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Abstract—Sensor networks nowadays are widely used for structural health monitoring; for example, the sensor monitoring system
deployed on the Guangzhou New TV Tower, China. While wired systems still dominate, it is commonly believed that wireless sensors
will play a key role in the near future. One key difficulty for such systems is the data transmission from the sensor nodes to the
base station. Given the long span of the civil structures, neither a strategy of long-range one-hop data transmission nor short-range
hop-by-hop communication is cost-efficient.
In this paper, we propose a novel scheme of using the elevators to assist data collection. A base station is attached to an elevator.
A representative node on each floor collects and transmits the data to the base station using short range communication when the
elevator stops at or passes by this floor. As such, communication distance can be minimized. To validate the feasibility of the idea,
we first conduct an experiment in an elevator of the Guangzhou New TV Tower. We observe steady transmission when elevator is in
movement. To maximize the gain, we formulate the problem as an optimization problem where the data traffic should be transmitted on
time and the lifetime of the sensors should be maximized. We show that if we know the movement pattern of the elevator in advance,
this problem can be solved optimally. We then study the online version of the problem and show that no online algorithm has a constant
competitive ratio against the offline algorithm. We show that knowledge of the future elevator movement will intrinsically improve the
data collection performance. We discuss how the information could be collected and develop online algorithms based on different level
of knowledge of the elevator movement patterns. Theoretically, given that the links capacity assumptions we made, we can prove that
our online algorithm can guarantee data delivery on time. In practice, we may set a buffer zone to minimize the possible data delivery
violation. A comprehensive set of simulations and MicaZ testbed experiments have demonstrated that our algorithm substantially
outperforms conventional multi-hop routing and naive waiting for elevator scheme. The performance of our online algorithm is close to
the optimal offline solution.

Index Terms—Wireless sensor networks, data collection, mobile sink.

�

1 INTRODUCTION

SENSOR networks nowadays have been widely used
for structural health monitoring (SHM) applications.

For example, the Ting Kau Bridge in Hong Kong [1]
is equipped with a large number of accelerometers,
thermometers, and strain sensors to monitor its working
conditions. Another recent project that we are working
on is the monitoring system for the current inbuilt
Guangzhou New TV Tower (GNTVT) [2]. From these
projects, there is a gradual yet clear transition from
the wired sensor systems to partially wireless sensor
systems.

In SHM applications, the sensors are deployed on
critical locations that are of civil importance and pe-

• T. Zhang, L. Chen, and D. Chen are with the State Key Laboratory
for Novel Software Technology, Department of Computer Science and
Technology, Nanjing University, China. This work was done while Tao
Zhang was a research assistant in Department of Computing, The Hong
Kong Polytechnic University.
Email: zt@dislab.nju.edu.cn, {chenlj, cdx}@nju.edu.cn

• D. Wang and J. Cao are with the Department of Computing, The Hong
Kong Polytechnic University, Hong Kong.
Email: {csdwang, csjcao}@comp.polyu.edu.hk

• Y. Q. Ni is with the Department of Civil and Structural Engineering, The
Hong Kong Polytechnic University, Hong Kong.
Email: ceyqni@polyu.edu.hk

riodically sample the data. A commonly adopted data
collection strategy is to assign a representative node on
each floor which collects all the data from the sensors
on this floor. These representative nodes then transmit
the data back to the base station located at the foot of
the structure. Conventionally, the data transmission is
carried out by wires. For a life-long monitoring system,
a wire-dominated system is still a reasonable choice.
For a short term (weeks or months) evaluation of the
structure, a wired system introduces huge deployment
cost. Another major headache is the in-construction mon-
itoring; the wire can be very easily damaged during the
hammers and drills of structure construction. Obviously,
wireless sensor systems can play a more important role
for these applications.

There are two possible data collection strategies for
the wireless communication system, namely short-range
hop-by-hop routing and long-range single-hop trans-
mission. Long range single hop transmission (partially
adopted by the GNTVT project) is costly both in commu-
nication devices and suffers greatly if the energy supply
is limited or difficult to obtain. Hop-by-hop routing will
put high burden to the sensors that are close to the base
station as these sensors need to relay large amount of
data (note that in civil applications, the data are not
aggregated in the intermediate nodes). A careful design
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of a mixed scheme combining these two can lead to a
more efficient system; however, the intrinsic difficulty
remains, that is, the larger the structure, the longer the
distance from the sensors to the base station.

In this paper, we propose a novel scheme which uses
the elevators to assist data collection. We install a base
station on an elevator. When the elevator stops at or
passes by a certain floor, the representative sensors on
this floor will forward the data to the base station using
short range communications. This scheme provides a
scalable solution as the communication range and the
load of the sensors closer to the base station will not
increase when the number of floors increases. Definitely,
a prior is that the building should be elevator equipped.
This is true for high-rise buildings (e.g., in China, the
regulation requests all seven-floor buildings or higher
to be elevator-equipped); and for smaller buildings, the
burden of both long-range one-hop communication and
hop-by-hop routing are more likely to be acceptable.

We have conducted preliminary experiments in an
elevator of the Guangzhou New TV Tower, and observed
that steady data transmission is possible while an eleva-
tor is in movement. More importantly, when an elevator
stops at certain floors, there is a long period of time
for communication and a significantly larger amount of
data can be transmitted. Such throughput, after careful
scheduling, can also be used to assist transmission of
data from the sensors on neighboring floors.

To fully explore the benefit of this idea, many chal-
lenges need to be addressed. First, we need to maximize
the amount of data transmitted. While we can improve
the data transmission rate by using more expensive
hardware/antenna, this can also be achieved by careful
routing schedule of data transmission among sensors.
Second, the data should be collected on time. Though
SHM applications are delay tolerant to some extent, there
is a limit. If the data are entirely delay insensitive (can
be collected in the infinite remote future), there is no
need to collect data at all. Third, for energy constrained
sensors, we need to balance the load and maximize
system lifetime. Fourth, the purpose of the elevator is
to carry passengers. We cannot control the frequency of
the elevators movement nor the floors that the elevators
stop at. As such, the routing schedule must be adaptive
to the online elevator movement.

