areas in Comm., vol. 14, no. 6, pp. 1110-1122, Aug.
1996.

J. Aspnes and G. Shah, “Skip Graphs,” Proc. 14th Ann. ACM-SIAM
Symp. Discrete Algorithms (SODA 03), Jan. 2003.

S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable
Application Layer Multicast,” Proc. ACM SIGCOMM '02, Aug.
2002.

M. Castro, P. Drushel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, “SplitStream: High-Bandwidth Multicast in Cooperative
Environments,” Proc. 19th ACM Symp. Operating Systems Principles
(SOSP “03), Oct. 2003.

Y. Chu, S. Rao, and H. Zhang, “A Case for End System Multicast,”
Proc. ACM SIGMETRICS ’00, June 2000.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, second ed. MIT Press, 2001.

Y. Cui, B. Li, and K. Nahrstedt, “oStream: Asynchronous
Streaming Multicast in Application-Layer Overlay Networks,”
IEEE]. Selected Areas in Comm., vol. 22, no. 1, pp. 91-106, Jan. 2004.
H. Deshpande, M. Bawa, and H. Garcia-Molina, “Streaming Live
Media over Peer-to-Peer Network,” technical report, Stanford
Univ., 2001.

T. Do, K. Hua, and M. Tantaoui, “P2VoD: Providing Fault
Tolerant Video-on-Demand Streaming in Peer-to-Peer Environ-
ment,” Proc. IEEE Int’l Conf. Comm. (ICC "04), June 2004.

C. Gkantsidis and P. Rodriguez, “Network Coding for Large Scale
Content Distribution,” Proc. IEEE INFOCOM ’05, Mar. 2005.

Y. Guo, K. Suh, J. Kurose, and D. Towsley, “P2Cast: Peer-to-Peer
Patching Scheme for VoD Service,” Proc. 12th Int’l World Wide Web
Conf. (WWW '03), May 2003.

N. Harvey, M. Jones, S. Saroiu, M. Theimer, and A. Wolman,
“SkipNet: A Scalable Overlay Network with Practical Locality
Properties,” Proc. Fourth Usenix Symp. Internet Technologies and
Systems (USITS "03), Mar. 2003.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference and Predication. Springer, 2001.
M. Hefeeda and B. Bhargava, “On-Demand Media Streaming over
the Internet,” Proc. Ninth IEEE Int’l Workshop Future Trends of
Distributed Computing Systems (FTDCS '03), May 2003.

T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The
Benefits of Coding over Routing in a Randomized Setting,” Proc.
IEEE Int'l Symp. Information Theory (ISIT '03), June 2003.

A. Hu, “Video-on-Demand Broadcasting Protocols: A Compre-
hensive Study,” Proc. IEEE INFOCOM '01, Apr. 2001.

D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
Bandwidth Data Dissemination Using an Overlay Mesh,” Proc.
19th ACM Symp. Operating Systems Principles (SOSP '03), Oct. 2003.
Z. Li, B. Li, D. Jiang, and L. Lau, “On Achieving Optimal
Throughput with Network Coding,” Proc. IEEE INFOCOM '05,
Mar. 2005.

W. Liao and V. Li, “The Split and Merge Protocol for Interactive
Video-on-Demand,” IEEE Multimedia, vol. 4, no. 4, pp. 51-62, Oct.
1997.

H. Ma, K. Shin, and W. Wu, “Best-Effort Patching for Multicast
True VoD Service,” Kluwer Multimedia Tools and Applications,
vol. 26, no. 1, pp. 101-122, 2005.

M. Medard, S. Acedanski, S. Deb, and R. Koetter, “How Good Is
Random Linear Coding Based Distributed Networked Storage,”
Proc. First Workshop Network Coding, Theory, and Applications
(NETCOD °05), Apr. 2005.

R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge
Univ. Press, 1995.

V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai,
“Distributing Streaming Media Content Using Cooperative
Networking,” Proc. 12th Int’l Workshop Network and Operating
System Support for Digital Audio and Video (NOSSDAV '02), May
2002.

W. Pugh, “Skip Lists: A Probabilistic Alternative to Balanced
Trees,” Comm. ACM, vol. 33, no. 6, pp. 668-676, June 1990.

D. Qiu and R. Srikant, “Modeling and Performance Analysis of
BitTorrent-Like Peer-to-Peer Networks,” Proc. ACM SIGCOMM
‘04, Aug. 2004.