In this paper, we provide a systematic study to the
aforementioned problems. We formulate an elevator-
assisted sensor data collection problem which we need
to maximize the lifetime of the sensors, as well as to
guarantee that the periodically generated data can be
transmitted on time. We show that if the movement of
the elevator is known in advance, this problem can be
reduced to some maximum flow problems and solved
optimally. We show that the online version is signifi-
cantly more difficult and no online algorithm can achieve
a constant competitive ratio as opposed to an optimal
offline algorithm.

We illustrate that some movement sequences lead

to the intrinsic gap between the online algorithm and
offline algorithm. We show that the knowledge of an ab-
solute elevator movement sequence is not necessary. This
is of great practical importance as it makes certain level
of prediction a reasonable assumption. We then develop
an online algorithm with different level of knowledge
of elevator movement. We evaluate our scheme by a
comprehensive set of simulations and MicaZ testbed
experiments. We compare our scheme with multi-hop
transmission and naive waiting for elevator schemes.
Significant performance improvement is observed.

The remaining part of the paper proceeds as follows.
The background, our preliminary experimental valida-
tion in an elevator of GNTVT, and problem formulation
are presented in Section 2. In Section 3, we develop
optimal algorithms for three different offline problems.
Section 4 is devoted to the difficulty and the solutions for
the online elevator-assisted algorithms. We evaluate our
algorithms with a comprehensive set of the simulation
in Section 5 and MicaZ testbed experiments in Section
6. The related work is discussed in Section 7. Section 8
concludes the paper.

2 BACKGROUND, EXPERIMENTS AND THE
PROBLEM

As the first work to use elevators to assist data collection
for SHM applications, we first clarify the necessary
details of the application; and outline our problem. We
study the offline scenario where the elevator movement
is known in advance and the online scenario in the next
sections.

Without loss of generality, we assume that there is a
structure with N floors and there is one representative
sensor on each floor. This representative sensor can
collect the data from all the sensors on this floor. To
have our study more focused, in the rest of the paper,
we restrict ourselves on these representative sensors.
We call the representative sensors the source sensors or
just the sensors. We assume that the sensors on adjacent
floors can communicate with each other; the elevator
hoistway could be used to provide better link quality;
note that this is also a necessary assumption for hop-by-
hop routing in any wireless systems. In this paper, we
study the scenario that the sensors only communicate
with the sensors on the two neighboring floors. Our
results, however, can be easily extended to the scenario
where the sensors can communicate with the sensors far
away.

We install a base station d on an elevator; we call it the
sink or the mobile sink.1 To make communication possible,
the sink can be installed on top of the elevator, or a slim
antenna can be used so that it can stretch outside the el-
evator compartment through ventilation ports. Note that
there can be multiple elevators and multiple sinks. The
throughput between the source sensors and the mobile

1. If there is no ambiguity, we sometimes also use the elevator to
refer the base station sensor attached to it.
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(a) Sensor mote (b) Sink in elevator

Fig. 1. Experimental environment in GNTVT

sink depends on the total length of their encountering
time. The most important factor is whether the elevator
stops at one floor or simply passes by.

We further assume that the throughput between two
source sensors on neighboring floors is large enough (i.e.,
there is no throughput constraint). This is because the
rate of data generation is around O(1)Mbits per hour
(the heaviest load comes from the accelerometers which
has a rate of 100Hz). The elevators movement frequency
is in the order of tens of minutes and there is a reasonable
amount of time for the adjacent sensors to exchange data
of such loads.

To verify that the communication is realistic, we con-
ducted a preliminary experiment in GNTVT. A sensor
mote was placed on one floor of the tower and a sink
was placed in the No. 2 elevator of GNTVT (see Fig.1 (a)
and (b) respectively). Our sensor motes were equipped
with 7dBi antenna to enhance the signal strength in the
poor construction conditions2. The speed of the elevator
was around 1.5m/s. We observed the transmission could
easily reach 55Kbps or above. Note that we used the
MAC layer self-equipped with the sensor. We also tested
in our experiments and observed that steady communi-
cation was possible between adjacent floors.

In SHM applications, the data are periodically sam-
pled. We call every period a round. Let the data generated
at each sensor be α bits per round. Generally speaking,
the SHM applications are delay tolerant. Note however,
that each round may be a few hours and the data could
become less useful if the delivery delay is very long. In
the extreme case, if the data are entirely delay insensitive,
there is no need to collect data as we only need the data
in the infinite remote future. Consequently, we assume
that the data have to be delivered to the base station no
later than L rounds after they are generated.

We define the system lifetime to be the lifetime of the
first depleted sensor. This conforms to the requirement
of civil applications, where missing data can greatly
affect the accuracy of evaluation. Let E denote the energy
reserve of each sensor. We use et and er to denote the
energy consumption for transmitting and receiving one
bit of data. In this paper, we focus on the data traffic
and ignore the energy consumed for the control traffic.

2. The GNTVT is in construction and we can put the base station in
the elevator compartment as the door is hollow. In real deployment,
as explained, the base station can be installed on top of the elevator
outside the compartment or the antenna can be extended out from the
ventilation port.

i

Fig. 2. Graph G(V,E) and the network flow model.

As the mobile sinks are attached to the elevators, we
assume that they have no energy constraint.

In this paper, we focus on traffic scheduling and con-
sider MAC layer as a black box. This follows a modular
design and favors system complexity reduction. We do
understand that a cross layer optimization may further
improve the performance. We did some initial study as
shown in our poster [3]. In our experiments in Section
6, we chose a low duty-cycle X-MAC [4].

With the above model, the objectives of the elevator
assisted data collection are: 1) to guarantee that the data
generated can be collected on time, and 2) to maximize
the system lifetime.

3 ELEVATOR-ASSISTED DATA COLLECTION:
THE OFFLINE SCENARIO

In this section, we study three different offline versions
of the problem and develop associated algorithms. Here,
offline scenario means the entire elevator movements are
completely known in advance. We discuss online scenario
where part of the elevator movements could be predicted
in Section 4.

3.1 Maximizing the Throughput in a Single Round
(MT)

We first consider the case where the data should be
reported every round, i.e., L = 1. We emphasize that
each round may represent a few hours and L = 1 reflects
the requirement of some real-time monitoring systems.
In this subsection, we focus on the first objective. We
maximize system throughput so that we can examine
whether the system can guarantee all the data gener-
ated to be collected. This also paves the way for our
understanding of the overall problem.

Let vi represent the sensor on the ith floor where i ∈
[1 . . . N ]. Let S = {v1, v2, ..., vN}. We construct a directed
virtual graph G(V,E), where V = {s, d} ∪ S. Here s is a
virtual data generator and d is the virtual mobile sink.
E is composed of three parts: 1) Es = {(s, vi)|vi ∈ S}; 2)
Ed = {(vi, d)|vi ∈ S}; and 3) Ev = {(vi, vj)|vi, vj ∈ S ∧
vi and vj are on adjacent floors}. The capacity c(u,w) of
link (u,w) is

c(u,w) =

⎧⎪⎨
⎪⎩

α, (u,w) ∈ Es,

βi, (u,w) ∈ Ed,

∞, otherwise
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Fig. 3. Graph G′(V ′, E′) and the network flow model.

Here, βi is the aggregate throughput between sensor i
and the mobile sinks during this round. This is the total
throughput capacity of all the mobile sinks pass by and
stop at floor i and βi = 0 if no mobile sink is encountered
during this round. As discussed, since the link capacity
between adjacent floors is not bottleneck, in our model
we assign infinite link capacity for these links. We also
abuse the notation a little and use d to denote the virtual
aggregate mobile sinks of all elevators during this round.
An illustrative example of graph G is shown in Fig.2.

The problem can be transforms to a max-flow problem
where s generates α bits of data for each source sensor
vi and all the data need to be pushed to d. Consequently,

Observation 1: Optimal solution exists for the problem
of maximizing throughput for a single round.

If the total capacity between s and S is greater than
the total capacity between S and d, there is no solution.
Otherwise, we can use standard augmenting path algo-
rithm [5] and solve the max-flow problem optimally. We
call this MT algorithm in the rest of the paper. In what
follows, we only study the case where the total capacity
between S and d is greater than that of s and S.

3.2 Maximizing the Minimum Residual Energy in a
Single Round (MMRE)

We next incorporate the second objective of the problem,
to maximize system lifetime. In a single round, this
reduces to maximizing the minimum residual energy of
the sensors. Similarly, we build a graph G′(V ′, E′), by
splitting the nodes vi of G into two nodes vri and vti rep-
resenting sensor receiving and sensor transmission. For-
mally, let Sr = {vri |1 � i � N}, St = {vti |1 � i � N}, we
have V ′ = {s, d}∪Sr ∪St. E′ is composed of four parts:
1) Es = {(s, vri )|vri ∈ Sr)}, 2) Ee = {(vri , vti)|1 � i � N},
3) Ev = {(vti , vrj )|sensor i and j are on adjacent floors},
and 4) Ed = {(vti , d)|vti ∈ St}. The link capacity of G′ is:

c′(u,w) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αi, (u,w) ∈ Es,

βi, (u,w) ∈ Ed,

Ei + αier
et + er

, (u,w) ∈ Ee,

∞, otherwise

Here αi denotes the amount of data to be transmitted
by sensor i. Ei denotes the residual energy of sensor
i. The total throughput capacity of the links in Ee can
be calculated as the total residual energy of sensor i,
divided by the energy requirement of receiving and

i

i

i

i

Fig. 4. Graph G′′(V ′′, E′′) and the multi-commodity flow
model.

transmission of one bit. Here we need to compensate an
additional αier for receiving the αi bits from the virtual
generator s. An illustrative example is shown in Fig.3.

Observation 2: Optimal solution exists for the problem
of maximizing the minimum residual energy in a single
round; where the data generated from all source sensors
are guaranteed to be collected.

The problem can be transformed into a decision prob-
lem such that given Er, by allowing each sensor to have
the energy of Ei − Er, whether the data flow generated
by s can be successfully pushed to d. This decision
problem can also be answered by max-flow augment
path algorithm. Thus, the maximum of all Er is the
residual energy. In the rest of the paper, we call this the
MMRE algorithm.

Note that unlike in Section 3.1, we on purposely
choose to solve the problem with a non-uniform αi and
Ei. The MMRE will serve as a building block for our
online algorithms; as after a few rounds, the data to be
transmitted and the residual energy on each source will
become different.

3.3 The General Case (EA Offline)
Finally, we consider the general case where L > 1.
We transform it into a multi-commodity flow prob-
lem as follows. Again, we construct a directed graph
G′′(V ′′, E′′), where V ′′ = S̃ ∪ Sr ∪ St ∪ D ∪ T . Let the
total rounds be R (the total number of commodity). Let
S̃ = {s1, s2, . . . , sR} be a set of virtual data generators
where si represents the data generator in the ith round.
Similarly, we have Sr and St representing the sensor
receiving and sensor transmission on each floor. Let set
D = {d1, d2, . . . , dR+L−1} be a set of virtual aggregate
mobile sinks where di denote the aggregated mobile sink
for the ith round. Let T = {t1, t2, . . . , tR} be a set of
virtual destination for the data generated by S̃.

E′′ is composed of five parts: 1) Es =

{(si, vrj )|si ∈ S̃ ∧ vrj ∈ Sr} connecting the
virtual data generators to each sensor; 2)
Ev = {(vti , vrj )|sensor i and j are on adjacent floors}
denotes the transmission between adjacent sensors;
3) Ee = {(vri , vti)|1 � i � N} denotes the throughput
passing sensor i; 4) Ed = {(vti , dj)|vti ∈ St ∧ dj ∈ D},
denotes the transmission between sensor i and the
virtual aggregated mobile sink in the jth round; and 5)
Et = {(di, tj)|j � i < j + L}.
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Let αij be the data flow generated in the ith round
by sensor j.3 Let βjk be the total throughput between
sensor j and the mobile sink during the kth round. The
capacity of edges is:

c′′(u,w) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αij , (u,w) ∈ Es,

βjk, (u,w) ∈ Ed,

E + αerR

et + er
, (u,w) ∈ Ee,

∞, otherwise

This is a multi-commodity flow problem where the
flows fi =

∑
j αij need to be delivered from a specific si

to a specific ti. In other word, for a graph G′′(V ′′, E′′),
we solve the decision problem of whether the total flow
αR for each source sensor can be delivered. Note that
our case is a linear programming version; and a feasible
solution is easy to find. To maximize system lifetime,
we need to maximize the number of source-destination
pairs, i.e., R. A binary search can be applied until a
feasible solution cannot be found.