R. Rejaie and A. Ortega, “PALS: Peer-to-Peer Adaptive Layered
Streaming,” Proc. 13th Int’l Workshop Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV ’03), June
2003.

(28]

[29]

(30]

(31]
(32]

(33]

(34]

(35]

[36]

(371

(38]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO.5, MAY 2008

P. Rodriguez, C. Gkantsidis, and J. Miller, “Comprehensive View
of a Live Network Coding P2P System,” Proc. ACM/Usenix Internet
Measurement Conf. (IMC '06), Oct. 2006.

H. Shojania and B. Li, “Parallelized Progressive Network Coding
with Hardware Acceleration,” Proc. 15th IEEE Int’l Workshop
Quality of Service (IWQoS '07), June 2007.

D. Tran, K. Hua, and T. Do, “A Peer-to-Peer Architecture for
Media Streaming,” IEEE]. Selected Areas in Comm., vol. 22, no. 1,
pp- 121-133, Jan. 2004.

Y. Wang,]. Ostermann, and Y.-Q. Zhang, Video Processing and
Communications. Prentice Hall, 2001.

M. Wang and B. Li, “How Practical Is Network Coding,” Proc. 14th
IEEE Int’l Workshop Quality of Service (IWQoS "06), June 2006.

B. Wildemuth, G. Marchionini, M. Yang, G. Geisler, T. Wilkens, A.
Hughes, and R. Gruss, “How Fast Is Too Fast? Evaluating Fast
Forward Surrogates for Digital Video,” Proc. Joint Conf. Digital
Libraries (JCDL '03), May 2003.

H. Yin, C. Lin, F. Qiu, and D. Wu, “TrustStream: A Novel Secure
and Scalable Media Streaming Architecture,” Proc. 13th ACM Int’l
Conf. Multimedia (Multimedia '05), Nov. 2005.

E. Zegura, K. Calvert, and S. Bhattacharjee, “How to Model an
Internetwork,” Proc. IEEE INFOCOM ’96, Mar. 1996.

X. Zhang, J. Liu, B. Li, and T.-S.P. Yum, “CoolStreaming/DoNet:
A Data-Driven Overlay Network for Peer-to-Peer Live Media
Streaming,” Proc. IEEE INFOCOM 05, Mar. 2005.

M. Zhou and J. Liu, “Tree-Assisted Gossiping for Overlay Video
Distribution,” Kluwer Multimedia Tools and Applications, 2005.

Y. Zhu, B. Li, and J. Guo, “Multicast with Network Coding in
Application Layer Overlay Networks,” IEEE |. Selected Areas in
Comm., vol. 22, no. 1, pp. 107-120, Jan. 2004.

Dan Wang received the BSc degree in computer science from Peking
University, Beijing, in 2000, the MSc degree in computer science from
Case Western Reserve University, Cleveland, Ohio, in 2004, and the
PhD degree in computer science from Simon Fraser University,
Burnaby, B.C., Canada, in 2007. He will join the Department of
Computing, Hong Kong Polytechnic University, as an assistant
professor. His research interests include peer-to-peer networks, wire-
less sensor networks, and QoS routing. He is a student member of the
IEEE.

Jiangchuan Liu received the BEng degree
(cum laude) in computer science from Tsinghua
University, Beijing, in 1999, and the PhD degree
in computer science from the Hong Kong
University of Science and Technology in 2003.
He is currently an assistant professor in the
School of Computing Science, Simon Fraser
University, B.C., Canada, and was an assistant
professor at the Chinese University of Hong

/ Kong from 2003 to 2004. His research interests
include medla streaming, wireless sensor networks, and peer-to-peer
overlay networks. He serves as a TPC member for various international
conferences, including IEEE INFOCOM and IWQoS. He was an
information system cochair for IEEE INFOCOM 2004 and a guest editor
of ACM/Kluwer Journal of Mobile Networks and Applications, special
issue on wireless sensor networks and wireless mesh networks. He is
an editor of /IEEE Communications Surveys and Tutorials. He is a
member of the IEEE, the ACM, and Sigma Xi.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