Observation 3: Optimal solution exists for the offline
elevator-assisted data collection problem.

In the rest of the paper, we call this the EAF algorithm.
Discussion: In our analysis, we did not consider the stor-
age limitation of the sensors. The amount of data in SHM
application is moderate. In practice, we implement the
system by allowing the data to be queued in neighboring
nodes; making the storage a minor problem. The storage
can also be seen as a constraint in the problem modeling;
and we leave this to our future work.

4 ELEVATOR-ASSISTED DATA COLLECTION:
THE ONLINE SCENARIO

4.1 The Difficulty
Though we have successfully solved the offline prob-
lem, in the following theorem, we see that developing
efficient online algorithm is much more difficult. The
intuition behind the theorem is that the online algorithm
performs poorly when there are unbalanced elevator
movements followed by infrequent elevator movements
and then balanced elevator movements. An unbalanced
movement is that the elevator only stops at a few floors.
An infrequent movement is that the elevator rarely moves,
i.e., stops at certain floors for long periods of time. We
formalize this intuition as follows.

Theorem 1: No online algorithm can have a transmis-
sion schedule that achieves a constant competitive ratio
to the offline algorithm in term of the optimal system
lifetime.

Proof: We have N sensors (v1, v2, ..., vN ) and one
elevator. Assume each sensor generates one packet per
round. Also assume that the lifetime of the packets is
one round (L = 1); that is the packets have to be
transmitted to the ground floor within the same round.

3. Note that in offline scenario, the data generated in each round are
the same. We use αij to unify the notations with the rest of the paper.

N

1

N

1

N

1

Fig. 5. Three phases of the elevator movement.

Let the throughput between a source sensor and the
elevator passes by the floor be zero; the throughput
between a source sensor and the elevator stops at the
floor be ∞; and the throughput between the source
sensors be ∞. We assume one unit of energy is consumed
for either packet transmission or receiving. Assume the
total energy reserve at each sensor node be E units and
E = θN where θ > 6.

The elevator movement is divided into three different
phases. The first phase is composed of P rounds where
2 < P < θ

2 ; the second phase is composed of Q rounds
where Q = �E−(N−1)P

N−1+N �; and the third phase is composed
of the rest rounds until the energy E is used up. In the
first phase, the elevator will stop at both v1 and vN in
each round. In the second phase, the elevator will stop
at either v1 or vN . In the third phase, the elevator will
stop at each floor in each round. An illustration of these
three phases is shown in Fig.5.

With any online algorithm, in the first phase, either v1
or vN will receive at least (N−2)P

2 packets and transmit
(N−2)P

2 + P packets. In total, (N − 1)P units of energy
will be consumed in these P rounds. Without loss of
generality, we assume v1 spends such amount of energy.

In the second phase, we assume the elevator will stop
at v1.4 As v1 needs to undertake all the traffic, the total
energy consumed in this round is at least Q× ((N −1)+
N). The total energy consumed in the first phase and the
second phase is (N−1)P+�E−(N−1)P

N−1+N �×(N−1+N) ≥ E .
Clearly, the energy will be exhausted after the first two

phases in the online algorithm and the system lifetime
is (in terms of rounds; constrained by v1)

Lon � P +
E − (N − 1)P

(N − 1) +N
� E +NP

2N − 1
=

(θ + P )N

2N − 1

For an offline algorithm, as we can predict the entire
movement of elevator, the schedule can be that we use
vN to undertake all packets for the first phase and use v1
to undertake all packets for the second phase. As such,
in the first P +Q rounds, the total energy consumed by
v1 and vN should be E1 = P + (2N − 1)Q and EN =
(2N −3)P +Q. In the third phase, both v1 and vN spend
one unit of energy for transmission its own packet until
the battery drains out. The system lifetime with optimal
schedule is (in terms of rounds; constrained by either v1
or vN )

4. Note that we do not assume that the elevator will choose v1 or
vN based on the decision of the online algorithm in the first phase.
Our argument is that a constant competitive ratio cannot be achieved.
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Lopt � min{P +Q+ (E − E1), P +Q+ (E − EN )}
� min{(θ − 2P )N + 4P, (P − 2)N − P + 1}

When N is large enough, we have

lim
N→∞

Lon

Lopt
=

O(1)

O(N)
= 0

This completes the proof.

4.2 The Online Algorithms
From previous observations and the theorem, we see
that with knowledge of future movement information,
system can efficiently figure out the optimal solution.
As a sharp contrast, without future information, system
performance can become arbitrarily bad. Intrinsically,
there can be some very bad situation (unbalanced eleva-
tor movements followed by infrequent elevator move-
ments and balanced elevator movements). An optimal
offline schedule could only be generated if the elevator
movement in the entire data collection is known. Note
that the entire collection period would last for hundreds
of rounds and the data might have a deadline of more
than one round. As such, the more knowledge of future
movement information, the higher the chance to adjust
the schedule.

As can be seen in our offline algorithms, we do not
need to predict exactly the movement sequence and
the exact time the elevator will stops at/passes by a
certain floor. To effectively apply these algorithms, we
only need to know the aggregated throughput βi within
a period of time; which is much easier to approximate.
This observation is of great practical importance; as it
makes the prediction of the elevator movement to certain
extent a reasonable assumption.

In reality, the movement of the elevators may even be
partially available in some scenario; for example, when
passengers input their destination floors on the control
pad, the elevator system can immediately obtain this
information. Some elevators in sightseeing towers may
even have fixed schedules.

In this paper, however, we do not study how to learn
the movement of the elevators. We confine our focus to
the question of the intrinsic benefit of some information
of the future movement; and to what extent we can
optimize system performance given such information.

In our model, we assume the link quality is ideal so
as to focus the study on the traffic scheduling problem.
In our testbed experiments, we handle this problem
by reserving extra throughput for error tolerance. This
simple reservation actually showed quite satisfactory
results. Clearly, there can be optimization to further
squeeze better performance out of this extra throughput.

Let the length of each round be TR; the lifetime of data
be TL = L × TR; the current time be current time; and
the sensors can predict the elevator movement schedule
for a length of T (T = 0 if no schedule is known). The
prediction is beyond the scope of the paper, which can be
based on history traces. In some scenarios, the elevator

movement is even fixed. For example the elevator of
Space Needle Tower in Seattle has a schedule of 10
minutes in daytime. For the data routing within T , we
cannot directly apply the offline algorithms. Within T ,
there is a mixture of data flows with different deadlines,
and some will not reach their deadlines in this period.
Let K be the total number of data flows in T . Let the
remaining time for flow i before reaching its deadline be
T e
i , 1 ≤ i ≤ K.
In this section, we will first develop an algorithm

given that at any point of time, we know the elevator
movement information for the future period of T . We
will further develop an algorithm with dynamic adjust-
ment given the movement of the elevator changes. This
is useful when the prediction within T is not entirely
accurate. We will prove that given that the links capacity
assumptions we made, our algorithm guarantees that all
the data flows can be delivered on time.

4.2.1 Online Schedule Given Prediction of T
Recall that TR represents the length of a round; there are
two different cases, T > TR and T ≤ TR. For T > TR,
the system will generate an online schedule (or, in short, a
schedule) at the beginning of every round. Each schedule
has a length of T . For T ≤ TR, a round can be divided
into multiple full T periods and a small leftover period
at the end of TR. The system will generate an online
schedule at the beginning of every T , and the beginning
of the small leftover period. Each schedule has a length
of T (except for the schedule in the leftover period,
which has a length the same as the leftover period). All
the schedule will only apply to the data flows that have
been already generated at the time. The pseudo-code of
the algorithm can be found in Algorithm 1.

Algorithm 1 Elevator Assisted Online Algorithm (EAO)
1: current time ← 0.
2: while TRUE do
3: if T � TR then
4: if (current time mod TR) +T > TR then
5: t = TR mod T
6: else
7: t = T
8: end if
9: online-schedule(current time, current time+ t)

10: current time ← current time+ t
11: else
12: t = T
13: online-schedule(current time, current time+ t)
14: subtract system throughput allocated to this schedule
15: current time ← current time+ TR

16: end if
17: end while

In each schedule the data flow will be divided into
three different priorities. First, the data with deadline
within this schedule will be delivered. Second, the re-
maining data will be delivered with joint optimization
of their deadline and the energy consumption. Third, if
there is still throughput capacity that the source sensors
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can push the data to the mobile sink when the elevator
passes by; data flows with the earliest deadline will be
delivered. The pseudo-code of the schedule can be found
in Algorithm 2.

Algorithm 2 online-schedule(current time, current time+t)
Generate a transmission schedule for a period of t within the
prediction period, i.e., t ≤ T .

1: Step 1:
2: Deliver the flow with deadline in t by MMRE()
3: Step 2:
4: current round ← � current time

TR
�

5: for i = current round− L+ 1 to current round do
6: Fi ← residual data generated in the ith round.
7: γi ← = Fi − Te

i −t

TL
× αN

8: γi ← = max(γi, 0)
9: end for

10: Construct G◦

11: Deliver the data flows by MMRE ext().
12: Step 3:
13: Source sensor j transmits data directly to the mobile sink

of the data flow with the earliest deadline.

In the first step, since the schedule is generated no
longer than a round, at most one data flow will reach its
deadline. Thus, MMRE() is used to deliver these data.

In the second step, there are data flows with the
deadline beyond T . Two decisions are needed: first, what
amount of data should be delivered and second, how to
route these data.

Let the amount of data generated in the ith round
that have not been delivered be Fi. The amount of
data that need to be transmitted in this schedule is
γi = Fi − T e

i −t
TL

× αN . Notice that αN is the total data
flow generated in every round (including the ith round).
The data flow generated in the ith round would expire
T e
i − t after the end of this schedule period and the

remaining proportion of the lifetime is T e
i −t
TL

. Intuitively,
this is a balance with the amount of residual data and
the deadline of the data making sure all data can be
transmitted to mobile sink on time.

For the routing of these data flows (i.e., γi), we maxi-
mize the minimum residual energy of the source sensors.
This problem is a little different from the MMRE problem
as the data flows have different deadlines. Consequently,
we develop an extended MMRE ext() by modification
of graph G′(V ′, E′) to G◦(V ◦, E◦) where an additional
s is introduced to distribute γi. The development of
MMRE ext() is similar to the techniques used in Section
3 and a formal description is shown in Appendix.

We prove in the next theorem that all data can be trans-
mitted to mobile sink on time if the system throughput
capacity B ≥ αN

TR
; this is the basic requirement for any

feasible schedule.
Theorem 2: If the throughput capacity from the source

sensors to the mobile sink B ≥ αN
TR

, using Algorithm 1
all the data can be transmitted to the sink on time.

Proof: This is a case by case proof. To smooth the
exposition, the proof is delayed to the Appendix.

Fig. 6. Elevator movement model used in our simulation.

4.2.2 Dynamic Schedule Adjustment
We develop a simple adaptive algorithm given that the
movement of the elevator is changed from the predic-
tion. Assume that the schedule of [t′, t′ + T ] period has
already been generated, and a change is made at the
moment current time where t′ < current time < t′+T .
We split the T into two sections and change a subpart of
T . The pseudo-code of the algorithm is in Algorithm 3.
Note that the reschedule does not increase the amount
of data that have to be transmitted. Therefore, within the
same duration, there is enough throughput capacity for
the sensors to transmit the data to the mobile sink.

Algorithm 3 Elevator Assisted Data Collection (EADC)
1: Split the remaining part of T into two sections TA =

[t′, current time] and TB = [current time, t′ + T ].
2: Maintain the schedule in TA.
3: Reschedule TB by Algorithm 1 (EAO) with the prediction

period be TB (the same as T = t′ + T − current time).

5 PERFORMANCE EVALUATION AND DISCUS-
SION

5.1 Simulation Setup
First, we evaluate our algorithms by simulation. While
our algorithms are general, we adopt the parameters of
the sensors in our simulation similar to MicaZ [6]. The
energy reserve for each source sensor is E = 1200mAh×
1.2V × 2. The energy consumption for packet reception
and transmission is er = 19.7mA × 1.8V per 250Kbps
and et = 17.4mA × 1.8V per 250Kbps, respectively. The
data generation period is TR = 2hours and the default
amount of data generated is α = 2Mbits per round. This
reflects to the data rate of accelerometers, one of the
most important sensors used in SHM. According to the
experiment results mentioned in Section 2, we assign the
transmission rate to be 55Kbps. We assume that the total
time that an elevator stops at a floor would be no less
than Ts = 30s, and the time that an elevator passes by a
floor to be Tp = 2s. Thus, the total amount of data that
can be transmitted is 1650Kbits and 110Kbits in these two
situations. The default value for the deadline of data is
L = 2. The default number of floors is N = 50.

We assume the elevator movement follows a Markov
Chain, see Fig.6. There are two states, MOVE and STAY.
After staying at a certain floor for Ts, the elevator will
move to an other floor with a probability of p, and might
stay at the same floor with a probability of 1 − p. If
the elevator moves, two different movement models are
considered: 1) the OFFICE model, the elevator would
randomly move to a certain floor and all the other

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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floors have an equal probability to be the destination;
and 2) the TOWER model, the elevator would only
move to the top floor or the ground floor. Different
movement probability p reflects the frequency of the
elevator movement. In addition, note that setting the
time Ts = 30s may be a small number for certain
elevators (e.g., more crowded elevators carrying a larger
number of passengers). By having a small p, we can
increase the time for the elevator stops. We note that
some elevators are busy in the day time but only stay at
the ground floor in the night. We consequently consider
two different working time models: 1) the D&N model,
the elevator would be in movement both in the day time
and in the night time; and 2) the DAY model, the elevator
would be in movement in the day time but stay at the
ground floor during the night time (from 11 : 00pm
to 7 : 00am). We admit that this elevator movement
model is a simplified model. Nevertheless, we believe
it captures certain characteristics of some elevators.

We compare our algorithm (system lifetime in terms
of number of rounds) with hop-by-hop data routing and
with the optimal offline algorithm. We also implement
a simple Waiting for Elevator (WE) algorithm. WE does
not predict the movement of elevator. The sensors wait
for the elevator passes by or stops. Then the sensors
transmit the data directly to the elevator. If the data are
about to expire, the sensors transmit the data towards
the elevator using hop-by-hop routing.

5.2 Simulation Results
We first compare our algorithm EADC with the hop-
by-hop routing scheme (See Fig.7). Not surprisingly, the
performance of our algorithm is significantly better. To
make a comparison even possible, we have to work
on some extreme parameters. We set the movement
probability to be p = 10% and compare with number
of floors from one to twenty. In D&N model, EADC
decreases very modestly; the lifetime is maintained at a
high level when the number of floors increases from one
to twenty. As a comparison, system lifetime using hop-
by-hop routing with twenty floors is only 3% as that of
the performance to the one floor case. In the DAY model,
when the number of floors increases, the lifetime of
both schemes decreases. But EADC decreases slower and
always outperforms hop-by-hop routing. As the sensors
close to the ground have to relay traffic for others, their
load increases fast. For example, when N = 20, EADC is
four times better than hop-by-hop routing. These results
have shown the intrinsic scalability of the elevator-
assisted data collection scheme. As the performance of
hop-by-hop routing hardly compares to that of EADC,
in the rest of our simulation, we only focus on the
performance of EADC under various configurations.

We next study the effect of the amount of data gen-
erated in each round. We can see from Fig.8 that the
more data, the smaller the system lifetime. In Fig.8 (a)
and (b), the decrease of EADC is proportional to the
increase of the data volume. For example, when the rate
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Fig. 7. System lifetime as a function of the number of
floors.
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Fig. 8. System lifetime as a function of the amount of data
generated in a round.

of data generation is 4Mbits per round, the lifetime is
roughly 25% to the case when the rate of data generation
is 1Mbits per round. The system lifetime is also fairly
proportional to the elevator movement probability p.
These are partially because the D&N model has the most
evenly distributed movement of the elevator. For Fig.8
(c) and (d), since the elevator stays at the ground floor in
the night, the system lifetime is shorter; and the impact
of p decreases.

We next study the effect of different prediction period.
Here EADC-2, EADC-1, and EADC-0.2 denote the EADC
algorithm with a prediction of the elevator movement
for the future T = 2 rounds, 1 round and 0.2 round. We
compare EADC with the optimal offline solution where
the entire movement can be predicted. It is also com-
pared with WE algorithm (Waiting for Elevator) which is
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Fig. 9. System lifetime as a function of the elevator
movement probability, i.e., p in the building with 50 floors.
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Fig. 10. System lifetime as a function of the elevator
movement probability, i.e., p in the building with 20 floors.

a naive elevator-assisted data collection scheme without
data scheduling and prediction. The results are shown
in Fig.9 and Fig.10. It is obvious that prediction would
greatly improve the system lifetime and the longer pre-
diction time the better the system performance. In Fig.9
(a), the performance of T = 0.2 round is 30% to 70%
to that of the optimal offline solution, where the larger
the movement probability, the closer the gap. If the
prediction period is 2 rounds, the performance is almost
the same to the optimal offline solution. In Fig.9 (c) and
(d), we have two observations. First, the system lifetime
flattened when the elevator movement probability is
larger than 5% ∼ 10%. Again, this is because the effect of
increasing elevator movement probability is reduced by
the elevator inactivity in the night time. Second, there is a
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Fig. 11. System lifetime as a function of data lifetime.
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Fig. 12. Performance of dynamic schedule adjustment
under imprecise prediction scenario.

larger gap if the prediction time is short. This is because
during the switch from day time to night time, a short
prediction time may result in less optimal scheduling.
In Fig.10, the system lifetime is longer as there is less
number of floors. We have observed the same trend as
that of Fig.9.

Fig.11 shows the impact of data lifetime. Clearly, if
the SHM applications can allow a longer data lifetime,
a better performance can be achieved. A longer data
lifetime can allow the algorithm to schedule the data
transmission more efficiently. We argue that, however,
this is not applicable for the hop-by-hop routing. Gener-
ally speaking, the performance of hop-by-hop routing is
affected by the data volume only. A unique feature of the
elevator-assisted data collection is that we have a chance
to adapt to the movement of the elevators, which is
different from time to time. Therefore, a larger deadline
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(c) Elevator movement frequency p = 20%.

Fig. 13. Energy consumption of each sensor with D&N OFFICE model
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(a) Elevator movement frequency p = 1%.
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(b) Elevator movement frequency p = 10%.
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(c) Elevator movement frequency p = 20%.

Fig. 14. Energy consumption of each sensor with D&N TOWER model
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(c) Elevator movement frequency p = 20%.

Fig. 15. Energy consumption of each sensor with DAY OFFICE model
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Fig. 16. Energy consumption of each sensor with DAY TOWER model
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can give room to more optimized data scheduling.
We next examine the performance of dynamic sched-

ule adjustment of EADC. Our simulation is based on
a prediction period of half a round. To simulate the
dynamic, a new set of movement is generated every
quarter of a round using the same elevator movement
model. The algorithm will adapt to such dynamics by
producing a new schedule accordingly. The results are
shown in Fig.12. We can see that the performance of our
algorithm is only slightly affected by such dynamics.

We further look at the distribution of the energy
consumed of each sensor at the end of system life-
time; averaged to each round. We can see three distinct
distributions with different movement frequencies p.
In D&N OFFICE model, if p = 10% (Fig.13 (b)), the
sensors around floor [3-10] and floor [40-47] have the
highest load. Based on our elevator movement model,
the elevator will more likely to pass or stop at the floors
in the middle of the building; and the sensors on these
floors have to relay more traffic. For a good strategy to
minimize energy consumption, sensors around floor 5
and floor 45 have a shorter path to the sensors on both
sides, thus, they have the highest traffic load. As a sharp
contrast, when p = 1% (Fig.13 (a)), the sensors in the
middle of the building have a much higher load. This
is because, if the movement is very infrequent (where
the elevator may stay at a certain floor for a long time),
the data have to be transmit, even though this requires
a much longer path, due to data deadline constraint.

In the DAY movement model, the sensor on the
ground always consumes the most power for the ele-
vator stops at ground most of the time. This can be seen
clearly from Fig.15 and 16. In the TOWER model, the
elevator only stops at the ground floor or the top floor.
Therefore, the sensors on the top floor and ground floor
consumes more energy than others, as can be seen in
Fig.14 and 16.

As a summary, the elevator-assisted data collection is
much more efficient than the hop-by-hop routing. Gen-
erally, we would notice that lifetime of sensor network
would benefit from more frequently movement of the
elevator, a longer data lifetime, and a better prediction.

6 MICAZ TESTBED EXPERIMENTS

6.1 Testbed Setup

We implement our algorithm in TinyOS with MicaZ
testbed to test the performance in real system. Consid-
ering the difficulty of going through specific regulations
of GNTVT, we modified our experiments as follows.

We use real data trace of the sensors of GNTVT to
serve as traffic intensity model. There are 2-4 accelerome-
ters deployed on the monitored floor. Six elevators could
be used to deliver the data. Each elevator would afford
about 0.1-0.2KB/s data rate. We track the elevator move-
ment of Chemistry Building with 11 floors and Meng
Minwei Building with 27 floors in Nanjing University to
serve as the elevator movement model. We record the

Fig. 17. MicaZ testbed

elevator movement as a sequence of two-tuple <floor,
time>, and map the elevator movement tuples to the
robot car experiment scenario by adjusting the stopping
time of the car. A sink node is tied to a robot car EXKJ-
ZN02X to simulate an elevator. The stopping position
was specified with the assistance of the infrared sensor
of the robot car. The testbed is shown in Fig.17.

We configure MicaZ motes to transmit data with min-
imum power. The transmission range is set to 20cm to
simulate the transmission between floors in the limited
laboratory space. The motes farther than 20 cm could
also receive data sometimes. So, the sink might be within
range of more than one sensor. In our experiments, the
sink knows its own position and pulls data from the
specified sensors to reduce the conflict between sensors.

In our experiments, a round is 5 minutes and the
lifetime of data is 1 or 2 rounds. We configure each
sensor to generate 30-60KB data per round. This setting
satisfies the data rate requirement in real application of
GNTVT. We run the experiment 2 hours each time and
4 times for each setting. Then we get the average results
of the experiments.

In the EADC algorithm, we evaluate the energy of
each node. In our experiment, we cannot deplete our
sensor nodes. As such, we apply the EADC algorithm in
a low duty cycle system. The computation of schedule is
centralized at the powerful sink node and the schedule is
transmitted to the sensors hop-by-hop. The control data
consists of items [DIRECTION , DATA AMOUNT ].
Each item consists of 4 bytes (1 bit direction flag, 31
bits data amount). The ith item presents the data flow
direction and data amount between sensor i and i+1. In
our experiments, a sensor only needs to deliver 40 ∼ 104
bytes control data in a schedule period.

We would transmit the data to the proper sensors
waiting for elevator. In our system, the cache size is
limited to 500KB. The target sensors or the sensors in
the route might have not enough memory to store the
data. In that case, we could cache the data in the previous
nodes in the route. When the target node has transmitted
the data to the elevator or other nodes, it would signal
the neighbors. Then the neighbors would continue to
transmit the cached data.

We assume that we could only predict one way move-
ment of elevator. For example, assuming that the eleva-
tor would stop at floors 1, 5, 10, 8, 2, 1,... sequentially,
we could predict the movement 1, 5, 10. When the
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Fig. 18. Maximum duty cycle of sensors in the building
with 27 floors.
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Fig. 19. Maximum duty cycle of sensors in the building
with 11 floors.

elevator arrives at 10th floor, we could further predict
the movement 10, 8, 2, 1. This prediction is not a fixed
period but measured by steps. That is applicable, for
we could get that information according to the button
pressed by the passengers.

We chose low duty cycle MAC protocol X-MAC [4]
in our implementation. The sensors keep asleep most
of the time when there is no data to be transmitted.
In practice, this brings some extra latency introduced
from the MAC, which results in a slight reduction of
the link capacity between sensors and the elevator. In
our implementation, we adjusted the capacity between
sensors and elevator. We tried different sleeping period
settings of 100ms, 200ms and 500ms and observed that
200ms period is more efficient with little extra latency.
So, we set the period to be 200ms in our experiments.

As a comparison, we also implement WE scheme. We
evaluate the energy consumption according to the duty
cycle of sensors. The results show that our algorithm can
reduce the duty cycle efficiently.

6.2 Testbed results
First we set the data rate to be 30KB/round and study
the effect of the data lifetime. Then, we fix the data
lifetime to be 2 rounds and evaluate the effect of data
rate. The results in 27-floor building are show in Fig.18.
It is obvious that EADC always outperforms WE. The
duty cycles of both EADC and WE are decreasing with
data lifetime and increasing with data rate. That is cor-
responding to the simulation results. We could also find
out that, in Fig.18(a), the difference between EADC and
WE is larger when the data lifetime is shorter. With WE,
the sensors are purely waiting for the elevator. When the
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Fig. 20. Duty cycle of each sensor in the building with 27
floors.

lifetime is short, WE has little chance to transmit data
to elevator directly, and most of the energy is wasted
by hop-by-hop transmitting to elevator; EADC could
properly schedule the data transmission and maintain
the duty cycle at a low level. In Fig.18(b), when the data
rate increases, the increasing rate of WE’s duty cycle is
much higher than EADC. That also shows the efficiency
of EADC algorithm. Similar results could be found in
11-floor building experiments in Fig.19.

Fig.20 shows the duty cycle of each sensor in 27-
floor building while the data rate is 60KB/round and
data lifetime is 2 rounds. We could find out that EADC
algorithm could balance the energy consumption much
better than WE algorithm. With WE, the sensors in the
middle consumes much more energy than the others.
That is because when the data are about to expire, the
sensors have to transmit data to the elevator hop-by-hop;
and the sensors in the middle are likely to relay more
traffic. That is similar to the scenario where the elevator
seldom moves as in Fig.13 (a).

We had observed some packet delivery miss in our
prototype system. The data delivery ratio for 60Kbytes
for 27 nodes is 93% while it is 99% for 30Kbytes or
for 11 nodes. We think further parameter adjustment
may achieve some better delivery ratio. Based on our
experience, in practice it is impossible to achieve 100%
packet delivery. A common strategy used in wireless
sensor network today is to put some application layer
coding to mask the failure.

7 RELATED WORK

Sensor networks have long been used for structural
health monitoring in civil engineering [7][8]. Many of
such applications adopt wired systems; for example, the
monitoring system on Ting Kau Bridge, Hong Kong [1].
The development of wireless sensors and the associated
networking and communication techniques have shown
great impact on the SHM systems. Experiment systems
using the Mica-like sensors are developed [9][10]. The
experiments both in-door and on the Golden Gate Bridge
of San Francisco have shown that current wireless smart
sensors are promising to be applied on SHM systems
in the future. The BriMon project [11] shows promis-
ing experiments on railway bridge monitoring. We are
currently in the development of a SHM system for the
Guangzhou New TV Tower [2] for life-long monitoring.
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Though the system is still dominated by the wired sen-
sors, wireless substations are used for data transmission.
We have a full scale of experiments focusing on high
quality sensor placement using wireless sensors for in-
construction monitoring in [12].

Using mobile sinks to assist data collection have been
proposed previously in literature. Luo et al. use mobile
sinks to balance the sensor load and maximize network
lifetime; both theoretical analysis [13] and routing pro-
tocol implementation [14] are introduced. In [15], single
hop transmission is applied, and the sink is expected
to visit all the sensors. In [16], some nodes serve as
rendezvous points to aggregate data and the mobile sink
visits these nodes to collect data. A theoretical study
of mobile sink with network lifetime bound is recently
studied in [17]. Nevertheless, in all these works, the
mobility of the mobile sink can be controlled. That is,
the mobile sinks are programmed to perform certain
tasks to optimize system performance, which is very
different from ours. In [18][19], the mobile sinks cannot
be controlled, and protocols are designed to resolve the
disadvantages of mobility but not make use of it. In
[20], the mobile sink cannot be controlled either, but the
data would never be out of date; so the sensors transmit
data to mobile sink only when they are close. TwinRoute
is proposed in [21], a hybrid algorithm that combines
the proactive and reactive data collection techniques,
which outperform the pure approaches. In our work,
we forward the data to certain sensors waiting for the
sink. Though the sink mobility is not manageable, we
can adjust our schedule dynamically as described in
Section 4.2.2. As such, it is not a pure proactive work.
Furthermore, we focused on balancing energy consump-
tion between sensors not the total energy consumption
as in [21]. In our scenario, we face the uniqueness of the
SHM application and we leverage the advantage of the
elevators for data collection; which is very different from
these previous studies.

There are many works on mobile ad hoc network
routing, e.g., DSR [22], AODV [23]. The objectives and
the treatment of these works are very different from our
problem.

There is another set of study on Delay Tolerant Net-
work [24][25][26]. In DTN, a wide range of performance
metrics such as throughput, delay and reliability are
studied. In this paper, we are more focused on a specific
elevator-assisted data collection problem, which have
never been studied before, and concentrate on the energy
efficiency of the sensor networks with data routing.

8 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel elevator-assisted
data collection scheme; targeting on structural health
monitoring applications. Intrinsically, the free movement
of the elevators substantially decreases the communi-
cation distance; and thus the energy consumption. We
provide a comprehensive study on the problem; where
we want to guarantee the data to be delivered on time

and maximize system lifetime. We first study three dif-
ferent offline scenarios and show that all these scenarios
can be solved optimally. We further study the online
algorithms. We show that the online scenario is signifi-
cantly more difficult and no online algorithm can achieve
a constant competitive ratio as opposed to an optimal
offline algorithm. We thus developed online algorithms
based on the level of knowledge of the future movement
information of the elevators. We show that the exact
elevator movement sequence and arriving time at certain
floors are not necessary. The simulation and real sensors
experiments have shown the effectiveness of our scheme.

As the first work of the elevator-assisted data collec-
tion problem, this paper confines itself to the exper-
imental validation, and understanding of its intrinsic
complexity and algorithmic solutions from the angle
of traffic flow scheduling. We believe there are many
future works. We will study the joint consideration of
MAC layer optimization and advanced algorithms with
consideration of sensor storage.
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